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1Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology,
Cambridge, MA 02139-4307, USA

E-mail: heimbach@mit.edu
2Bjerknes Centre for Climate Research, University of Bergen, Allegaten 55, NO-5007 Bergen, Norway

ABSTRACT. We extend the application of control methods to a comprehensive three-dimensional
thermomechanical ice-sheet model, SICOPOLIS (SImulation COde for POLythermal Ice Sheets).
Lagrange multipliers, i.e. sensitivities, are computed with an exact, efficient adjoint model that has
been generated from SICOPOLIS by rigorous application of automatic differentiation. The case study
uses the adjoint model to determine the sensitivity of the total Greenland ice volume to various control
variables over a 100 year period. The control space has of the order 1.2× 106 elements, consisting
of spatial fields of basal flow parameters, surface and basal forcings and initial conditions. Reliability
of the adjoint model was tested through finite-difference perturbation calculations for various control
variables and perturbation regions, ascertaining quantitative inferences of the adjoint model. As well
as confirming qualitative aspects of ice-sheet sensitivities (e.g. expected regional variations), we detect
regions where model sensitivities are seemingly unexpected or counter-intuitive, albeit ‘real’ in the sense
of actual model behavior. An example is inferred regions where sensitivities of ice-sheet volume to basal
sliding coefficient are positive, i.e. where a local increase in basal sliding parameter increases the ice-
sheet volume. Similarly, positive (generally negative) ice temperature sensitivities in certain parts of
the ice sheet are found, the detection of which seems highly unlikely if only conventional perturbation
experiments had been used. The object of this paper is largely a proof of concept. Available adjoint-code
generation tools now open up a variety of novel model applications, notably with regard to sensitivity
and uncertainty analyses and ice-sheet state estimation or data assimilation.

1. INTRODUCTION
The polar ice sheets are critical components of the Earth’s
climate system. The volume of water confined in these
regions represents roughly 7m and 73m global sea-level
equivalent for Greenland and Antarctica, respectively (Rignot
and Thomas, 2002; Alley and others, 2005).
Just as physical oceanography has witnessed a paradigm

shift from a passive, slowly changing, steady laminar fluid
to a dynamically active fluid which is essentially turbulent
(e.g. Wunsch, 2007), glaciologists are beginning to recognize
that textbook accounts of ice sheets varying slowly over
timescales of decades to millennia tell an oversimplified
story. To demonstrate this point, compare the text by Rignot
and Thomas (2002):

As measurements become more precise and more wide-
spread, it is becoming increasingly apparent that change
on relatively short time-scales is commonplace: stoppage
of huge glaciers, acceleration of others, appreciable
thickening and far more rapid thinning of large sectors
of ice sheet, rapid breakup of vast areas of ice shelf and
acceleration of ice sheet flow. . . , and vigorous bottom
melting near grounding lines. These observations run
counter to much of the accepted wisdom regarding ice
sheets, which, lacking modern observational capabilities,
was largely based on ‘steady-state’ assumptions.

with that by Wunsch (2007):

Observational and computational progress in physical
oceanography, however, over the last 30 years has
rendered obsolete the old idea that the fluid ocean is

a slowly changing, passive, almost geological system.
Instead, it is a dynamically active, essentially turbulent
fluid, in which large-scale tracer patterns arise from active
turbulence and do not necessarily imply domination of
the physics and climate system by large-scale flow fields.
To the contrary, oceanic kinetic energy is dominated by
the time and space-varying components. The complexity
of the resulting fluid pathways is an essential part of any
zero-order description of the system.

Recent observational studies have reported evidence of
rapid changes in flow speed and mass balance in parts
of Greenland and Antarctica (e.g. Kerr, 2006; Payne and
others, 2006; Pennisi and others, 2007). When trying to
quantify short-term changes in the mass balance, however,
these studies produce conflicting estimates depending on
the choice of observing system (for recent reviews see
Zwally and others, 2005; Cazenave, 2006; Alley and others,
2007; Shepherd and Wingham, 2007). Problems with mass-
balance estimates relate to the size of the area covered, the
limited time period spanned, instrumental uncertainties and
sampling and interpolation issues. Inferred mass changes,
which are translated into equivalent sea-level changes,
therefore remain fragile. Reported changes are a significant
contribution to observed sea-level changes (which are
themselves fragile estimates (e.g. Wunsch and others, 2007)),
but the associated uncertainties are so large that the sea-level
change budget is far from closed.
Models complement data to assess the evolution of ice

sheets. While sophisticated three-dimensional (3-D) ice-
sheet models exist, they still suffer from serious limitations.
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Some of the shortcomings are algorithmic in nature,
failing for example to capture processes associated with
abrupt, small-scale changes in the ice sheet such as
melt-induced basal sliding or the effect of higher-order
longitudinal stresses. These processes may well be crucial
to instability mechanisms driving ice-sheet variations (Truffer
and Fahnestock, 2007; Vaughan and Arthern, 2007). Other
limitations relate to poor understanding of the model’s
internal dynamics and its built-in sensitivities.
This paper addresses the latter issue by providing a

highly efficient method for calculating model sensitivities
within a 3-D ice-sheet model. Traditional sensitivity analysis
perturbs one parameter or one surface forcing variable at
one point, and the ‘forward’ model calculates the impact of
that change on all output variables and model diagnostics.
The adjoint method, also widely known as the Lagrange
multiplier method (LMM) (e.g. in classical mechanics and
field theory) ‘inverts’ the problem by providing the partial
derivatives or sensitivities of a single diagnostic to all model
input variables (the controls) simultaneously. A very high-
dimensional control space may have to be explored in
models that are run from poorly known initial conditions
and uncertain boundary forcings, using parameterizations
with tuned (rather than known) parameters and where each
of these variables may be spatially varying. Availability of
the adjoint leads to a dramatic improvement in efficiency.
As a result, we are able to build and display two-
dimensional (2-D) and 3-D sensitivity maps of key ice-
sheet diagnostics to ‘model controls’, allowing for rapid
inspection and identification of areas and variables that
might play an important role in influencing the ice-sheet
dynamics.
At the heart of this study is the application of automatic

differentiation (AD; Griewank and Walther, 2008) to derive
Fortran code of an adjoint model (ADM) from the For-
tran code of the 3-D thermomechanical ice-sheet model
SICOPOLIS (SImulation COde for POLythermal Ice Sheets)
(Greve, 1997). The automated construction of the ice-sheet
model adjoint code ultimately opens doors to ice-sheet data
assimilation. By combining the knowledge and skill present
in the models with that existing in the data, better estimates
can be provided of the state of the Greenland ice sheet than
those derived from models or data in isolation.
Synthesizing the wealth of newly available observations

and models via adjoint-based control methods was pion-
eered, in the context of ice streams, by MacAyeal (1992,
1993). (In the oceanographic context, among the earliest
studies using control theory and the LMM were those of
Wunsch (1988), Thacker and Long (1988) and Tziperman
and Thacker (1989).) The main emphasis at the time was to
elicit the main controls of ice-stream flows. The task was
facilitated by the fact that the equations considered were
mostly self-adjoint, rendering themethod comparatively easy
to implement. Although the method was further developed
by Vieli and Payne (2003), Joughin and others (2004, 2006),
Larour and others (2005), Vieli and others (2006) and
Khazendar and others (2007), no serious attempt has been
made to extend it to comprehensive, 3-D ice-sheet models.
Accomplishing this is the ultimate objective of adjoint code
construction.
An important prerequisite for ice-sheet state estimation

is a deep understanding of which control variables an ice-
sheet model is most sensitive to. The choice of such controls
remains a key scientific undertaking. Depending upon the

problem investigated and the investigator’s insight, decisions
are made on whether

1. the emphasis is only on observable quantities or on
unknown key model parameters whose sensitivities (or
tuning) provide critical insight into the model’s behavior;
and

2. to explore a control space with the same gridpoint
discretization as the model state space or with a reduced-
order space through some meaningful basis functions.

This paper presents a range of sensitivity types:

1. sensitivity to internal model parameters such as the basal
sliding coefficient: we transform model parameters into
2-D or 3-D fields in order to capture spatially varying
sensitivities;

2. sensitivity to external forcing fields such as precipitation;
and

3. sensitivity to the initial model state: this is particularly
important in data assimilation when the ability to adjust
the initial state of the system becomes an intrinsic part of
minimizing the model-to-data misfit.

The range of diagnostic functions that can be used is
endless and typically tailored to the research objective.
Here we use the ice-sheet volume as a global diagnostic of
evolution of the ice sheet. Other research objectives could
use the total volume of meltwater, total calving volume or
average ice-flow speed as sample diagnostics. Studies of ice-
stream dynamics could use the ice velocity at a specific
location as a diagnostic function. Data assimilation problems
typically use the model-to-data misfit as the diagnostic
function that is in turn minimized.
The objective of this paper is primarily a proof of concept.

We realize that the underlying ice-sheet forward model
will require a better representation of the stress tensor (e.g.
through higher-order models) and a more refined sliding
parameterization in order for the adjoint to portray more
realistic sensitivities of the Greenland ice sheet, in particular
in regions of fast ice flow. This proof of concept should,
nevertheless, establish the viability of the approach in
efficiently identifying the dominant processes and controls
governing rapid ice-sheet variations.

2. ADJOINT MODELING AND AUTOMATIC
DIFFERENTIATION
Conventionally, sensitivities are assessed by perturbing a
control variable of interest and investigating the ice-sheet
response to the applied perturbation. For each quantity a
separate run needs to be performed and, for quantities that
vary spatially, assumptions need to be made about where to
perturb. At one extreme, perturbations are spatially uniform
(e.g. uniform air-temperature perturbation everywhere). At
the other extreme, a separate perturbation at each gridpoint
and a forward simulation for each such perturbation are
performed in order to produce a full sensitivity map. For a
model configuration with nx × ny × nz = 82 × 140 × 80
gridpoints, the initial value control problem spans a 918 400-
dimensional control space.
Alternatively, the adjoint model is able to provide a

complete set or map of sensitivities in a single integration. For
all its appeal, obtaining an adjoint model is not an easy task.
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We attempt to provide a short self-contained introduction to
adjoint modeling and automatic differentiation since no such
description currently exists in the glaciological literature. We
establish the connection between the tangent linear model
(TLM), the ADM and Lagrange multipliers. We then show
how to use AD to generate tangent linear and adjoint model
code. Readers who wish to skip technical details should
ignore sections 2.1–2.3 and resume reading at section 2.4.

2.1. The adjoint or Lagrange multiplier method
Our goal is to find sensitivities, i.e. partial derivatives of a
scalar-valued objective or cost function J0[x] with respect to
control variables u. The dependency of J0 on u is usually
indirect, i.e. through the dependency of elements of state
variables x of a model on u. For simplicity, we focus on the
case where u is the model’s initial state x(t0 = 0). Following
the notation of Wunsch (2006), the time-dependent model L
has the general form

x(t ) − L [x(t − 1)] = 0 (1)

and is integrated from time t0 = 0 to t = tf . (To simplify
notation, we can formally extend the model state space
x to include model prognostic variables as well as model
parameters and boundary conditions.)
As an example, let the objective function consist of the

time-mean volume over the last n+1 time-steps tf−n, . . . , tf−
1, tf of the ice sheet, expressed as the spatial, area-weighted
sum V [x(t )] =

∑
i,j H(i, j, t ) dA(i, j) over the thickness field

H(t ) at time t , which is an element of the model prognostic
state space x(t ). We therefore have

J0[x] =
1

n + 1

(
V [x(tf − n)] + . . .+ V [x(tf )]

)
. (2)

The Lagrange multiplier method consists of rewriting the
problem of finding derivatives of J0, subject to the constraint
of fulfilling Equation (1), into an extended and unconstrained
problem:

J = J0[x]−
tf∑
1

μT (t ){x(t ) − L [x(t − 1)] }. (3)

For each element of the model state x(t ) at time t , we have
introduced a corresponding Lagrange multiplier μ(t ).
The set of normal equations is obtained by requiring

the partial derivatives of Equation (3) with respect to
each variable for times t > t0 to vanish independently
(e.g. Wunsch, 2006):

∂J
∂μ(t )

= x(t ) − L [x(t − 1)] = 0 1 ≤ t ≤ tf (4a)

∂J
∂x(t )

=
∂J0

∂x(t )
− μ(t )

+
[

∂L[x(t )]
∂x(t )

]T
μ(t + 1) = 0 0 < t < tf (4b)

∂J
∂x(tf )

=
∂J0

∂x(tf )
− μ(tf ) = 0 t = tf (4c)

∂J
∂x(0)

=
∂J0

∂x(0)
−

[
∂L[x(0)]
∂x(0)

]T
μ(1) t0 = 0. (4d)

Equation (4a) simply recovers the model equations. The
Lagrange multipliers μ(t ) are found through successive
evaluation of the normal equations backwards in time.

Starting at t = tf we find (via Equation (4c) and using example
cost Equation (2)),

μ(tf ) =
∂J0

∂x(tf )
=

1
n + 1

∂V [x(tf )]
∂x(tf )

n + 1 time-steps earlier at t = tf − n. Using the results of
μ(tf ), . . . ,μ(tf − n + 1), we obtain (using Equation (4b)):

μ(tf − n) =
1

n + 1

{
∂V [x(tf − n)]

∂x(tf − n)

+
[

∂L[x(tf − n)]
∂x(tf − n)

]T
· ∂V [x(tf − n + 1)]

∂x(tf − n + 1)
+ . . .

+
[

∂L[x(tf − n)]
∂x(tf − n)

]T
· . . . ·

[
∂L[x(tf − 1)]
∂x(tf − 1)

]T

· ∂V [x(tf )]
∂x(tf )

}
.

(5)

Finally, Equation (4d) provides the expression for the full
gradient sought at time t0 = 0.
We make the following interpretation. The Lagrange

multiplier μ(t ) provides the complete sensitivity of J0 at time
t by accumulating all partial derivatives of J0 with respect to
x from each time-step tf , tf−1, . . . , t . Those partial derivatives
taken at later times t + 1, . . . , tf are propagated to time t via
the ADM, which is the transpose

[
∂L[x(t )]
x(t )

]T

of the model Jacobian or tangent linear model (TLM)

∂x(t + 1)
x(t )

=
∂L[x(t )]
x(t )

with contributions from different times linearly superim-
posed. Further simplifying the example objective function (2)
to the special case where instead of the time-mean only
the volume at the last time-step tf is chosen, i.e. n = 0,
Equation (5) simplifies in that all terms vanish except for that
containing

∂V [x(tf )]
∂x(tf )

.

2.2. The tangent linear and adjoint models
All relevant aspects of the LMM have now been derived,
but we wish to make plain the duality between the TLM
and the ADM. We restate our problem in a slightly different
but equivalent framework which provides a natural basis
for introducing the concept of AD. The non-linear model
(NLM) L of Equation (1) may be viewed as a mapping of the
state space (again incorporating all parameters and initial
and boundary conditions into an extended state space) from
time t = 0 to t = tf . The cost function J0 (Equation (2)) is
then a composite mapping from the state space at t0 = 0
to t = tf , and from there to the real numbers. To simplify
notation, let y = x(tf ) and consider the special case n = 0,
i.e. J0 = V [x(tf )] = V [y]. Then,

J0 : x(0) −→ x(tf ) −→ J0[x] (6)x(0) −→ L[x(tf − 1)] −→ V [L[x(tf − 1)]].
� �
� �
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The composite nature of the mapping of J0 is readily
apparent:

J0 = V [x(tf )]

= V [L[L[. . . L[x(0)]]]].
(7)

A perturbation of the initial state x(0) is linked to a
perturbation of J0 by applying the chain rule to Equation (7):

δJ0 =
∂V

∂x(tf )
δx(tf )

=
∂V

∂x(tf )
· ∂x(tf )
∂x(tf − 1)

· . . . · ∂x(1)
∂x(0)

· δx(0).
(8)

Recognizing that δJ0 is simply the scalar product of ∂V
∂y and

δy, we can use the formal definition of an adjoint operator
〈x |Ay〉= 〈ATx | y〉 to rewrite this equation:

δJ0 =
〈

∂V
∂y

∣∣∣ δy
〉

=
〈

∂V
∂x(tf )

∣∣∣ ∂x(tf )
∂x(tf − 1)

· . . . · ∂x(1)
∂x(0)

· δx(0)
〉

=
〈[

∂x(1)
∂x(0)

]T
· . . . ·

[
∂x(tf )

∂x(tf − 1)

]T
· ∂V
∂x(tf )

∣∣∣ δx(0)
〉

=
〈

∂V
∂x(0)

∣∣∣ δx(0)
〉
.

(9)

Alternatively, by denoting the tangent linear and adjoint
matrices as T LM and ADM, respectively, we have:

δJ0 =
〈

∂V
∂x(tf )

∣∣∣ T LM · δx(0)
〉

=
〈
ADM · ∂V

∂x(tf )

∣∣∣ δx(0)
〉
.

(10)

Equations (5), (9) and (10) highlight various features:

1. the equivalence between Lagrange multipliers and the
adjoint operator;

2. the fact that the TLM runs forward in time, propagating the
effect of a perturbation δx(0) to all model outputs, while
the ADM runs backward, accumulating sensitivities of δJ0
to all model inputs; and

3. the advantage of the ADM, which provides the full
gradient of a model-constrained objective function
∂V /∂x(0) over the TLM which only provides the
projection of ∂V /∂y onto the perturbed vector δy from
initial perturbation δx(0).

2.3. Derivative code generation via automatic
differentiation
Although we have demonstrated the power of the adjoint
method, we have not yet discussed how to obtain it. In
general, the complexity and effort involved in developing an
adjoint model matches that in its parent NLM development
and frequently prohibits adjoint model applications. An
alternative to hand-coding the adjoint (i.e. coding the
discretized adjoint equations) and a major step forward
is the use of AD compared to derivative (e.g. ADM or
TLM) code generation (Griewank and Walther, 2008). The
advent of AD source-to-source transformation tools such
as the commercial tool ‘Transformation of Algorithms in
Fortran’ (TAF) (Giering and others, 2005) or the open-source
tool OpenAD (Utke and others, 2008) has enabled the
development of exact adjoint models from complex, non-
linear forward models. In the oceanographic context, there

is now a decade of experience in applying this method
to a state-of-the-art ocean general circulation model (e.g.
Marotzke and others, 1999; Galanti and others, 2002;
Heimbach and others, 2002; Stammer and others, 2003;
Heimbach, 2008) which encourages us to apply such tools
to state-of-the-art ice-sheet models.
The composite nature of the mapping J0 is that of a large

number of elementary operations; Equation (6) reflects this at
the time-stepping level. Carrying the concept of composition
to its extreme, ultimately each line of code can be viewed
as an elementary operation. At the elementary level, the AD
tool knows the complete set of derivatives (i.e. the elementary
Jacobians) for each intrinsic arithmetic function (+, –, *, /,√

., sin(.), etc.), as well as logical/conditional instructions.
Here, we demonstrate how the AD tool generates line-by-

line elementary Jacobians (TLM code) and their transpose
(ADM code). The full model Jacobian is recovered by
composition of each elementary Jacobian according to the
chain and product rule. A very simple example is given in
Figure 1, demonstrating the relationship between the NLM,
TLM and ADM. The full derivative is readily calculated (line
TLM), and the adjoint model easily derived by taking the
transposes of dJ0 and dL. It is readily apparent that while
the TLM only provides a projection of the gradient onto the
directional perturbation vector δx, the ADM provides the full
gradient vector.
In the context of a more complex model, we chose as

an example the advection problem arising from solving the
continuity equation for the ice-sheet volume, expressed in
terms of ice-sheet elevation H. The velocity Ub at which
basal sliding-related advection takes place is inferred from a
Weertman-type sliding law. Part of the time-stepping loop at
time m might look like the chart in Figure 2.
At the elementary level, the full derivative of the code line

for Ub can be written (dropping superscript m):

δUb =
∂Ub
∂cb

δcb +
∂Ub
∂τ

δτ +
∂Ub
∂H

δH

=
τ

H
δcb +

cb
H

δτ − cbτ
H2

δH.

(11)

This can be rearranged in matrix form (Giering and Kaminski,
1998):

⎡
⎢⎣

δcb
δτ
δH
δUb

⎤
⎥⎦

λ

=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0

τ/H cb/H −cbτ/H2 0

⎤
⎥⎥⎦

×

⎡
⎢⎣

δcb
δτ
δH
δUb

⎤
⎥⎦

λ−1

(12)

where the variables δcb, δτ , δH and δUb are perturbations,
i.e. elements of the TLM state space. Expressing the model
in such a manner enables straightforward access to the
transpose

⎡
⎢⎣

δ∗cb
δ∗τ
δ∗H
δ∗Ub

⎤
⎥⎦

λ−1

=

⎡
⎢⎢⎣
1 0 0 τ/H
0 1 0 cb/H
0 0 1 −cbτ/H2

0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎣

δ∗cb
δ∗τ
δ∗H
δ∗Ub

⎤
⎥⎦

λ

(13)
where the variables δ∗cb, δ∗τ , δ∗H and δ∗Ub are now
sensitivities, i.e. elements of the adjoint model state space.
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Fig. 1. Example of the relationship between the NLM, the TLM and the ADM. The general formalism is summarized in the upper table for
a squared-valued cost function J0 = |y|2. The lower table provides a written example for a simple 2-D vector model L, one time-step of
which consists of a rotation and stretching followed by evaluation of the squared cost J0.

(Strictly, adjoint variables are co-vectors and are elements
of the dual or co-tangent space to the tangent space of the
model.) From Equation (13), we can readily calculate the
following lines which represent the adjoint code:

δ∗cb = δ∗cb + τ
H δ∗Ub

δ∗τ = δ∗τ + cb
H δ∗Ub

δ∗H = δ∗H − cbτ
H2 δ∗Ub

δ∗Ub = 0.

(14)

The result can be interpreted in the following way.

1. From Equation (11) we infer how perturbations to the
inputs affect the output δUb, whereas Equation (14) shows
how the output sensitivity δ∗Ub has been influenced by
each input sensitivity.

2. The aspect of tangent linear (and adjoint) is clear:
knowledge of the current state at time m of τm ,
Hm is necessary to evaluate either Equation (11) or
Equation (14).

3. The TLM is evaluated in the same order as the non-linear
parent model L and evaluating both can be combined.
The ADM is evaluated in reverse order, and making
the required state variables accessible becomes a major
problem in evaluating the adjoint model exactly.

Requiring the model state in reverse order is at the heart
of the technical difficulties and one of the main hurdles in
generating efficient and exact adjoint code for large-scale
transient non-linear applications.

DO m = 0, . . . , tf
• CALL UPDATE STATE

Given at time m: basal sliding parameter cmb ,
elevation Hm, stress tensor modulus τm;

• CALL CALC SLIDINGLAW

Compute basal sliding velocity from
Weertman-type sliding law

Umb = cbτm/Hm

• CALL CALC ADVECT

Solve discretized continuity equation
for Hm+1 through advection of Hm
∂H
∂t + Ub

∂H
∂x = 0

END DO

DO m = tf , tf − 1, . . . , 0
• CALL AD CALC ADVECT

Accumulate sensitivities for δ∗Ub, δ∗Hm
from sensitivity of advection equation to Hm+1

• CALL AD CALC SLIDINGLAW

Adjoint of sliding law computes how changes
in velocity δ∗Ub influence cb, τ , H (Equation (14))
• CALL AD UPDATE STATE

At the end of adjoint time-step all sensitivities
at time m have been computed from time m + 1

END DO

Fig. 2. Upper box shows a simplified time-stepping loop of the non-
linear forward model; lower box shows the time-reversed adjoint
time-stepping. Note the reversal of the order of sub-routine calls
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For the present study we have chosen the AD tool TAF.
It solves the problem of requiring model state variables in
reverse temporal order through a hierarchical ‘checkpoint-
ing’ and targeted ‘taping’ algorithm which provides a com-
putationally efficient mix between saving and recomputing
required variables. To achieve this, the user has to guide
TAF through insertion of directives into the parent model to
trigger storing of specific variables. A description is beyond
the scope of this paper. Further details of the oceanographic
context, as well as other topics (e.g. treatment of conditional
(IF-) statements, (massive) parallel adjoint-code generation in
the context of domain decomposition and treatment of impli-
cit elliptic solvers) are given in Heimbach and others (2005).
As a final note of caution, because of the tangent linearity

of the adjoint sensitivity, a limitation is that sensitivities are
valid with respect to the reference model state for which
they are computed. For purely linear problems they are
independent of the reference state, but with increasing non-
linearity. Knowledge of the forward state becomes essential
when interpreting such sensitivities; re-running the adjoint
for different reference states may prove necessary. The
implications are readily apparent from the example of a
quadratic cost function provided in Figure 1. Nevertheless,
since the same considerations apply to forward perturbation
or TLM simulations, this does not constitute a disadvantage
of the adjoint compared with forward methods.

2.4. Choice of control variables
Successful modeling requires relevant internal physics as
well as appropriate representation of surface and basal
boundary conditions. It is often the prescription of these
which leads to significant differences in simulations.
At the surface of the ice sheet, interaction with

the atmosphere is achieved through the prescription of
meteorological and climatic inputs, consisting of surface
mass-balance (accumulation minus ablation), precipitation,
surface air temperature and refreezing and meltwater runoff
parameterization (from positive degree-day method). Bound-
ary conditions at the base of the ice sheet must account
for interaction with the bedrock and the ocean, including
basal sliding parameter, basal shear stress, basal melt/freeze
rate, bed topography and geothermal heat flux. Finally, initial
conditions are required for an ice sheet whose full 3-D state
is usually poorly known and difficult to observe. The adjoint
model provides sensitivities to each of these processes.
Boundary conditions are often heavily parameterized, and

the sensitivity of the solution to the parameter choice can
be substantial. Ultimately, all model ingredients that have
associated uncertainties are relevant control variables.
Even quantities which are supposedly well determined,

such as the precipitation products from the US National
Centers for Environmental Prediction/US National Center
for Atmospheric Research (NCEP/NCAR) (Kalnay and others,
1996) or the European Centre for Medium-Range Weather
Forecasts (ECMWF) ERA-40 (Uppala and others, 2005) so-
called ‘re-analyses’, have major uncertainties or biases, as
discussed by Béranger and others (2006). Their primary goal
is to provide the best initial conditions for a subsequent
forecast, but no requirements are imposed to preserve long-
term global budgets. Furthermore, there is limited data cov-
erage in polar regions, and they may be poorly constrained
there. The finding by Wingham and others (2006) that these
fields ‘are not able to characterize the contemporary snowfall
fluctuation with useful accuracy’ is therefore unsurprising.

3. A SENSITIVITY STUDY OF GREENLAND
ICE VOLUME
Important factors in the choice of the 3-D ice-sheet model
SICOPOLIS were

1. sufficient model complexity and size of the model state
and control spaces to provide a convincing, non-trivial
application of AD; and

2. that it is written in Fortran, the only language which most
source-to-source AD tools to date can handle for fairly
complex codes.

SICOPOLIS (Greve, 1997, 2000) was the first model to
resolve explicitly both the cold and polythermal regions of
the ice sheet. The shallow-ice approximation (SIA) is used
to simplify the stress tensor by neglecting the longitudinal
stress gradients. The ice dynamics are solved on a staggered
grid. The rheological behavior is assumed to be that of
an incompressible, non-linear viscous and heat-conducting
fluid. SICOPOLIS has been used successfully to simulate
the variation of the Greenland ice sheet between ice ages
and interglacial periods and in climate-change simulations
(Bugnion and Stone, 2002). SICOPOLIS also participated in
the European Ice Sheet Modeling Initiative (EISMINT) project
(Payne and others, 2000) and in the ongoing Ice-Sheet Model
Intercomparison Project (ISMIP).
The models, both forward and adjoint, are solved on

a 20 km × 20 km horizontal grid with 80 vertical layers
and a 5 year time-step. The model was spun up over
a 60 000 year period, using as forcing fields constant
present-day precipitation, a degree-day model formulation
based on current average temperature over the ice sheet
and a constant geothermal heat flux. The equilibrium
topography shown in Figure 3 differs little from current
conditions, which is to a large extent determined by
the prescribed accumulation field. Individual drainage
basins are well delineated, although the model reso-
lution and model physics are insufficient to resolve fast-
moving ice streams such as Jakobshavn Isbræ, Greenland,
or the ‘Northeast Greenland Ice Stream’. Associated basal
temperature and basal melt-rate maps are shown in Figure 4.
The model state at the end of the spin-up was saved and used
as a starting point for the adjoint runs.
Our analysis focuses on total ice volume of the Greenland

ice sheet as objective function (Equation (2)). The adjoint
integration is performed over a 100year period with a 5 year
time-step. The integration picks up from an equilibrated state
which has been spun up for 60000 years. The computed
reference total ice volume is Vref =3.248×1015 m3. The
adjoint is exact in the sense of tangent linearity, i.e.
all derivatives are evaluated with respect to the exact
instantaneous forward model state.
We investigate three types of sensitivities:

1. model parameter sensitivities;

2. model forcing sensitivities; and

3. initial value sensitivities.

3.1. Sensitivity to model parameters: the case of
basal sliding and basal melt rate
Boundary conditions at the base of the ice sheet have an
important, yet poorly understood, control on the evolution
of the ice sheet. It is clear that the underlying model cannot
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simulate fast, realistic ice-stream flows, both because of
the grid resolution and because of the use of the SIA.
Nevertheless, even for long-term integrations for which this
model seems more appropriate, the effect is relevant as it
may provide a crucial mechanism for millennial-scale ice-
sheet disintegration.
We investigate the effect of the sliding law with a

Weertman-type parameterization of Ub, which is a function
of the (uncertain) sliding coefficient cb (Greve, 1997,
equation 5). The reference value used in the model is a
spatially uniform cb = 11.2ma−1 Pa−1. We make cb a
spatially dependent control variable, i.e. cb = cb(i, j). To put
these sensitivities into context, we also derive sensitivities
to basal melt rate qbm. Equation (4.143) of Greve (1997)
shows that this quantity is dependent on several factors. It is a
function of vertical ice and lithosphere temperature gradients
(with corresponding conductivity coefficients), as well as
horizontal gradients of sliding velocity Ub times the vertical
shear stress components in each direction. We only consider
their cumulative effect here and represent the sensitivity by a
spatially varying control variable a0 = qbmL, basal melt rate
times latent heat L = 3.35× 105 J kg−1.
Figure 5a and b depict ∂V /∂cb and ∂V /∂a0, respectively,

the sensitivities of total ice volume to basal sliding and basal
melt rates. The main features of sensitivity patterns can be
summarized as follows.

1. The geographical variation of the sensitivities is readily
apparent. Patterns of significant sensitivities are broadly
similar. They are very small in the ice-sheet interior,
but differ in detail where sensitivities are larger. Patterns
of significant a0 sensitivities coincide with bottom-ice
temperatures near the melting point and essentially
vanish where temperatures fall below ∼–3◦C. Largest cb
sensitivities are more concentrated near the margins of
the ice sheet.

2. As expected, both cb and a0 sensitivities are mostly
negative, i.e. increasing the basal sliding coefficient or
the basal melt rate in most locations will reduce the total
ice volume.

3. In contrast to the fairly uniform basal melt-rate sensitiv-
ities, those for basal sliding show conspicuous positive
regions (region 2 in Fig. 3 and Table 1), implying that
increasing the basal sliding coefficient increases the ice
volume.

3.2. Testing the adjoint sensitivities
Before proceeding, we make an important step in testing
whether the computed adjoint sensitivities are reliable. We
do so by performing a series of finite-perturbation simulations
which we compare to adjoint-based perturbations. Table 1
summarizes the results. In particular, columns 5 and 6
represent values of total ice volume perturbations, which are
computed as follows (e.g. for a0 as control):

Column 5: The value ΔVadj at position (i, j) inferred
from the adjoint sensitivity field ∂V /∂a0(i, j) is obtained
by integrating the sensitivities multiplied by a typical
perturbation δa0 = ε (column 4) over the region of interest
(column 3) that is being perturbed, i.e.

ΔVadj =
∫
region

∂V
∂a0(i, j)

δa0. (15)
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Fig. 3. Simulated surface elevation or ice thickness in meters (using
the terminology of Greve, 1997) of the Greenland ice sheet from
a 60 000 year spin-up integration. Region indices refer to various
perturbation experiments (Table 1).

Column 6: The value ΔVfd is inferred by applying a
uniform perturbation δa0 = ε to a0 over the identical
region (column 3) and performing a forward model
simulation to compute the modified V (a0 + δa0). We
therefore have:

ΔVfd =
V (a0 + δa0)− V (a0)

δa0
δa0. (16)

We performed perturbation comparisons of qbm in four
different regions (Table 1, experiments PAR2–PAR4). Given
the localized nature of the perturbations, the smallness of
ε (in most cases) and the shortness of the integration, the
perturbed total ice volume remains comparatively small. Ice-
volume changes computed from adjoint sensitivities deviate
from finite-difference perturbations by 10%, 0.5% and 30%
for regions 1–3 (cf. Fig. 1 and Table 1), respectively. The large
deviation for PAR4 is associated with comparatively small
perturbed values of V (a factor of two smaller than for PAR2
and PAR3), indicating that the adjoint and finite-difference
values are likely noisy in these cases. In contrast, for larger
perturbed V there is good agreement between adjoint-
derived and finite-difference perturbations (PAR2 and PAR3).
We have ascertained the validity of the gradient via finite-

difference perturbations. Table 1 confirms both the positive
gradient in region 2 (PAR9) and the negative gradient in
nearby region 3 (PAR10). The changes in ice thickness Hc
incurred by the perturbation are plotted in Figure 6. The cb
perturbations over region 2 lead to a dipole-like response in
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Fig. 4. Basal properties at equilibrium of the Greenland ice sheet from a 60 000 year spin-up: (a) temperature and (b) melt rate. These
properties are useful in interpreting elements of the adjoint sensitivities.

Fig. 5. Adjoint sensitivity maps related to (a) basal sliding and (b) basal melt rate. A unit perturbation δcb to cb location (i, j) will change the
cost function V by the amount δV = (∂V/∂cb)δcb. To infer useful quantities for δV , we consider physically reasonable perturbations of δcb
(e.g. representing typical standard deviations at this location, measurement uncertainties or model uncertainties). Qualitatively, melt-rate
sensitivities (b) are fairly uniform where they do not vanish, whereas sliding sensitivities (a) exhibit significant regional variations.



Heimbach and Bugnion: Greenland ice-sheet volume adjoint sensitivity 75

Table 1. Ice-volume changes inferred from adjoint sensitivities (column 5) and corresponding finite-difference perturbations (column 6) for
various control variables (column 2) and perturbation regions (column 3). Perturbations ε are chosen to be 100% of base values (column
4) or assumed uncertainties (the former choice usually has a fairly large value compared to the latter). Reference total ice volume is
Vref = 3.248× 1015 m3. The reasons for such large deviations are large perturbation values ε compared to mean; associated gradients are
small and therefore noisy; or the presence of significant non-linearities, for which either the magnitude of ε or integration period (or both)
are beyond the validity range of the assumption of linearity

Exp. ID Variable Region Perturbation ε ΔVadj ΔVfd Deviation

%

(1) (2) (3) (4) (5) (6) (7)

Model parameter control
PAR2 qbmL 1 2.0× 10−9 −1.571× 1011 −1.746× 1011 10
PAR3 qbmL 2 2.0× 10−9 −1.034× 1011 −1.028× 1011 0.5
PAR4 qbmL 3 2.0× 10−9 −4.082× 1010 −5.828× 1010 30
PAR9 cb 2 11.2 1.341× 1012 0.908× 1012 47
PAR10 cb 3 11.2 −9.543× 1012 −3.376× 1012 280

Model forcing control
PAR11 Pjan 4 2.0× 10−9 1.389× 1011 1.394× 1011 0.4
PAR12 Pjul 4 2.0× 10−9 6.500× 1010 8.403× 1010 23

Initial value control
PAR17 Tc(20) 5 2.0 −1.640× 1009 −1.475× 1009 11
PAR18 Tc(20) 6 2.0 1.072× 1009 1.026× 1009 4

Hc (Fig. 6a), i.e. a decrease to the east of the perturbation and
an increase over (and to the west of) the perturbation. The
western thickness increase dominates the eastern decrease,
leading to an overall positive ΔV as predicted by the adjoint.
Region 3 just west of region 2 has a negative sensitivity and

a mostly negative response pattern in Hc (Fig. 6b), again
consistent with the adjoint inference.
By increasing the sliding coefficient in region 3, it appears

that while the ice thickness decreases upstream of the test
region (relative to the flow direction), the rate of ice melt

Fig. 6. Response of ice-sheet elevation to perturbation in sliding coefficient cb (Table 1, PAR9, PAR10). The differences between perturbed
and unperturbed ice thicknesses (m) are depicted. The applied perturbation was fairly large (δcb = 11.2ma

−1 Pa−1, which is 100% of the
mean value). The aim is twofold: (1) to ascertain the sign and magnitude of the adjoint sensitivities and (2) to investigate the structure of
the response to the perturbations and its physical causes. An upstream/downstream dipole pattern is apparent for the region 2 perturbation,
with a dominating increase downstream of the perturbation. The region 3 perturbation (b) results mainly in a decrease in ice thickness.
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a b

Fig. 7. Adjoint sensitivity maps of ice volume to precipitation for mean January (a) and July (b) conditions (10−18 m3 (m s−1)−1). The
interpretation is similar to that of Figure 5. Interior ice-sheet sensitivities are equal for summer and winter months, but values near the
margins deviate strongly. An interpretation in terms of the seasonal snow-to-rain conversion function is given in the text.

of the displaced ice just downstream of the perturbation
is lower than for the unperturbed run. This may be due to
ice emanating from further inland being further away from
melting, thus temporarily reducing basal melt compared to
the equilibrium case. The reduction of melt of the displaced
ice therefore leads to overall increased ice volumes and the
observed positive sensitivities.
Table 1 also contains perturbation experiments using

model forcing fields and initial conditions as controls.
Adjoint-derived sensitivities agree well with finite perturb-
ation values where these are (comparatively) large. Agree-
ment is poor for very small perturbed V , which can again be
explained by noise dominating the calculation. Nevertheless,
all cases have order-of-magnitude agreement as well as
consistency in the sign of the perturbation of V (even where
they are unexpected). This is encouraging, in particular for
regions where sign reversals are unexpected a priori.

3.3. Sensitivity to model forcing: the case of
precipitation
A second important class of control variables is model
forcings. The same adjoint calculation that provided the
parameter sensitivity fields also furnishes sensitivities to
various forcings, one of which we investigate in some detail
(Fig. 7).
The model uses an annual mean precipitation field as

input. This field is first modified to account for elevation
desertification with a threshold ice thickness of 2000m.
The resulting field is used to compute a mean annual
snowfall, taking into account an annual cycle in surface
air temperature. Accordingly, the snowfall for month i is
computed from the given annual mean precipitation, precip,

and monthly mean surface air temperature field Tair(i) as

snowfall(i) = precip · fact(Tair(i))
rainfall(i) = precip − snowfall(i)

(17)

where

fact(Tair(i)) =

⎧⎨
⎩

0 Tair(i) ≥ Train
1 Tair(i) ≤ Tsnow

f (0, 1) Tsnow < Tair(i) < Train.

Here, Train = 7◦C and Tsnow = −10◦C are threshold
temperatures for precipitation which is equivalent to 100%
rain and snow, respectively, and f (0, 1) is a function between
0 and 1. From this we can interpret the qualitative structure of
the main differences between the adjoint sensitivity maps of
January vs July precipitation (Fig. 7). We do so with the help
of the adjoint statement of Equation (17), which we derive in
the same way as for the adjoint code (Equation (14)):

δ∗precip = δ∗precip + δ∗rainfall(i)
δ∗precip = δ∗precip + fact(Tair(i)) · δ∗snowfall(i).

(18)

In certain regions, and for months where fact(Tair(i)) = 1,
January and July sensitivities coincide. In regions where
the annual cycle in temperature exceeds the snow or even
the rain threshold, the difference in sensitivities is greater.
These regions are concentrated at low altitudes and near
the coast. As a consequence, the ice volume sensitivities
exhibit a seasonal dependence on precipitation induced
by air temperature, and the equilibrium line is clearly
visible. Sensitivities at the margins are significantly enhanced
(large snow accumulation) during winter. During summer,
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Fig. 8. Adjoint sensitivity of ice volume to ice temperature variations;
vertical level k = 20 (of 80, counted from ice-sheet base)
(10−6 m3 ◦C−1). Significant spatial variations are apparent, with
conspicuous regions of positive sensitivities. A hint of drainage
basins near the coast is evident. Maps similar to this would be used
in data assimilation to infer model initial condition changes that
lead to an improved model simulation vs observation misfit.

however, they are strongly reduced if not reversed in sign
due to melting.
Note that this example demonstrates that conditional

statements (IF-statements) as represented by the function
fact(Tair(i)) can be readily dealt with in the context of
AD and adjoint code generation. They are best viewed as
implementations of piecewise differentiable expressions. In
fact, exact adjoint code relies on the availability of the exact
branch of a condition when evaluating the adjoint.

3.4. Sensitivity to initial state
A third class of control variables concerns the initial
conditions of the model. The main quantity of interest here
is the 3-D ice temperature distribution. Its uncertainties are
considerable: observations of the interior of the ice sheets,
or even near the base, are almost entirely lacking. Assessing
sensitivities of ice volume to changes in ice temperature
anywhere in the ice sheet is therefore of considerable
significance. In data assimilation, where initial conditions are
sought from the model run to produce a best fit to observa-
tions (state estimation mode) or to produce an ‘optimal fore-
cast’ (forecast mode), the initial condition control problem
is essential. We therefore include a a brief discussion here.
Figure 8 depicts a sensitivity map at a randomly chosen

vertical level of the ice sheet (note that because of the
use of rescaled vertical coordinates, i.e. scaled thickness

Fig. 9. Meridional section at i = 32 vs vertical level of adjoint
ice temperature sensitivities across the ice sheet (10−7 m3 ◦C−1).
The plot complements Figure 8 in resolving the dependency of ice
temperature sensitivities. Main features are insulation of sensitivities
toward the ice sheet’s upper boundary; dominance of negative
sensitivities, increasing in magnitude towards the ice-sheet base;
and confirmation of the positive sensitivity band near, but not
immediately adjacent to, the ice-sheet base.

from 0 to 1, the ordinate does not reflect thickness itself
but a level index). A complementary view is obtained by
considering zonal or meridional cross-sections. Here we
choose a north–south section at i = 32 (Fig. 9). Considerable
regional variations are evident (both positive and negative
areas exist), as are dependencies with respect to vertical
position. Sensitivities are much larger near the base where
temperatures are closer to the melting point, and are mostly
negative (i.e. increasing the temperature will decrease the ice
volume). Towards the surface the ice sheet seems insulated
against significant ice-sheet volume sensitivities. As was
the case for basal sliding, the temperature sensitivity maps
contain evidence of the main drainage systems of the ice
sheet, albeit coarsely represented at this resolution.
Of particular interest is a significant band of positive

sensitivities extending mostly in the north–south direction
in the southwest sector of the ice sheet. This band is near the
coast yet separated from it by a band of negative sensitivities.
They seem to coincide with regions of positive sensitivities
to changes in the basal sliding coefficient cb (Fig. 5) which
were attributed to the interaction between enhanced sliding
and coastal ice melt rates. These patterns show that warming
the ice will not necessarily have the uniform consequence of
shrinking the ice sheet. They are unexpected, but confirmed
by finite-difference perturbations (Fig. 3, regions 5 and 6;
Table 1, PAR17, PAR18).

4. DISCUSSION AND OUTLOOK
We have presented a method of extending the application
of control methods, pioneered by MacAyeal (1992, 1993)
in the context of ice-stream models, to comprehensive 3-D
thermomechanical ice-sheet models. We demonstrate that
efficient, reliable Lagrange multipliers (i.e. adjoint sensit-
ivities) can be computed from an adjoint model generated
from its original parent model by rigorous application of
automatic differentiation. This method is extremely powerful
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in the context of large model codes (in the present context
of the order of 10000 lines of code), which are undergoing
continued model development and improvement.
To illustrate the approach, we choose the problem of

determining the sensitivity of Greenland ice volume over a
100 year time horizon. The control space consisted of three
types of variables (only some of which were analyzed here
in detail):

1. model parameters (basal melt rates, basal sliding
coefficient);

2. model forcing (air temperature, precipitation, geothermal
heat flux); and

3. model initial conditions (3-D initial ice distribution).

Taken together, the control space has of the order of 1.2×106
elements. The adjoint model permits the spatially varying
gradients of all control variables to be calculated in a single
simulation.
To ensure reliability of the computed gradients, a number

of finite-difference perturbation simulations were performed
for the same 100year time horizon and for various control
variables, and were then applied to various regions. Where
the perturbations have a substantial impact on the ice
volume, there was very good quantitative agreement with the
adjoint prediction, lending credence to the adjoint model.
The results demonstrate that various aspects of the spatial

patterns of sensitivities can be assessed qualitatively and
quantitatively from adjoint fields. While many features
follow conventional wisdom (‘increasing temperatures lead
to decreasing ice volume’), the adjoint solution allows
the detection of regions where model sensitivities are
unexpected or seemingly counter-intuitive (although ‘real’
in the sense of actual model behavior). Examples in the
present context include positive basal sliding coefficient
sensitivities, as well as positive ice temperature sensitivities
in certain parts of the ice sheet.
Given the large uncertainties that exist in the prescription

of model parameters, in the variability of forcing fields and in
the knowledge of the detailed interior temperature distribu-
tion of an ice sheet, comprehensive sensitivity information
provides crucial information to guide model improvement
and the need for more observations (e.g. Gudmundsson and
Raymond, 2008).
For climate-related studies which target century to mil-

lenial timescales, the adjoint code developed will be a very
useful tool for sensitivity studies (an ocean analogue is the
series of studies by Bugnion and Hill (2006) and Bugnion
and others (2006a,b)). We do not attempt to provide a
hierarchy of most important variables in terms of ice volume
sensitivities; this is left for future studies.

4.1. Extension to state estimation
The SICOPOLIS code was originally written for zero-order
flow regimes (SIA), and extensions have subsequently been
made to incorporate first-order physics (e.g. Blatter, 1995).
Our proof-of-concept study may only partially address
the fast-flow regimes; an extension should include more
comprehensive higher-order dynamics. The next major step,
therefore, is to derive an adjoint of a 3-D model which cap-
tures fast ice streams by incorporating higher-order stresses in
the momentum balance. This is indispensable for our long-
term goal of applying the adjoint method for 3-D ice-sheet
state estimation over the period of satellite observations.

Available adjoint code generation tools which require
certain coding standards to be maintained open up a variety
of novel applications, notably with regard to sensitivity and
uncertainty analyses and ice-sheet state estimation or data
assimilation. Another advantage is the ability to include
comprehensive sensitivity norms in model intercomparison
projects.
Hurdles anticipated during the development of a real-

world estimation system (and close analogues encountered
and addressed with some success in the ocean state
estimation context) include:

1. model errors for an incomplete flow model, leading to
insufficient representation of fast ice streams;

2. small-scale processes that are not captured even by
higher-order models, but may be significant in abrupt
flow behavior (e.g. role of subglacial lakes, moulins and
sediment feedback);

3. highly non-linear processes, jumps and their representa-
tion in the adjoint;

4. timescales of relevant processes and observational
record; and

5. prior uncertainties, error covariances, data sampling, lack
of observation time series of the ice-sheet interior and
details of the bedrock.

Viewed in a different way, most of these problems arise
from implicit or explicit hypotheses (model assumptions,
retrieval algorithms, sampling limitations and error propaga-
tion). Formalizing, quantifying and testing these hypotheses
through a rigorous estimation system should help to improve
our understanding of the evolution of ice sheets.

4.2. An approach in support of IPCC
At the time of writing, the Intergovernmental Panel on
Climate Change (IPCC) is preparing model configurations for
its fifth assessment report (AR5) due in 2013. IPCC AR4 has
identified the Greenland and Antarctic ice sheets as major
sources of uncertainties in terms of projecting global sea-
level changes (Lemke and others, 2007). As a consequence,
several climate-modeling groups are now coupling ice-sheet
models to existing climate models (Little and others, 2007;
Lipscomb and others, 2009). In order to be available for
analysis by 2010, calculations need to begin by mid-2009,
which limits development to successful coupling of existing
ice-sheet models. It is likely that the complexity of ice-sheet
models employed for AR5 is very similar to that investigated
here. This prompts us to sketch a complementary route to
assess the effect of the ice sheets on sea level using the adjoint
technique. A road map might take the following form.

1. Derive the adjoint of a suitable ice-sheet model.

2. Identify relevant control variables whose changes are
expected to have a significant impact on ice-sheet mass
over the integration period (100+ years). These include
surface boundary conditions such as atmospheric
forcings, possibly lateral boundary conditions around
Antarctica such as ocean temperatures and model param-
eters such as basal sliding and basal melt rate. Effects not
represented by the model, such as basal lubrication from
surface melting, loss of buttressing through calving or
grounding line retreat, may remain inaccessible for study
(in the same way as for coupled climate simulations).
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3. An initial assessment of which controls have the strongest
impact on ice-sheet mass loss may help to sharpen the
focus on adjoint calculations.

4. Adjoint calculations should be performed for various
IPCC forcing scenarios, and sensitivity maps similar to
those presented here should be provided.

5. Sea-level changes can then be inferred from adjoint
sensitivity maps by applying expected perturbations to
the control variables for different scenarios along the lines
of the perturbation calculation Equation (15), which yield
ice-sheet mass changes in global sea-level equivalent.

One advantage of this approach is that calculations are
much cheaper, and calculating large ensembles may enable
quantification of uncertainties.
Another approach could be to use the derived sensitivity

maps as Green’s or response functions for coupled models.
Under the assumption of linearity (probably useful for
the timescale investigated and the model approximations
employed), the ice-sheet model may then be replaced by a
suitable set of such response functions. Although this method
does not allow for two-way coupling, the results may provide
useful order-of-magnitude estimates.
Given the current inability of ice-sheet models to capture

fast processes and their limited predictive power, assessment
of useful bounds of uncertainty of their impact on sea-level
change will likely remain the focus for the foreseeable future.
Methods which can provide quantitative descriptions of the
response of ice sheets under climate-change scenarios, and
which are also efficient in exploring large parameter spaces,
seem well suited for the task.
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