
Area and determinants in 2D

We’ve used vectors to compute lengths and angles, but we haven’t yet used
them to compute areas. Suppose we want to find the area of a pentagon. Can
we compute it using vectors? Yes, and that is going to be our goal.

Figure 1: A pentagon can be cut into three triangles.

We start by simplifying the problem; we cut the pentagon into three trian-
gles. If we can find the area of a triangle using vectors then we can find the
area of the pentagon.
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Figure 2: Using vectors to find the area of a triangle.

We start with a triangle in the plane described by vectors A and B. We
know that its area is base times height over 2. The length of the base is just
|A| and its height is |B| sin θ, so its area is:

1

2
|A||B| sin θ.
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This is similar to the geometric formula for the dot product, but we have a sine
function in place of the cosine function. We could use a dot product to find
cos θ and then solve for sin θ using sin2 θ + cos2 θ = 1, but instead we’ll use an
easier way to solve the problem.
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Figure 3: cos(θ′) = sin(θ).

We don’t have a simple way to find sines of angles, but the dot product
gives us a simple way to find cosines. Let’s look for an angle whose cosine is the
same as sin θ. We’ll rotate A by ninety degrees to get a new vector A′. (See
Figure 3.) The angle θ′ between A′ and B equals π

2 − θ, so cos(θ′) = sin(θ).
Therefore,

|A||B| sin θ = |A′||B| cos θ′

= A′ ·B.

This looks like a good idea if we can find A′. It turns out to be relatively easy
to find A′.

If A = 〈a1, a2〉, then A′ =

a) 〈a2, a1〉

b) 〈a2,−a1〉

c) 〈−a2, a1〉

d) 〈−a1, a2〉

e) None of the above

The favorite answer seems to be 〈−a2, a1〉. Let’s try this with a sample
vector A = 〈a1, a2〉. We start by drawing A together with the rectangle formed
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Figure 4: To visualize A′, rotate the rectangle surrounding A.

by the lines x = 0, y = 0, x = a1 and y = a2. To see what happens when we
rotate the vector, we rotate this box about the origin (0, 0).

It turns out that the base of the rotated rectangle has length a2 and extends
along the negative y-axis, and the height of the rotated rectangle is a1. Therefore
A′ = 〈−a2, a1〉.

We could have instead rotated the rectangle clockwise about the origin to
find the vector 〈a2,−a1〉.

Returning to our original problem, we have A′ = 〈−a2, a1〉 and B = 〈b1, b2〉.

|A||B| sin θ = A′ ·B
= 〈−a2, a1〉 · 〈b1, b2〉
= a1b2 − a2b1
= det(A,B)

=

∣∣∣∣ a1 a2
b1 b2

∣∣∣∣
Here det(A,B) = a1b2 − a2b1 =

∣∣∣∣ a1 a2
b1 b2

∣∣∣∣ denotes the determinant of the

matrix of vectors A and B. To find the determinant of a two by two matrix we
multiply the upper left entry by the lower right entry, then subtract the product
of the upper right and lower left entries.

Geometrically, the determinant measures the area of the parallelogram de-
scribed by A and B (not the triangle, because we haven’t divided by 2 yet.)
Since areas are always positive values we may need to take the absolute value of
the determinant to get the area; the sign of the determinant changes depending
on the order of the vectors: det(A,B) = −det(B,A).

We conclude that the area of the parallelogram described by vectors A and
B is the absolute value of:

|A||B| sin θ = det(A,B).
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The area of the triangle (half the parallelogram) described by A and B is the
absolute value of:

1

2
|A||B| sin θ =

1

2
det(A,B).
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