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1.→ introduction

The first European Remote Sensing satellite, ERS-1, launched on 17 August 
1991, was conceived in the 1980s, at a time of growing scientific and public 
awareness of the need to better understand, monitor and manage the Earth 
system. The dangers of environmental degradation, the alarming increase in 
the rate of loss of species, and the threat of irreversible climate change had 
emphasised the need to treat Earth as an integrated system. Satellites provided 
a unique opportunity to obtain the necessary global, continuous datasets. And 
an ocean satellite would clearly be needed as a key component of an integrated 
satellite Earth observation system in order to monitor the oceans, which cover 
more than two-thirds of Earth’s surface, and the ocean−atmosphere interface.

To achieve a 24-hour, all-weather global capability, it was decided that 
the main instrument on ERS-1 would be a multi-component Active Microwave 
Instrument (AMI), consisting of a scatterometer, a radar altimeter and a 
Synthetic Aperture Radar (SAR). Since they can see through clouds and are 
independent of sunlight, microwave systems have the great advantage of being 
able to operate under all conditions. The proof of concept of satellite-based 
microwave measurements of the ocean had been provided by the NASA−NOAA 
satellite Seasat, launched in August 1978. Although Seasat unfortunately failed 
through a power short-circuit after only 100 days of operation, initial analyses 
had demonstrated that microwaves, reflected or backscattered from the sea 
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surface, could provide valuable data on sea surface heights, sea surface winds, 
wave heights and many other important features. 

In particular, it had been shown that the SAR could reveal detailed 
structural information on a wide variety of ocean phenomena. The SAR is an 
advanced radar imaging instrument that achieves high resolution not only in 
the range direction, through the standard radar technique of measuring the 
travel time of short microwave pulses, but also in the along-track (azimuthal) 
direction, by exploiting the Doppler shift induced by the satellite motion. The 
achievable azimuthal resolution is then of the order of the antenna length, as 
opposed to the inverse dependency on the antenna length for a conventional 
radar. The ocean surface features imaged by the Seasat radar included the 
propagation directions and wavelengths of surface waves and internal waves, 
current-induced surface signatures of bottom topography, and the distribution 
of oil slicks, eddies and fronts. 

Seasat not only provided a major technical impetus for an improved follow-
on European satellite ERS-1, but also created a strong motivation for European 
scientists to engage in satellite remote sensing of the oceans. The collaboration 
with American colleagues had demonstrated to European scientists the 
exciting opportunities that all-weather global satellite measurements offered 
for studies of the ocean, the coupled ocean−atmosphere system and the 
cryosphere. Particularly influential in this respect was John Apel (1930−2001), 
a long-standing advocate of ocean remote sensing and a key player in the 
Seasat project. 

One of the many important applications of ERS-1 (1991–2000) and its 
successors ERS-2 (1995−2011) and Envisat (2002−12) was in the field of ocean 
waves. The launch of ERS-1 came at an opportune time for ocean wave 
research. In the three decades prior to the launch of ERS-1, detailed theoretical 
studies and extensive field programmes had led to major advances in our 
understanding of the dynamics and propagation of wind-driven ocean waves. 
Numerical wave models, such as the WAM model (WAMDI, 1988), had been 
developed to compute the space–time evolution of the two-dimensional 
ocean wave spectrum, for given wind field forcing, as a function of period and 
propagation direction (for a comprehensive summary of ocean wave research 
and modelling, see Komen et al., 1994). What were needed now to drive the 
models were good surface wind data, and, to initialise and validate the models, 
good wave data. The combined modes of the Active Microwave Instrument of 
ERS-1 were able, in principle, to provide all the data needed: surface winds, 
from the scatterometer and Radar Altimeter; mean wave heights, also from the 
Radar Altimeter; and the full two-dimensional surface wave spectrum, from 
the SAR. 

2.→ The→SAR→Wave→Mode

The SAR, as the most sophisticated of the AMI systems, provided potentially 
the most detailed ocean wave information. To reduce the so-called clutter 
noise, four single-look SAR images, with a theoretical resolution of 4 m, were 
averaged to produce multi-look images of about 20 × 16 m resolution. The SAR 
instrument produced millions of images of the ocean surface at this extremely 
high spatial resolution. But it also presented two major challenges: achieving 
global coverage and retrieving calibrated two-dimensional ocean wave spectra 
from the SAR images.

The difficulty in achieving global coverage was that, in continuous 
operation, the available data generation rate of the SAR was far too large 
for onboard storage of the data and later transmission to a ground receiving 
station, after the satellite came in sight of one of the relatively few ground 
stations. The problem was resolved by introducing two operating modes for 
the SAR: a standard broad-swath mode, which could be switched on when 
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the satellite was in sight of a ground station, to which the SAR data could 
then be transmitted directly, and a global SAR wave mode, designed with 
a periodic on/off operation cycle. The SAR wave mode was activated only for 
a short period every 200 km along the orbit, producing 5 × 10 km rectangular 
‘imagettes’ (see Fig. 1, top right). (In Envisat, which succeeded ERS-1/ERS-2, the 
separation between imagettes was reduced to 100 km). 

The wave mode data were sufficiently reduced relative to the full-swath 
data that they could be stored aboard the satellite until the data could be 
transmitted to a ground station in sight of the satellite. Although small, the 
imagettes, were nevertheless sufficiently large compared with the wavelengths 
of ocean waves to retrieve a meaningful statistical ocean wave spectrum. 
They were also sufficiently closely spaced to be compatible with the spatial 
resolution of current numerical global ocean wave prediction models, as 
applied, for example, in the daily global wave forecasts of the European Centre 
for Medium Range Weather Forecasts (ECMWF). 

The SAR wave mode imagettes were obtained at a mean incidence angle of 
23°, within the low-incidence-angle region of the broader scatterometer swath 
(see Kerbaol et al., 1998, for a detailed description and analysis). Together with 
the Radar Altimeter wave heights measured directly below the satellite orbit 
and the winds retrieved from the scatterometer, these data provided a valuable 
and unique synergistic dataset that could be used both as inputs to numerical 
wave prediction models and as data for model validation. 

Figure 1. ERS‑1 orbits and footprints of the nadir‑looking Radar Altimeter and the full‑swath SAR of the AMI. The wave‑mode SAR was 
switched on briefly every 200 km along the satellite track, producing a 5 × 10 km SAR imagette (top right). (From Lehner et al., 2000; DLR) 
Bottom right: Example of the standard SAR wave mode product delivered by ESA. (Brooker, 1995)
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The second basic problem in the SAR imaging of ocean waves was the 
interpretation of the images. Seasat had clearly demonstrated that the SAR 
could see ocean waves (see Johannessen et al., this volume, for similar full-
swath examples for ERS). But what was the relation between the waves seen 
in the image and the real waves in the ocean? Since the standard SAR image 
processing assumed that the Doppler was produced only by the satellite 
motion, the imaging theory could not be directly applied to random time-
varying surfaces such as the sea surface. In particular, doubts had been 
expressed that SAR images could be used for quantitative measurements 
of ocean waves due to the orbital motions of the long waves that transport 
the short Bragg waves (in the 20 cm wavelength range) responsible for the 
microwave backscatter. The additional Doppler shift induced by the long-
wave orbital velocities leads to a misplacement of the inferred position of the 
backscattered surface element, resulting in a distortion of the inferred wave 
spectrum. In one of the first analyses of these effects, Alpers & Rufenach (1979) 
pointed out that, depending on the wave steepness and propagation directions, 
some wave components would thereby be enhanced, while others would be 
smeared out. 

A first convincing demonstration that, despite these concerns, SAR wave 
image data could nevertheless provide useful information on wave spectra 
was provided by the analysis of the full wave dataset from a Seasat orbit (Fig. 
2, left). The inferred centre of high winds that produced the swell agreed well 
with the wind field reconstructed from weather data (Fig. 2, right).

Yet this successful reconstruction of the swell sources from SAR wave data 
glossed over some of difficulties emphasised by Alpers & Rufenach (1979). 
Since the Seasat SAR wave data were uncalibrated, only the wavelengths 
and propagation directions of the wave retrievals were used, not the wave 
amplitudes. Moreover, the swell fields were well dispersed, corresponding to 

Figure 2. Left: Principal propagation directions of swell derived from the SAR wave images of the SEASAT orbit 757, acquired at 22:47 UTC 
on 18 August 1978, with the position of the inferred extratropical cyclone. (From Lehner, 1984) Right: Contour plot of surface wave heights 
(in metres) derived from a later reanalysis of the ECMWF data (ERA‑40) at 18:00 UTC on 17 August 1978.
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narrow directional spectra. In this case, the different weightings assigned by 
the SAR to different propagation directions produced no significant distortions. 
Finally, the long swell waves were propagating in the near-range direction 
(i.e. orthogonal to the satellite flight direction) and had low steepness. In this 
case, the distortions induced by the wave orbital motions were small and, if 
anything, enhanced the imaging. 

ERS SAR data are now widely used to track waves emanating from storm 
regions, using both the SAR wave mode and full-swath data (see below). The 
SAR enables the routine reconstruction of the high-wind source region of the 
swell and decay rates of the swell as it propagates over many thousands of 
kilometres, using the basic spectral wave propagation relations first applied by 
Barber & Ursell (1948) to infer the locations and times of the distant storms that 
produced the swell. The SAR wave retrieval methods have meanwhile become 
more sophisticated, yielding well calibrated wave spectra. However, care must 
still be taken to allow for the distortions induced by the nonlinearity of the 
imaging mechanism, as discussed in the next section. 

3.→ Retrieval→of→ocean→Wave→Spectra→from→SAR→images

In anticipation of the difficulties of retrieving quantitative wave spectral 
data from SAR images not only in individual case studies, but also for the 
more general application of operational wave prediction, an extensive field 
programme, the Marine Remote Sensing Experiment (MARSEN), was carried 
out in 1979. The experiment, involving numerous research aircraft, ships, 
wave measurement stations, etc., from Europe and the US, was originally 
planned as a Seasat underflight project. However, when Seasat failed in 1978, 
it was rescheduled as a field programme in support of the planned European 
successor to Seasat.

MARSEN yielded invaluable insights. Among other results, it led to an 
extensive multi-author collective analysis of the theory of the SAR imaging of 
ocean waves (Hasselmann et al., 1985). This provided the basis for the design 
of the ERS-1 SAR wave mode instrument and the later retrieval of ocean wave 
spectra from the wave mode imagettes.

Figure 3 illustrates the impact of velocity bunching on the SAR imaging 
of ocean waves. For a small azimuthal component of the wave steepness, the 
velocity bunching can be represented by a linear transfer function. This can be 
simply added to the two other linear transfer functions characterising the radar 
imaging of ocean waves: the hydrodynamic and tilt modulation of the short 
backscattering Bragg waves (in the centimetre range) by the imaged long ocean 
waves (in the range 10−1000 m). The hydrodynamic and tilt transfer functions 
apply equally to real and synthetic aperture radars and are reasonably well 
understood. However, the velocity bunching mechanism rapidly becomes 
nonlinear when the wave steepness increases and the displacement direction, 
which is in the satellite flight direction, is parallel to the propagation direction 
of the waves. When these two effects are superimposed, in particular for short 
steep waves travelling parallel to the flight (azimuthal) direction, the wave 
image can become completely smeared out (see lower part of Fig. 3). 

Thus, in order to retrieve quantitative ocean wave spectra from SAR image 
spectra, two developments were necessary: a theory of the nonlinear mapping 
of an ocean wave spectrum into a SAR image spectrum, and a method for 
inverting the nonlinear mapping relation to infer the wave spectrum from the 
measured SAR wave spectrum. Both problems were successfully solved, the 
first rigorously, the second more approximately, leading to different inversion 
schemes (Hasselmann & Hasselmann, 1991; Krogstad et al., 1994; Engen et al., 
1994; Hasselmann et al., 1996; Mastenbroek & de Valk, 2000; Chapron et al., 
2001; Schulz-Stellenfleth et al., 2005; Collard et al., 2009).
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The original inversion method of Hasselmann & Hasselmann (1991) is 
illustrated in Fig. 4. It is based on a maximum likelihood matching of the first-
guess (prior) information available from a wave model and the data provided 
by the SAR wave image spectrum. From the first-guess wave spectrum, the 
forward transform is applied first to compute the associated SAR wave image 
spectrum. This will generally differ from the observed SAR wave image 
spectrum. One then constructs a maximum likelihood resultant wave spectrum 
and an associated SAR wave image spectrum by linearly combining the two 
(generally inconsistent) sets of information. The final maximum likelihood 
(posterior) wave spectrum depends on the weights assigned to the two separate 
sets of information. It is then possible to effectively disregard the regions of the 
SAR image spectrum in which the wave components are strongly distorted by 
the velocity bunching mechanism, the unreliable information being replaced 
by the predicted first-guess spectrum. The method necessarily depends on the 
subjective assessment of the reliability of the first-guess wave spectrum, which 
is derived from integrated information on winds and waves over a larger area 
around the location of the retrieval, compared with the reliability of the SAR 
wave spectral image (which may well have problems apart from the distortions 
induced by velocity bunching). 

The first generation of retrieval algorithms yielded a wave spectrum 
corresponding to a frozen image of the sea surface. They were thus unable to 
resolve the 180° directional ambiguity of the wave propagation directions of 

Figure 3. Velocity bunching: Impact of 
wave orbital motions on the SAR‑imaged 

position of a backscattering surface 
element of a wave field. The vertical axis 

refers to the average wave steepness. For a 
given steepness, the imaged position of an 
element on the sea surface is given by the 
intersection of the associated ray with the 
horizontal line corresponding to the given 

wave steepness. p and n indicate the orbital 
motions of water particles toward and away 

from the SAR platform. (Courtesy of X.‑M. 
Li, after Hasselmann et al., 1985)

Figure 4. Contour plots of observed and 
computed 2D wavenumber spectra. 
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a frozen image without additional information, such as from the first-guess 
wave model prediction. However, the required information was, in principle, 
available in the multi-look SAR data itself. Instead of simply averaging 
four successive looks (in order to reduce the clutter noise), it was possible to 
determine small changes between successive looks due to the propagation of 
the waves. Technically, the directional ambiguity was removed by computing 
not only the spectrum for the averaged looks, but also the complex cross-
spectrum between successive looks (Vachon & Raney, 1991; Vachon & West; 
1992). The analytic nonlinear ocean SAR transform based on cross-spectra 
and the corresponding inversion was published by Engen & Johnsen (1995). 
Following a proof-of-concept using reanalysed ERS-2 data, cross-spectra were 
incorporated in the standard ESA SAR wave mode product for the following 
satellite Envisat (Johnsen et al., 1998; Lehner et al., 2000). 

The original maximum-likelihood method of Hasselmann & Hasselmann 
(1991) (Fig. 4) was generalised accordingly, such as by ECMWF (Abdalla et al., 
2004) and in the PARSA retrieval algorithm of Schulz-Stellenfleth et al. (2005), 
to derive two-dimensional wave spectra free from directional ambiguities. 

The need to augment SAR wave image data using independent wave data 
from other sources – preferably from a state-of-the-art wave model used 
for operational global wave prediction – nevertheless remains an inherent 
limitation of SAR wave spectral data in all cases in which the azimuthal 
spectral cutoff due to velocity bunching cannot be neglected. Attempts to 
circumvent this limitation have used two approaches. 

 The first approach is simply to limit the retrieval at the outset to the 
spectral range not seriously affected by the azimuthal cutoff. There exists a 
broad range of interesting problems, in particular regarding the propagation of 
swell (as illustrated in Fig. 2 and further examples discussed below), for which 
this approximation is quite acceptable. The second approach is to substitute 
the detailed spectral information provided by a state-of-the-art wave spectral 
model by auxiliary information obtained, for example, from scatterometer-
derived surface winds or Radar Altimeter wave heights. This leads to the 
difficulty, however, that the missing azimuthal cutoff data are of a specific 
spectral structure, whereas the substitute data necessarily represent spectral 
integrals that are unable to resolve the missing spectral information.

Thus, in summary, the various proposed SAR wave spectrum retrieval 
algorithms can be classified with respect to two characteristics. First, whether 
they are first-generation retrievals (‘1’), based only on the standard image 
variance spectrum, or second-generation retrievals (‘2’), using inter-look 
cross-spectral data. Second, whether they use state-of-the-art wave model 
predictions as first-guess input data (M), are limited to swell-type spectral 
data (S), in which the spectral components affected by the azimuthal cutoff 
can be neglected, or, finally, use auxiliary data instead of a first-guess model 
to augment the spectral region affected by the cutoff (A). An example of 
retrieval type 1S is the swell study of Lehner presented in Fig. 2; examples of 
the application of the other retrieval types will be discussed in subsequent 
sections. 

Parallel to these different development strands, all retrieval algorithms 
have benefited from continuous technical improvements. These include 
improved formulations of the imaging transfer functions, special retrieval 
algorithms for selected integrated spectral properties, analysis of image 
pixel statistics, and investigations of the signal-to-noise and image contrast 
problems associated with the inter-look cross-spectral analysis method used to 
remove the directional ambiguity (Schulz-Stellenfleth et al., 2005).
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4.→ comparison→of→Retrieved→SAR→Wave→Spectra→with→
operational→Wave→Model→Predictions
A comprehensive comparison of three years of ocean wave image spectra 
retrieved from ERS-1 SAR with the wave spectra predicted by the ECMWF 
operational global wave model was undertaken by Heimbach et al. (1998); 
see Fig. 5. This provided the first quantitative assessment of the quality of the 
ECMWF wave forecasts over a continuous period, covering all seasons and 
on a global scale. A similar study on a regional scale, using the Norwegian 
operational wave prediction model, was undertaken by Breivik et al. (1998). In 
both studies a type 1M retrieval algorithm was applied. 

The availability of a first-guess wave field was important for the retrieval of the 
wind sea spectrum (Fig. 5, left panels), but not critical for the swell components 
(right panels), which consisted largely of well dispersed wave systems, in which 
the velocity bunching could be linearised. The retrieval algorithm was upgraded 
in this analysis by subdividing the wave spectrum into a number of separate 
wave systems, which were then inverted individually (Hasselmann et al., 1996). 
In a complementary study, Bauer & Heimbach (1999) compared SAR-retrieved 
significant wave heights (using the same retrieval algorithm) against those 
obtained independently from the altimeters on ERS-1 and Topex/Poseidon. As in 

Figure 5. Seasonally and ocean‑basin averaged polar diagrams of wave heights and directions (defined analogously to the standard wind 
vector polar diagrams of operational meteorology). Left: Wind sea spectra. Right: swell. Solid lines: ERS‑1 SAR wave mode data; dashed 
lines: ECMWF‑WAM model predictions. (From Heimbach et al., 1998)
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other applications of type 1M retrieval algorithms using first-guess wave spectra 
from a wave model, the directional ambiguity presented no serious limitation, as 
this could be resolved by the first-guess data from the wave model.

The overall agreement between the SAR-retrieved and predicted wave data as 
well as with independent wave measurements was clearly very encouraging. At 
this stage, no attempt had been made to assimilate the retrieved SAR wave data 
in the wave model. Thus, the investigation was a test of the mutual consistency 
of the wave model prediction, driven by winds produced by the standard ECMWF 
weather analysis, and the wave spectra retrieved from the SAR. Despite the good 
overall agreement, systematic seasonally and regionally dependent deviations 
between the model and retrieved polar wave height diagrams are clearly visible. 
At that time, a tendency was revealed for the ECMWF model to predict too high 
wind seas and too low swell, indicating that both the wind input and the swell 
dissipation source terms in the wave model needed to be modified. This has led 
to successive improvements in the wave model. 

With the later model updates and the assimilation of SAR wave spectral data 
and Radar Altimeter wave heights, the ECMWF operational wave prediction 
model has now reached a level of maturity (see Figs 6–9) that the current 

Figure 6. Global comparison of inverted 
Envisat/ASAR Level 1b data and WAM model 
results for significant wave heights, 2009 
(Abdalla et al., 2010). (Peter Janssen, 
ECMWF)

Figure 7. Global comparison of inverted 
Envisat/ASAR Level 1b data and WAM 
model results for mean wave period, 2009 
(Abdalla et al., 2010). (Peter Janssen, 
ECMWF)
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operational SAR wave data assimilation scheme has only a minor impact on 
the skill of the prediction (Fig. 9). However, this level of maturity could not 
have been reached without the two-dimensional wave spectra provided as 
verification data by the global SAR wave mode system.

The above comparisons of retrieved and predicted wave spectra were still 
based on a first-generation type 1M retrieval algorithm, in which the directional 
ambiguity of the SAR image spectra had not been removed. Figures 10 and 
11 show similar comparisons using the type 2M PARSA retrieval algorithm. 
Figure 10 illustrates that in this case it is meaningful to compare not only the 
directional spread (as in Fig. 8), but also the mean direction itself. The impact 
of combining model and retrieved fields in the simultaneous determination of 
both the retrieved and predicted wave spectra is illustrated in Fig. 11, which 
shows comparisons of retrieved and predicted wave heights for two models, 

Figure 8. Global comparison of inverted 
Envisat/ASAR Level 1b data and WAM model 

results for mean directional spread, 2009 
(Abdalla et al., 2010). (Peter Janssen, 

ECMWF)

Figure 9. Impact of various assimilation 
setups (ERS‑2 RA and SAR) on the bias 

and rms error of a one‑dimensional wave 
spectrum, verified against in-situ buoy 

observations, 1−29 May 2001.  
(Abdalla et al., 2004)
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ECMWF and the German Weather Service (DWD), both of which are based on 
the same basic physics. 

The examples differ in two respects, however. First, as input first-guess 
spectra, the same predicted ECMWF spectra were used in both cases. Thus in 
the DWD case, the input data came from another model. Second, in the ECMWF 
prediction, in contrast with the DWD prediction, earlier SAR spectra had been 

Figure 10. Comparisons of the PARSA mean frequency (left) and mean wave direction (right) with those of the ECMWF reanalysis wave 
model. (Li et al., 2010)

Figure 11. Comparisons of the PARSA significant wave heights with the results of the ECMWF reanalysis wave model (left) and the DWD 
forecast wave model (right). (Li et al., 2010)
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assimilated in initialising the wave spectrum for the subsequent wave model 
integration. Thus, it is not surprising that the deviations between the predicted 
and retrieved wave spectra are almost 50% smaller for the ECMWF model than 
for the DWD model. Attention must clearly be given to the relative weights 
assigned to the predicted first-guess spectrum and the SAR image spectrum 
both in the maximum likelihood retrieval algorithm and in the assimilation 
scheme when comparing predictions and observations. We return later to 
the important question of the advantages and disadvantages of combining 
prediction, retrieval and assimilation in a single operation, but first we present 
results in which no first-guess input wave spectra are used.

5.→ SAR→Retrievals→of→Swell

In addition to the retrieval of the full wave spectrum, valuable information 
on the dynamics of ocean waves can be obtained from investigations of swell 
waves emanating from high-wind source regions. These are particularly 
suitable for global monitoring with SAR, as they propagate over large oceanic 
distances. Furthermore, if not too near the source of origin, they normally 
have sufficiently small steepness that the nonlinearities induced by velocity 
bunching can be neglected. Thus retrieval algorithms of type 1S or 2S can be 
used, independent of first-guess model predictions. 

Following the early Seasat example of Lehner (1984; Fig. 2), Holt et al. 
(1998) reported similar results for ERS-1, in which swell waves emanating from 
an intense storm were tracked over a period of several days. Comparisons of 
SAR and buoy data indicated that SAR-derived peak wavelength and direction 
measurements could be used reliably to predict arrival times and propagation 
direction over large distances. A classic field experiment conducted by 
Snodgrass et al. (1966), who studied swell propagation along a great circle, and 
its attenuation during its crossing of the Pacific, was repeated by Heimbach 
& Hasselmann (2000). This time the authors used ERS-1 SAR retrievals over a  
10-day period (Fig. 12, top right panel), together with spectra from ECMWF’s 
WAM model collocated in time and space (top left panel) to assess the simulated 
swell properties. The retrieved and simulated spectra were traced back to 
their region of generation by a major storm off New Zealand (Fig. 12, bottom 
panels). A detailed comparison of the travel times of simulated and retrieved 
swells (in terms of their implied group velocities) revealed an underestimation 
of ECMWF’s wind speed used to drive the wave model, a result that was 
confirmed independently by scatterometer data.

After 2002, the availability of operational complex SAR wave mode spectra 
from the Advanced SAR (ASAR) on Envisat stimulated the wider use of type 2S 
wave spectral retrieval algorithms, in which the directional ambiguity had been 
removed and the nonlinearities of velocity bunching (beyond the linear response 
approximation) were simply ignored. Since a first-guess wave spectrum, as 
in a type 2M algorithm, was now no longer needed to remove the directional 
ambiguity, but only to supply the information lost through the azimuthal cutoff 
by velocity bunching, the latter was simply ignored by restricting the application 
to spectra, such as swell, in which these effects were small. 

Extensive comparisons of buoy data and the Envisat/ASAR wave mode 
Level 2 products (based on a mixed type 2S–2A retrieval algorithm; see 
Johnsen et al., 2006) were also carried out by Li & Holt (2009) using the UK 
operational wave model to interpolate between the locations and times of SAR 
and buoy measurements (Fig.  13). Figure 14 shows the comparison of model 
and Envisat/ASAR wave mode Level 2 products wave height at the Christmas 
Island (CI) buoy site in different spectral bins, i.e. wave periods. The agreement 
was satisfactory except for a median range of typical wind sea wave periods 
(10−16 s), in which the SAR retrieved wave height in this case was 25% higher 
than the buoy data.
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Similar comparisons and cross-validations of the operational wave model 
against the ASAR wave mode Level 2 products have also been carried out by 
Météo-France. The Météo-France spectral retrieval is based on a partitioning 
and optimal interpolation algorithm applied to individual wave systems. The 
assimilation of one year (September 2005 to August 2006) of ASAR Level  2 
wave products in the wave model WAM cycle 4 (Aouf et al., 2008) reduced 
significantly the rms error of the significant wave height. The impact of 
the assimilation is strongest in the tropics, where the sea is dominated by 
swell, and the weakest component of the wave model. Compared with the 
assimilation of Radar Altimeter wave heights, the impact of the assimilation of 
ASAR Level 2 wave spectra is most pronounced for longer-range forecasts from 
12 to 60 h (Fig. 15).

Figure 16 shows a further example of the application of a type 2S retrieval 
algorithm, in this case to investigate the decay properties of long swells with 
periods of 13–18 s (Arduin et al., 2009). These wave components were and still 
are the largest source of error in global numerical wave models. The spectra 
from individual imagettes are sufficiently accurate to infer the dissipation 
rates of swell systems. Moreover, the large-scale consistency of the swell fields 
can be exploited to reach even more accurate estimates of characteristic wave 
parameters, by averaging wave properties in space and time. Ardhuin et al. 
(2009) found that the dissipation rates of swells were surprisingly nonlinear, 
with a stronger dissipation of steeper swells, and no clear dependence on the 
wave period or wind speeds (Fig. 16). This nonlinearity is consistent with the 
estimated strong dissipation rates for very steep swells derived by Högström et 
al. (2009).

Figure 12. Simulated swell (top left) and 
SAR wave mode (SWM) retrieved swell  
(top right) propagating across the Pacific 
over a 10‑day period. In the bottom panels, 
both simulated and observed swells are 
traced back to their regions of generation. 
(From Heimbach & Hasselmann, 2000)
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Figure 13. ASAR‑derived versus buoy swell 
partition heights after bias correction, for 
the years 2004−8. The solid line joins the 

median values from SAR observations in 
each 0.1 m class of buoy‑measured heights. 

(From Collard et al., 2009)

Figure 14. Comparison of model and Envisat 
ASAR wave heights at the CI buoy site in 

four spectral bins. (From Li & Holt, 2009)

Building on this observation, Ardhuin et al. (2010) used an analogy with 
the bottom boundary layer to parameterise nonlinear swell dissipation. The 
parameterisation is now used operationally by Météo-France and the Argentine 
Navy, and is being implemented by NOAA’s National Weather Service and the 
National Centers for Environmental Prediction (NCEP) in the United States 
(Tolman et al., 2011). 
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6.→ globally→integrated→versus→local→Retrieval→
Algorithms→
It is undisputed that second-generation retrievals, which use the complex 
information of the image cross-spectra to remove the directional propagation 
ambiguity, are inherently superior to first-generation retrievals using only SAR 
image variance spectra. However, this advantage is not pronounced in the 
combinations 1M and 2M, in which the first-guess input wave spectra from a 
state-of-the-art wave model can provide the necessary directional information 
(see, for example, Fig. 9, based on a type 1M retrieval algorithm). 

The main advantage of second-generation retrievals comes to bear either 
in retrievals of type 2S, applied to swell-type spectra in which the azimuthal 
cutoff due to velocity bunching is insignificant (Figs 13−16), or in retrievals of 
type 1A and 2A, where the information lost through the azimuthal cutoff is 

Figure 15. Variation in the assimilation 
index over the forecast period compared 
with Jason‑1 wave heights. The red 
line indicates the assimilation of Radar 
Altimeter RA‑2 wave heights only, while 
the green line refers to the assimilation of 
both RA‑2 and ASAR Level 2 wave spectra. 
The assimilation index is the reduction 
of the rms error relative to the reference 
run without assimilation. (From Aouf et al., 
2008)

Figure 16. Swell dissipation for 22 swell 
events in the Pacific: estimated linear 
attenuation coefficient as a function of 
the swell significant slope (ratio of the 
swell significant wave height and peak 
wavelength, s = 4 Hs/L), taken 4000 km 
from the storm centre, for a variety of peak 
swell periods (colours). (Ardhuin et al., 
2009)
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replaced by auxiliary data from sources other than a wave model. But even 
in retrievals of type 1S or 2S, the directional ambiguity is often not a serious 
problem, if the propagation directions (as in the examples presented above) 
can be clearly inferred from the overall geometry.

The main issue in the choice of retrieval algorithm therefore arises when 
the azimuthal cutoff becomes important, namely for steep, high-wind seas. The 
question is whether it is best in this case to use a first-guess wave spectrum 
provided by a state-of-the-art wave model (type 1M and 2M retrievals), or to 
try to substitute for the missing azimuthal cutoff information using other data 
(type 1A and 2A retrievals), such as from a radar altimeter, a scatterometer 
(although this instrument was no longer available on Envisat) or from wave 
buoys. The answer depends on whether the goal is to provide the best possible 
estimate of the wave spectrum, or to improve the wave model.

If the goal is to provide the best possible estimates of the wave spectrum 
for operational predictions or hindcasting studies, the answer is that one 
should clearly attempt to make optimal use of all available data in a global 
data assimilation scheme, including not only state-of-the-art wave models, 
but also state-of-the-art operational weather forecasting models, and all forms 
of observational data, including from satellites and conventional observing 
systems. 

As an example, Figs 17 and 18 (Li et al., 2010) show the impact of 
assimilating first-guess model data on the prediction of a complex sea state 
in an intense storm region. It is clear that without a reasonably realistic first-
guess input, it would have been impossible to derive the complex spectra 
shown on the right in Fig. 18 from the ESA WVW wave mode products shown 
in the middle column, which exhibit a pronounced azimuthal cutoff. But it 
is equally evident that the first guess for this complex storm system exhibits 
systematic errors that could not have been corrected without the information 
from the SAR. Thus a retrieval of the wave spectrum from the complex SAR 
image spectrum requires simultaneous information from both the SAR and the 
wave model.

On the other hand, if the goal is to test and improve the model, one should 
clearly strive to use independent data that have not been used in the model 
prediction. Unfortunately, this is feasible for SAR wave data only if one restricts 
the investigation, as in the examples of Figs 13 and 16 above, to type 1S and 2S 
retrievals, in which the nonlinear azimuthal cutoff region is excluded. In the 
case of strong wind sea spectra, as in the example just shown, the important 
spectral information lost beyond the azimuthal cutoff cannot be provided by 
model-independent, spectrally integrated observations. For this reason, most 
of the various proposed type 1A and 2A retrieval algorithms − e.g. Mastenbroek 
& de Valk (2000), CWAVE (Schulz-Stellenfleth et al., 2007), CWAVE_ENV (Li 
et al., 2011) − were not developed to test and improve state-of-the-art wave 
models, but rather simply to retrieve characteristic wave parameters. 

Although these retrieval algorithms cannot therefore compete with type 
1M and 2M state-of-the-art retrieval algorithms for detailed spectral wave 
measurements, or with type 1S and 2S algorithms for testing and improving 
state-of-the-art wave models, they nevertheless represent a valuable 
complement to these more sophisticated retrieval algorithms in providing 
generally accessible, simple tools for useful exploratory studies. As an 
example, Fig. 19 shows the validation of the operational wave model of the 
German Weather Service (DWD) against a combination of Envisat RA-2 data 
and ASAR-retrieved wave heights using the CWAVE_ENV algorithm.

In the long term, the SAR wave mode data could be seen as but one 
component of a highly complex satellite. The satellite, in turn, is only conceived 
as one component of an integrated Earth observation system, consisting of 
several satellites and an extensive ground-based conventional observing 
system. To make full use of this extensive global dataset, we need to develop 
sophisticated integrated models that also treat Earth as a complex coupled 
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system. In particular, the ocean wave field should be treated as an integrated 
component of the global weather system. The long-term goal should therefore 
be to assimilate the SAR wave data together with all other relevant sources of 
data (radar altimeter wave heights and winds, standard meteorological data, 
ocean buoy data, etc.) within a state-of-the-art integrated global atmospheric 
and ocean wave forecasting system. Within this general framework, a future 
ERS−Envisat−Sentinel integrated assimilation system should be extended to 
include also ocean currents (see section 8).

Figure 17. Locations of predicted and 
observed wave spectra at stations A, B 
and C within and south of an intense 
cyclone in the Pacific on 12 April 2009.  
(Li et al., 2010)

Figure 18. ECMWF predicted spectra (left), 
ESA SAR wave mode spectra (WVW) (centre) 
and PARSA retrieved spectra (right) for the 
three stations A (top), B (middle) and 
C (bottom) shown in Fig. 17. (Li et al., 2010)
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In summary, the 20 years of SAR wave mode data provided by ERS-1 
(1991−2000), ERS-2 (1995–2011) and Envisat (2002−2012) have had a major 
impact on ocean wave research and operational numerical wave prediction. 
The satellites produced invaluable data on the two-dimensional ocean wave 
spectrum that no other instrument was able to provide at a comparable level 
of spectral resolution and global, continuous coverage. The dataset has been 
indispensable for improving and validating the global wave model WAM 
(WAMDI, 1988), which is now applied in over 200 research and operational 
forecasting centres worldwide, as well as for improving similar wave prediction 
models operated by the French, UK and US weather services. Implemented 
together with the radar altimeter wave heights in the data assimilation mode, 
the wave mode SAR data have significantly improved, and can be expected to 
further improve, the quality of wave prediction. 

7.→ ongoing→and→Future→Research

Apart from their invaluable contribution to the determination of global ocean 
wave spectra, SAR wave mode data also have other applications that are the 
subject of current and planned future research. These include investigations 
of extreme sea states in intense storms, studies of individual exceptional 
wave states, such as freak (monster) waves, and the extension of numerical 
wave models in the general context of Earth system modelling, including 
the improved representation of wave–current interactions, air–sea fluxes, 
and second-order spectral quantities related to infra-gravity and microseism 
generation.

Figure 19. Validation of the DWD forecast wave model using simultaneous wave measurements of the Envisat/ASAR and RA‑2. Centre: 
The forecast wave field at 0:00 UTC on 20 January 2007 (background) and significant wave heights (SWH) retrieved from the ASAR wave 
mode data using the CWAVE_ENV algorithm (right track), and the collocated RA‑2 SWH data (left track), both acquired between 23:39 and 
23:51 UTC on 19 January 2007. The right and left panels show the model predicted SWH compared with the ASAR and RA‑2 retrievals, 
respectively. (Courtesy of X.‑M. Li)
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7.1→ extreme→Sea→States

Both tropical cyclones, which are associated with the most intense winds 
and air–sea fluxes, and extratropical cyclones, which produce most of the 
highest sea states, are difficult to observe directly due to sampling and signal 
saturation issues. Yet, these storms define the design criteria for most ocean 
engineered structures and coastal defences. Satellites provide a unique 
opportunity for overcoming these sampling problems. For instance, the largest 
significant wave height recorded by a satellite altimeter reached 20.1 m when 
storm Quirin crossed the North Atlantic in February 2011. A joint analysis of the 
remotely sensed winds and waves, including Envisat/ASAR data, confirmed 
the existence of very long waves, with peak periods reaching 25 s, supported 
by in	situ buoy measurements and the analysis of seismic noise at land-based 
stations (Hanafin et al., 2012). 

To understand the dynamics of such extreme wave systems, it is important 
to observe both the conditions within the high-wind region itself and the 
long swell components emanating from the storm, which allow conclusions 
to be drawn on the processes within the storm itself (see examples presented 
in Figs 14–16). Data for both regimes can be provided by the global SAR wave 
mode observations. A careful combination with seismic noise data should 
yield further insights into the evolution and statistics of these extreme events 
(Grevemeyer, 2000; Aster et al., 2008; Ebeling & Stein 2011). 

The evolution of the wave spectrum within an intense storm region is 
governed by four processes: wave propagation, the energy transfer due to 
resonant nonlinear wave–wave interactions, wind generation and dissipation 
by white capping and turbulence (Komen et al., 1996; Janssen, 2008). Of these, 
the first two are completely understood theoretically from first principles 
and are free from empirical constants, while the last two are represented in 
wave models by empirical expressions tuned against extensive observed 
wave growth data. The most important process for the structure of the wave 
spectrum is the nonlinear energy transfer, which redistributes the energy 
within the spectrum through resonant interactions between wave quadruplets 
and is responsible for the formation of a sharp spectral peak that gradually 
shifts to lower frequencies (longer wavelengths) in a growing wind sea. 

Unfortunately, although the nonlinear energy transfer is well understood 
theoretically, and has been computed numerically in a number of case 
studies, the exact transfer expression is represented by a three-dimensional 
integral that is impossible to compute exactly for each frequency, direction 
and spacetime point of a numerical wave model. Most models therefore use 
a strongly simplified expression, the Discrete Interaction Approximation 
(DIA) based on a single dominant wave quadruplet (Hasselmann et al., 1985) 
that reproduces the principle properties of a growing wind sea in a uniform 
wind field, but is known to exhibit serious deficiencies under more complex 
wind conditions. With the advances in computing power since the DIA was 
first introduced, a number of improved versions of DIA including more basic 
interaction quadruplets have now been proposed (e.g. van Vledder, 2001; 
Tolman, 2004, 2009, 2011; Ueno & Kohno, 2004; Tamura et al., 2008, 2010). The 
data derivable from the ESA SAR wave mode using type 2M retrieval algorithms 
provide excellent new opportunities for testing the impact of these suggested 
improvements, in combination with the assumed wind input dissipation 
source functions, under realistic extreme wind conditions (as illustrated by the 
example in Figs 17 and 18).

Nonlinear interactions, wind action and dissipation processes can still 
be important a few storm diameters outside an active generating area. They 
lead to a redistribution of the wave energy leaving the storm (Snodgrass et 
al., 1966), which can then be detected in the swell propagating away from the 
storm over very large distances. The swell systems can be readily observed 
with the SAR using simpler type 2S retrieval algorithms. Apart from avoiding 
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the complexities of 2M retrievals associated with the admixture of predicted 
and observed data, these measurements have the advantage that the swell 
systems can be tracked over much larger areas of the ocean. As well as 
reconstructing the location and time of the storm, the measurements can then 
provide valuable indirect information on the processes active within and in 
the vicinity of the storm area. Preliminary investigations (Delpey et al., 2010) 
have found, for example, that swell can be detected with the SAR wave mode 
propagating away from the storm in directions perpendicular to the principal 
swell propagation direction. It is not yet clear whether this is controlled by the 
variability of the wind fields in a storm, by the variable directional spectral 
shapes in the storm, or by directional spreading through nonlinear wave–wave 
interactions. A combination of storm-related swell data using type 2S SAR 
retrievals and type 2M retrievals for the storm area itself could yield important 
new insights into the nature of extreme sea states in severe storms.

7.2→ Freak→Waves

The occurrence of extreme individual waves, called freak or monster waves, has 
become a major concern because of the rapid increase in global trade and the 
concurrent growth in global shipping using ever larger container vessels. It has 
been estimated that in recent years an average of about one super-container ship 
carrying many thousands of containers has been lost per month. Although the 
cause of the loss is often unknown, it is suspected that in many cases it was due 
to an unexpected encounter with an individual monster wave (Fig. 20).

Although long attributed to the narrative lore of seamen, the reality 
of monster waves has now been clearly established through many well 
documented reports. While they are obviously difficult to interpret directly due 
to the intrinsic nonlinear imaging property of the SAR instrument, unusual 
wave formations have also been identified in SAR wave mode images, opening 
up the possibility of obtaining information on the probability of the occurrence 
of freak waves using the global observing capability of the SAR wave mode.

However, to relate SAR data to freak waves, three major problems must first 
be resolved: What is the physical structure of a freak wave? Given the physical 
structure of a freak wave, how is this very nonlinear, rapidly moving individual 
surface feature mapped into a SAR image? How can one invert the mapping to 
recover the original freak wave from the SAR image?

Regarding the first question, the simplest hypothesis is that a freak wave 
can be described to first order as the straightforward linear superposition of 

Figure 20. Monster wave encountered by 
the NOAA ship Discoverer in the Bering Sea, 

1979. (Commander Richard Behn, NOAA 
Corps)
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the individual wave components of a random sea state. Freak waves would 
then obey Gaussian statistics. However, the available evidence suggests that 
observed monster waves can be considerably higher than can be reasonably 
expected from Gaussian statistics, and must thus therefore represent a 
basically nonlinear phenomenon. Various nonlinear models based on the 
Benjamin−Feir wave−wave interaction instability mechanism (Janssen, 2003) 
or on wave–current interactions have been proposed, but it is likely that a 
number of different nonlinear interaction configurations can produce freak 
waves (Dysthe et al., 2008).

Given the structure of a freak wave, including the orbital velocity field and 
its interaction with the short backscattering Bragg waves superimposed on the 
large-scale orbital velocity field, the mapping into a SAR image is in principle 
well defined (although for ERS SAR wave mode incident angles of only 23°, the 
standard Bragg backscattering theory must presumably be augmented for steep 
range-travelling waves by a specular reflection model). However, the computation 
of the resultant image is computationally demanding. Unfortunately, the statistical 
closure methods applied in the fully nonlinear forward-mapping algorithm of 
Hasselmann & Hasselmann (1991) and Krogstad (1992) for wave spectra cannot be 
simply carried over to the case of individual wave representations. 

However, an approximation using a linearised Fourier transform relation 
for individual images, in which a filter is applied to the azimuthal cutoff 
region (corresponding to a type 2S algorithm, but applied now to the image 
itself, not to the image spectrum), has been proposed by Schulz-Stellenfleth 
& Lehner (2004). Figure 21 shows an example of the sea surface elevation 
field (B) derived from the calibrated ERS-2 wave mode data (A) using this 
algorithm. The algorithm has been applied to two years (September 1998 to 
November 2000) of reprocessed ERS-2 SAR wave mode data to derive a global 
map of maximum (SAR estimated) single wave heights (Fig. 22). Although not 
applicable for quantitative assessments of individual wave heights, due to the 
neglect of the nonlinear distortions induced by the SAR imaging system, this 
provides nevertheless a useful tool for arriving at first estimates of the statistics 
of exceptional individual wave occurrences as seen by the SAR.

Another application of SAR-derived wave images is the investigation of 
wave groupiness (Borge et al., 2004; Niedermeier et al., 2005). Figure 23 shows 
an example of pronounced wave groupiness occurring in the vicinity of the 
Ekofisk oil platform in the North Sea.

The third and final challenge is to invert the freak wave → SAR image 
mapping relation in order to recover the properties of the original monster wave 
from the SAR freak wave image. This will depend, of course, on the freak wave 
model and will presumably involve some form of parametric inversion method. 
Without progress in addressing the first two problems, however, predictions on 
advances on this question must remain speculative. 

Even after a complete three-stage freak wave model → SAR freak wave 
image → SAR image inversion scheme has been developed, one then faces 
the further difficulty that the probability of simultaneously observing a 
freak wave both in reality and in a SAR wave image in order to validate the 
model is for all practical purposes negligible. However, there is an interesting 
exception: the monster waves that occur at a few locations famous for their 
exceptional surfing conditions (Fig. 24). These huge surf waves are produced 
by refraction at subsurface reefs and are generated under well defined, 
reproducible and measurable wave conditions. Although representing a special 
type of monster wave, they may provide an ideal dataset for testing theories 
of the mapping of monster waves into SAR images, as well as for developing 
the associated inversion algorithms. Under less extreme conditions, coastal 
wave transformation due to complex bathymetry changes can also be used to 
interpret and better understand SAR observations involving wave focusing and 
refraction effects (e.g. Collard et al., 2005). 

ESA_ERS_06_HASSELMANN_DEF.indd   187 01/08/2013   10:59:18



SP-1326

188

In summary, most SAR wave observations have been motivated by the 
desire to improve our understanding and prediction of wave spectra, with 
less attention paid to the imaging of the individual wave fields themselves. 
However, the representation of individual waves can yield important 
information not only on freak waves, but also on other phenomena, such as 
wave grouping, the transformation of waves in the surf zone, and non-Bragg 
microwave returns from fast scatterers or reflectors, for example, from white 
caps or steep waves. 

Figure 22. Estimated maximum individual 
wave heights inferred from ERS‑2 SAR wave 

mode data acquired between September 
1998 and November 2000. (Koenig et al., 

2007; DLR)

Figure 21. SAR ocean wave retrieval in the 
spatial domain. A: A 5 × 10 km normalised 

ERS‑2 SAR wave mode imagette acquired at 
48.45°S, 10.33°E on 27 August 1996. 

B: The retrieved sea surface elevation field. 
(From Schulz‑Stellenfleth & Lehner, 2004)
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7.3→ Wave–current→interactions→

Ocean waves propagating through strong, variable currents can undergo 
dramatic changes in wave height and steepness. In a steady shear current, 
wave rays are bent, the bending being proportional, in the approximation of 
geometric optics, to the ratio of the vertical component of the current vorticity 
to the wave group velocity. Thus refraction effects become important whenever 
surface gravity waves propagate through major ocean currents exhibiting 
high gradients. Particularly critical are frontal zones, which can lead to wave 

Figure 23. Analysis of wave groupiness in 
the area of the Ekofisk oil platform in the 
North Sea. (From Borge et al. 2004)

Figure 24. A monster wave off Hawaii. Such 
surf waves pose no immediate danger to 
shipping, but are ideal for testing theories 
of the mapping of monster waves into SAR 
wave images, together with their associated 
inversion algorithms. (EPA)
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reflections, trapping and waveguide propagation of the trapped wave within 
the current. The resulting wave field can become very complex, with wave 
systems following different paths, producing crossing seas and caustics. The 
resultant strong spatial variations in wave energy can seriously endanger 
navigation. The effects have been observed in numerous SAR images; Liu et 
al. (1994), for example, carried out an empirical analysis of wave ray refraction 
patterns inferred from an ERS-1 SAR image over an ocean eddy. 

Most of these data have not been supported by synchronous measurements 
of surface currents. 

Today, however, routine ocean circulation models are available that assimilate 
multi-satellite altimeter sea surface height data, thereby better characterising 
the mesoscale upper-ocean dynamics and enabling the incorporation of wave 
refraction effects in wave models. Wave–current investigations using SAR 
observations can furthermore be enriched through an emerging analysis 
capability to infer ocean surface velocities directly from the Doppler information of 
the SAR data themselves (Chapron et al., 2005; Johannessen et al., 2008). 

As an example, Figs 25 and 26 illustrate the deflection of waves by large 
surface current gradients in the Agulhas current off the coast of South Africa, 
detected using the Envisat wide-swath SAR data. The currents (Fig. 25) were 
determined using the SAR Doppler information, while the wave spectra 
(Fig. 26) were obtained using a 1S retrieval algorithm (2S retrieval algorithms 
free from directional ambiguities were not directly available for the full-swath 
SAR data, as ESA provides the required complex image spectra only for the SAR 
wave mode imagette data). The incoming swell propagation rays are seen to 
be strongly deflected by the large current gradients, producing crossing-swell 
systems from an initially uniform incoming swell system within only 200 km.

The problem of wave–current interactions is closely related to that of 
wave–wave interactions, and both can be invoked to explain the generation of 
spacetime caustics and anomalous wave systems, including freak waves as an 
extreme case. In general, waves are scattered and amplified when propagating 
in an inhomogeneous random medium, which can represent a nonuniform, 
slowly varying current, as in the above example, or the low-frequency, low-
wavenumber random currents that are continuously generated in a random sea 
state by quadratic difference interactions between different wave components. 
From this perspective, the Benjamin–Feir instability invoked to explain the 
generation of extreme waves (Janssen, 2003) can be placed within the general 
theory of unstable wave–wave interactions (Hasselmann, 1967) in a form 
analogous to the wave–current interaction mechanism considered above.

Finally, quadratic wave–wave interactions between wave components of nearly 
the same frequency propagating in opposite directions generate microseisms 
(Longuet-Higgins, 1950; Hasselmann, 1963). Precisely measured microseismic 
records can be used to determine the arrival times of different swell components. 
Using geometric optics, the source can be determined with high accuracy by 
triangulation from several seismic stations (Fig. 27; Husson et al., 2012). 

Waves propagating in opposite directions with the same frequency occur 
only infrequently in the open ocean and are usually an indication of an 
unusual storm event, such as an intense tropical or mid-latitude cyclone, or 
possibly effects of multiple wave–current refractions. As recently demonstrated 
(Ardhuin et al., 2010), numerical model of microseism generation by random 
ocean waves, including ocean wave reflections, are becoming increasingly 
realistic. Yet, the development of microseism observations into a reliable 
early warning system and/or the full exploitation of available 50 years of 
seismic data archives still require more detailed knowledge of the directional 
properties of ocean wave spectra than is presently achievable using the energy 
transfer parameterisations (as discussed above) applied in current state-of-the-
art wave prediction models. The extensive global directional wave information 
made available by the two-dimensional ERS−Envisat wave mode data should 
again prove invaluable in investigating this attractive option. 
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Figure 25. Envisat/ASAR‑derived currents and wave observations in the Agulhas current (left), confirmed by the altimetry‑derived surface 
flow field (right). A southwesterly swell system interacts first with the Agulhas current, flowing toward the west, and subsequently with 
the Agulhas return current, flowing and meandering towards the east. The principal swell propagation directions (left) are displayed as 
background below the sketched ASAR Doppler‑derived current pattern (full curves). (CLS)

Figure 26. Wave spectra for three imagettes corresponding to the three locations shown in Fig. 25: A (left), B (middle) and C (right). 
The 300 m swell system is strongly influenced by the large surface current gradients, and the two swell patterns of comparable energy 
eventually cross. (CLS)
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8.→ conclusions→and→outlook

The sequence of ESA satellites ERS-1, ERS-2 and Envisat deployed over the 
last 20 years has had an immeasurable impact on oceanography, meteorology 
and climate research. We have focused in this chapter on the dynamics and 
prediction of ocean waves, in particular on the information provided by the 
ERS SAR wave mode component of the Active Microwave Instrument (AMI). 
However, since ocean waves are generated by the wind, interact with ocean 
currents, generate microseisms, affect coastal and offshore structures, and 
influence shipping and navigation, an improved understanding and prediction 
of ocean waves is important for many other aspects of the Earth system. Thus, 
the ERS SAR wave mode, designed to provide global measurements of the two-
dimensional ocean wave spectrum, must be seen as an integral component of 
a global Earth observation scheme, consisting not only of the full complement 
of ERS instruments, but also of many other satellites providing data on 
ocean currents, surface winds and other oceanic and atmospheric variables, 
including also the extensive system of conventional in	situ measurements. 

The impressive series of publications based on the ERS SAR wave mode 
instrument (of which only a selected subset has been cited here) illustrates 
the complexity of the problems that need to be addressed in order to exploit 
the full potential of the instrument. The ERS satellite was conceived in the late 
1970s, when the oceanic community had just developed realistic numerical 
models of the two-dimensional ocean wave spectrum for operational global 

Figure 27. Location of an expected storm 
source from independent SAR wave mode 

products and seismic noise measurements. 
For each seismic station, a 1000‑km wide 

blue disc has been plotted with a radius 
equal to the distance to the storm source, 
as estimated from the differential arrival 

time of the swell at the seismic station. 
The different discs intersect southwest of 
New Zealand, in agreement with the storm 

location given by the SAR (the red dot is the 
location at which backward‑propagated SAR 

measurements converge). (From Husson  
et al., 2012)
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wave prediction and eagerly welcomed the opportunity to feed these models 
with appropriate wave spectral data from a globally observing satellite. 
However, although Seasat had already demonstrated that a SAR could image 
ocean waves, it soon became apparent that the imaging process was highly 
complex. For a quantitative interpretation of the ERS SAR wave images, 
detailed models of the electromagnetic return from a random, moving surface, 
including, in particular, the interactions between short backscattering 
Bragg waves in the decimetre range and the imaged long waves in the 100–
1000 m range were needed. These were soon developed. Methods were then 
needed to invert the mapping relation, and retrieve the two-dimensional 
wave spectra from the satellite image spectra. This task was also achieved. 
However, because the general forward-mapping relation was nonlinear, the 
inverse mapping relation involved the unavoidable loss of some information: 
wavenumbers beyond an azimuthal high wavenumber cutoff could not be 
resolved. Thus, for a satisfactory general retrieval algorithm, the missing 
spectral information needed to be supplied from another source. In practice, 
the only available source was a two-dimensional spectral wave model, as all 
conventional measurement systems (other than wave buoys at a few isolated 
locations) are unable to resolve the specific spectral bands of interest. Thus 
retrieval algorithms in the general nonlinear case necessarily require an input 
first-guess wave spectrum from a wave model. 

This results, however, in an unavoidable intertwining of three separate 
aspects of the ERS SAR wave mode data: the retrieval of ocean wave spectra 
from the SAR data, the prediction of ocean wave spectra, and the assimilation 
of observational data in wave prediction models. The last two aspects imply 
that the application of the SAR wave mode data becomes coupled also to the 
problem of weather prediction, involving in addition the measurement and 
assimilation of atmospheric data. The separability of the three problems is 
feasible only for swell systems, outside an active wave generation region, in 
which the nonlinearities of the SAR imaging mechanism become negligible. 

The application of SAR wave mode data in this intertwined mode, together 
with improvements in weather prediction and associated atmospheric data 
assimilation methods, has led to the continuous improvement of global wave 
prediction models to a level at which, for most state-of-the-art wave models 
today, no systematic deviations between observed and modelled wave spectra, 
beyond the expected variability of observations, is found in the overall 
statistics of the comparisons of model predictions and SAR observations. 

However, significant deviations can still be found in individual cases, 
such as in intense cyclonic storms. Apart from the difficulties of an accurate 
prediction of wind fields in such extreme situations, it is well known from 
theoretical studies that the numerical approximations of the important source 
function describing the nonlinear energy transfer exhibit serious shortcomings 
in most wave models in complex wind seas. The SAR wave mode data 
provide an excellent opportunity for revisiting this problem and significantly 
improving wave models in these important cases.

A related problem in which the application of SAR wave mode data could 
lead to significant progress is in the occurrence of individual extreme wave 
formations known as freak or monster waves. Although monster waves occur 
infrequently, they represent a serious danger for the rapidly expanding global 
shipping industry, causing significant losses or damage to container ships 
and supercarrier vessels. Global SAR wave mode observations of individual 
extreme waves could provide a valuable statistical database for determining 
the frequency and conditions of occurrence of these poorly understood wave 
formations. However, further work is needed on the nonlinear SAR imaging of 
individual waves before a quantitative determination of the statistics of real 
freak waves rather than freak SAR wave images can be provided. 

Another process that leads to the formation of extreme wave conditions is 
the interaction between waves and currents, an important problem that is also 
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ripe for a more detailed exploration using SAR wave mode (and in this case 
also full-swath SAR data). Strong current gradients can result in a focusing of 
waves, producing abnormal wave conditions. Previously regarded as largely 
unpredictable, the simultaneous measurements of both wave spectra and 
currents using SAR wave imaging, the SAR Doppler for current measurements, 
and currents computed from radar altimeter sea level measurements, now 
enable predictions of the anomalous wave spectra produced by wave–current 
interactions. 

Finally, interesting data on the location of unusual systems of ocean 
waves travelling in opposite directions can be derived from triangulations 
of microseism measurements at different stations. Microseisms of twice the 
wave frequency are generated by quadratic interactions between ocean waves 
travelling in opposite directions in the open ocean, caused by moving cyclonic 
storm systems, or in the vicinity of coasts through wave reflections at steep 
shorelines. Important indirect information on processes within a storm can 
also be derived from observations of swell propagating away from a distant 
storm. 

These and other examples presented in this chapter demonstrate that 
despite the considerable advances in our understanding and prediction of 
ocean waves achieved through the ERS SAR wave mode data, many interesting 
problems that could be successfully addressed using this instrument still await 
a solution.

It is therefore very encouraging that there are plans to continue the ERS-1/
ERS-2–Envisat satellite system with the launch in 2013 of Sentinel-1, the first in 
a series of next-generation satellites, as an important component of the Global 
Monitoring for Environment and Security (GMES) system. Sentinel-1 will again 
carry a SAR wave mode instrument with enhanced capabilities (20 × 20 km 
imagettes every 100 km). The continuation of this satellite series is important 
not only for the upgrading of the present ocean observing system and the 
resolution of the open problems mentioned, but also for the creation of a long-
term time series in support of climate change monitoring. 
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