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Abstract

We describe computational aspects of automatic differentiation applied to global ocean circulation modeling and state esti-
mation. The task of minimizing a cost function measuring the ocean simulation versus observation misfit is achieved through
efficient calculation of the cost gradient w.r.t. a set of controls via the adjoint technique. The adjoint code of the parallel MIT
general circulation model is generated using TAMC or its successor TAF. To achieve a tractable problem in both CPU and
memory requirements, in the light of control flow reversal, the adjoint code relies heavily on the balancing of storing versus
recomputation via the checkpointing method. Further savings are achieved by exploiting self-adjointness of part of the com-
putation. To retain scalability of domain decomposition-based parallelism, hand-written adjoint routines are provided. These
complement routines of the parallel support package to perform corresponding operations in reverse mode. The unique feature
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f the TAF tool which enables the dumping of the adjoint state and restart the adjoint integration is exploited to overco
xecution limitations on HPC machines for large-scale ocean and climate simulations. Strategies to test the correctn
djoint-generated gradient are presented. The size of a typical adjoint application is illustrated for the case of the glo
tate estimation problem undertaken by the SIO-JPL-MIT Consortium “Estimating the Circulation and Climate of the Ocean”
ECCO). Results are given by way of example.
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1. Introduction

In one of the most complex Earth science inve
modeling initiatives, theEstimation of the Circulation
and Climate of the Ocean (ECCO) project is developin
greatly improved estimates of the three-dimensio
time-evolving state of the global oceans[1,2]. To this
167-739X/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.future.2004.11.010
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end, the project is applying advanced, mathematically
rigorous, inverse techniques[3] to constrain a state-of-
the-art parallel general circulation model, MITgcm[4–
6], with a diverse mix of observations. What emerges
from the ECCO project goals is an optimization prob-
lem that must be solved to estimate and monitor the
state or “climate” of the ocean. Ocean climate is charac-
terized by patterns of planetary scale ocean circulation,
the Gulf Stream current for example, and by large scale
distributions of temperature and salinity. These quanti-
ties can be observed, but only partially, using satellites
and oceanographic instruments. Combining, through a
formal optimization procedure, the fragmentary obser-
vations with a numerical model, which is an a priori
expression of the laws of physics and fluid mechan-
ics that govern the ocean behavior, produces a more
complete picture of the ocean climate. The ECCO op-
timization problem proceeds by expressing the differ-
ence between a numerical model trajectoryM(�u) and
a set of observations�d from the actual ocean in terms
of a scalar cost,J, thus,

J(M(�u)) = ( �H(�v)− �d)TWobs( �H(�v)− �d)

+ (�Copt− �C(0))TWC(�Copt− �C(0))

=
nobs∑
i=1

(Hi(�v)− di)W
obs
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1.1. Problem size

The size of the ECCO optimization problem is
formidable. In recent years, with increasing observa-
tional and computational capabilities, prominent pat-
terns of naturally occurring intrinsic oceanic and cou-
pled atmosphere–ocean–cryosphere variability have
become widely appreciated, operating on many time-
scales, from days (barotropic motion, e.g.[7]), months
(mesoscale eddies, e.g.[8]), years (e.g. the El Niño-
Southern Oscillation, ENSO[9]), decades (e.g. the
North Atlantic Oscillation, NAO[10]), to centuries and
millennia (thermohaline circulation, THC, e.g.[11]).
Ideally, the optimization must, therefore, encompass
processes spanning decades to centuries, on global
scales, simulating them at spatial and temporal reso-
lutions sufficient to yield state estimates with skill.

Our “smallest” current configuration is character-
ized by a cost functionJ that spans 9 years of plane-
tary scale ocean simulations and observations, consist-
ing of nobs= 108 observational elements. Major in-
gredients include global, continuous sea surface height
(SSH) data obtained from radar altimeters on board
the TOPEX/Poseidon[12] and the European Remote
Sensing Satellites ERS-1/2[13] which achieve an ac-
curacy at the 2–3-cm level on many spatial scales[14].
In addition, a variety of hydrographic data from the
World Ocean Circulation Experiment (WOCE)[15] are
used to constrain the model. Currently, the newly avail-
able data from the Jason-1[16] altimetric mission, and
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(Cj − Cj )Wjj(Cj − Cj ).

(1)

ere, �u represents the full set of independent v
bles (initial and time-dependent boundary co

ions), �v =M(�u) the model state at each time st
i the operator projecting the model state onto

th observationdi, Wobs and WC the data erro
nd a priori control error variance matrices, resp

ively. Denoting a subset of the independent v
bles as adjustable “controls”�C, the simulated sta
=M(�C), can be optimized to minimizeJ over

he nobs observation points. The optimized contro
� opt, render a numerically simulated ocean st

(�Copt), that is spatially and temporally comple
nd consistent with observations within their estima
rrors.
epth profiles of temperature and salinity from a
ies of presently 300 (and potentially up to 3000 by
ear 2005) autonomous seagoing floats[17] are being
dded.

In addition to the observational elements,J contains
enalty terms for each control variable which acco

or the a priori error estimate of the controls (th
osteriori estimate of which would be obtained thro

he Hessian, i.e. the second derivative ofJwith respec
o the controls). The a priori error was derived fr
limatological variances of the respective quanti
nd taking into account the scales which the m
esolves versus those which have to be consider
oise.

The set of independent or control variables wh
re varied to optimizeJ consists of three-dimension
elds for the initial temperature and salinity, as wel
wo-dimensional daily-varying surface forcing fields
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heat, freshwater, and momentum (zonal and meridional
wind stress) fluxes. Compressed to a one-dimensional
vectorC which contains wet points only, the size of the
control space isnc = 1.5× 108.

The model state, i.e. the set of prognostic variables
which are stepped forward in time by the underlying
system of differential equations consists of 17 three-
dimensional and 2 two-dimensional fields. A global
configuration at a 1◦ × 1◦ horizontal resolution with
23 vertical layers yields a model state of dimension
2× 107.

Thus, with a gradient,∂J
∂C

of dimension 1.5× 108,
and a model Jacobian (i.e. the derivative of the mapping
of the control space to the model state space,∂M

∂C
) of di-

mension 2× 107 · 1.5× 108 = 3× 1015, even allow-
ing for some sparsity, the computation of the full model
Jacobian is fundamentally impractical. Therefore, the
reverse mode of automatic differentiation (AD), which
allows the computation of the product of the Jacobian
and a vector without explicitly representing the Jaco-
bian, plays a central role.

1.2. Role of the adjoint and AD

Minimizing J, under the side condition of fulfilling
the model equations, leads to a constrained optimiza-
tion problem for which the gradient�∇CJ is used to
reduceJ iteratively,

minJ(�C) ⇒ �∇C J(�C, �v(�C))
∣∣∣ = 0. (2)
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model code, its corresponding tangent linear (forward
mode) or adjoint (reverse mode) model (see e.g.[19]).
The adjoint model enables the gradient(2) to be com-
puted in a single integration. The reverse mode ap-
proach is extremely efficient for scalar-valued cost
functions for which it is matrix free, and so the com-
putational cost becomes tractable. In practical terms,
we are able to develop a system that can numerically
evaluate(2), for any scalarJ, in roughly five to six
times the compute cost of evaluatingJ. At this cost,
reverse mode AD provides a powerful tool that is be-
ing increasingly used for oceanographic and other geo-
physical fluids applications. Note, that the model code
is formulated in such a way that the projection operator
(i.e. its specific realization for each data type, both al-
timetric and hydrographic) is part of the differentiated
code, and thus intrinsically tied to the automatic adjoint
code generation.

1.3. Paper organization

The results that are emerging from the application of
reverse mode AD to the ocean circulation problem are
of immense scientific value. However, here our focus
is on the techniques that we employ to render a compu-
tationally viable system, and on providing examples of
the calculations that are made possible with a compet-
itive, automatic system for adjoint model development
and integration.

The MITgcm algorithm, applications and the
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he constrained problem may be transformed int
nconstrained one by incorporating the model e

ions into the cost function(1) via the method of La
range multipliers. Alternatively and equivalently,
radient may be obtained through rigorous applica
f the chain rule to Eq.(1). For the state estimation co

unction(1) the gradient assumes the general form

�
CJ

T = 2MT ·HT ·W · (H(�v)− �d). (3)

ere,M denotes the model Jacobian withMT its ad-
oint, andH the differential of the projection operat
ith HT its adjoint. Thus, the gradient is proportio

o the adjoint of the model Jacobian times the adj
f the projection operator differential times the mo
ersus data misfit.

Automatic differentiation (AD)[18] exploits this
act in a rigorous manner to produce, from a gi
odel’s software implementation in a parallel co
uting environment are described in Section2. Sec-

ion 3 discusses the implications for an AD tool a
he requirements of an efficient, scalable reverse m
n a variety of parallel architectures for rendering
alculation computationally tractable. Applications
resented in Section4 with an emphasis on compu

ional aspects, rather than implications for oceano
hy or climate. An outlook is given in Section5. Fur-

her discussion of the scientific aspects of this wo
vailable, along with extensive data sets, at the EC
ebsite[20].

. The MIT General Circulation Model

The MIT General Circulation Model (MITgcm
s rooted in a general purpose grid-point algorit



P. Heimbach et al. / Future Generation Computer Systems 21 (2005) 1356–1371 1359

Fig. 1. The MITgcm algorithm iterates over a loop, with two blocks,PS andDS. A simulation may entail millions of iterations. InPS, time
tendencies (G terms) are calculated from the state at previous time levels (n, n− 1, . . .). DS involves finding a two-dimensional pressure field
ps ensuring the flow�v at the next time level satisfies the continuity.G term calculations forθ (temperature) andS (salinity) have been left out.
These have a similar form to thegv() function and yield the buoyancy,b.

that solves the Boussinesq form of the Navier–Stokes
equations for an incompressible fluid, hydrostatic or
fully non-hydrostatic, in a curvilinear framework in the
present context on a three-dimensional longitude (λ),
latitude (φ), depth (r) grid. The algorithm is described
in [5,6] (for online documentation and access to the
model code, see[21]).

2.1. Prognostic and diagnostic computational
phases

The work presented here uses the model’s hy-
drostatic mode, to integrate forward equations for
discretized fields of potential temperatureθ, salinity
S, velocity vector�v = (u, v, w), and p (pressure) of
the ocean using a two phase approach at each time
step.

A skeletal outline of the iterative time-stepping pro-
cedure that is used to step forward the simulated fluid
state is illustrated inFig. 1. The two phasesPS and
DS within each timestep are both implemented using
a finite volume approach. Discrete forms of the con-
tinuous equations are deduced by integrating over the
volumes and making use of Gauss’ theorem. The terms
in PS are computed explicitly from information within
a local region.DS terms involve iteration for which an
iterative preconditioned conjugate gradient scheme is
used.

2.2. Parallelism via domain decomposition

Finite-volumes provide a natural model for paral-
lelism. Fig. 2a shows schematically a decomposition
into sub-domains (tiles) that can be computed on con-
currently. The implementation of the MITgcm code is
such that thePS phase for a single timestep can be com-
puted entirely by local, on-processor operations. To
avoid communication during this computational phase
of values from neighboring tiles required by the com-
putational stencil at each grid point within a tile, an
overlap region (halo) is associated to each tile. The size
of the halo is determined by the computational stencil
of the differential operators encountered in the model
equations. At the end ofPS communication operations
are performed which update the halo regions. This com-
munication andDS must complete before the next time
stepPS can start. The over-computations in the halo en-
sure that thePS phase can be extended to a maximum
fraction of a full timestep. The implicit step,DS, tightly
mixes computation and communication. Performance
critical communications in MITgcm employ a com-
munication layer in a custom software library called
WRAPPER[22]. The performance critical primitives
in the WRAPPER communication layer are illustrated
in Fig. 2b. Significantly, for AD, the WRAPPER oper-
ations are all linear combination and permutations of
distributed data.
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Fig. 2. Panel (a) shows a hypothetical domain of total sizeNxNyNz. The domain is decomposed in two dimensions along theNx andNy

directions. Whenever a processor wishes to transfer data between tiles or communicate with other processors it calls a special function in a
WRAPPER support layer. Three performance critical parallel primitives are provided by the WRAPPER. (b) By maintaining transpose forms
of these primitives we can efficiently accommodate parallel adjoint computations.

3. The adjoint of MITgcm

The MITgcm has been adapted for use with the Tan-
gent linear and Adjoint Model Compiler (TAMC), and
recently its successor TAF (Transformation of Algo-
rithms in Fortran) developed by Giering[19,23,24].
TAMC is a source-to-source transformation tool. It
exploits the chain rule for computing the derivative
of a function with respect to a set of input vari-
ables. Treating a given model code as a composi-
tion of operations—each line representing a compo-
sitional element, the chain rule is rigorously applied
to the code, line by line. The resulting tangent lin-
ear (forward mode) or adjoint code (reverse mode),
then, may be thought of as the composition in for-
ward or reverse order, respectively, of the elemen-
tary Jacobian matrices of the full code’s composi-
tional elements. The processed MITgcm code has about
40,000 lines and the adjoint code about 37,000 lines
without comments. TAF and TAMC produce code
of the same performance, but code generation time
by TAF is improved by a factor of approximately
5.

While the reverse mode is theoretically extremely
efficient in computing gradients of a scalar cost
function, a major challenge is the fact that the
control flow of the original code has to be re-
versed. In the following we discuss some compu-
tational implications of the flow reversal, as well
as issues regarding the generation of efficient, scal-
a ec-
t

3.1. Storing versus recomputation in reverse mode

This is a central issue upon which hinges the overall
feasibility of the adjoint approach in the present context
of large-scale simulation, optimization and sensitivity
studies. The combination of four related elements:

• the reverse nature of the adjoint calculation,
• the local character of the gradient evaluations (tan-

gent at a point), on which the adjoint operations are
performed, for this class of time-evolving problem,

• the nonlinear character of the model equations (such
as the equation of state, the momentum advection,
the parameterization schemes),

• conditional code execution and switches involving
active variables (IF ...ELSE IF ...END IF
expressions),

require the intermediate model state to be available in
reverse sequence. In principle this could be achieved by
either storing the intermediate states of the computation
or by successive recomputing of the model trajectory
throughout the reverse sequence computation. Either
approach, in its pure form, would be prohibitive; storing
of the full trajectory is limited by available fast-access,
storage media; recomputation is limited by CPU re-
source requirements; orders of magnitude of required
recomputations are very difficult to estimate since they
may involve, depending on the type and occurrence
of nonlinearities or switches, full array recomputations
within three-dimensional array loops, and/or full tra-
j iate
c .
ble adjoint code on a variety of parallel archit
ures.
ectory recomputations within each of the intermed
heckpointing loops, and/or combinations thereof
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3.1.1. Example: zonal advective flux of meridional
momentum

As an example of a nonlinear expression, consider
the alongx-axis advective flux ofy-component veloc-
ity, one element of one term in the momentum equation
(at a given vertical level):

Fx = Ūj
y v̄

i
x, (4)

whereŪ
j
y is the advecting volume transport in m3 s−1

averaged along they-axis, andv̄i
x is they-component

velocity in m s−1, advected along thex-axis. On the
staggered Arakawa C-grid used here[25], the corre-
sponding code is of the form

AdvectFluxUV(i,j)=0.25*[uTrans(i,j)

+ uTrans(i,j-1)]*[vVel(i,j)

+ vVel(i-1,j)]

The derivative code requires bothuTrans(i,j)
andvVel(i,j):

aduTrans(i,j)=aduTrans(i,j)

+ 0.25*adAdvectFluxUV(i,j)*[vVel(i,j)

+vVel(i-1,j)]

advVel(i,j)=advVel(i,j)

+0.25*adAdvectFluxUV(i,j)

adAdvectFluxUV(i,j)=0.

The adjoint code foraduTrans(i,j-1) and
advVel(i-1,j) reads similarly and is omitted here.
In the present case, the velocity fieldsuVel andvVel
are stored prior to computing the momentum equa-
tion, whereas the momentum transportsuTrans and
vTrans may be readily re-computed from the avail-
able velocity fields.

3.1.2. Handling of storing versus recomputation
by TAMC

TAMC provides two crucial features to balance the
amount of recomputation versus storage requirements.
First, TAMC generates recomputations of intermedi-
ate values by the Efficient Recomputation Algorithm
(ERA) [26]. Secondly, TAMC generates code to store
and read intermediate values, if appropriate directives
have been inserted into the code. This enables the user
to choose between storing and recomputation at every
code level in a very flexible way. In the above example,
storing of the velocity fields is activated by the user
through insertion of appropriate TAMC directives. In
contrast, ERA recognizes the efficient recomputation
of the volume flux fields from the given velocity fields
and inserts the corresponding code.

3.1.3. Checkpointing
At the time-stepping level the directives allow

f e-
s

iate du
*[uTrans(i,j)+uTrans(i,j-1)]

Fig. 3. Schematic view of intermed
or checkpointing that hierarchically splits the tim
tepping loop. (cf. also[27,28]). For the MITgcm, a

mp and restart for 3-level checkpointing.
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three-level checkpointing scheme, illustrated inFig. 3,
has been adopted.

(lev3) The model trajectory is first subdivided
into nlev3 subsections with limits indexed
klev3

0 , . . . , klev3
n . The model is integrated along

the full trajectory, and the state stored at every
klev3
i th timestep up toklev3

n−1. The integration to
the final statevklev3

n
is performed to evaluate the

final cost function.
(lev2) In a second step, each “lev3” subsection is di-

vided intonlev2 subsections. The model picks
up the last “lev3” saved statevklev3

n−1
and is inte-

grated forward along the last lev3-subsection,
now storing the state at everyklev2

i th timestep.
(lev1) Finally, the model picks up at the last interme-

diate saved statevklev2
n−1

and is integrated forward

in time along the last lev2-subsection. Within
this subsection only, the model state is stored at
every timestep. Thus, the final statevn = vklev1

n

is reached and the model state of all preceding
timesteps along the last “lev2” subsection are
available. Thus, the adjoint can be computed
back to subsectionklev2

n−1.

This procedure is repeated consecutively for each pre-
vious subsection carrying the adjoint computation back
to initial timeklev3

0 .
The 3-level checkpointing requires a total of three
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the two outer loops. Firstly, required fields are stored
to memory rather than to file to avoid I/O in this phase
of computation. Secondly, insertions of store directives
at the innermost loop are more intricate and presume
detailed knowledge of the code. Rather than storing the
model state at each timestep, only those variables are
stored, which are required, i.e. appear in nonlinear ex-
pressions or state-dependent conditions. Furthermore,
storing is invoked only if recomputation of these vari-
ables is expensive (uVel,vVel in the above example),
otherwise they are recomputed (uTrans, vTrans).
Note that this approach is more efficient than a storing
of all input variables at the subroutine level. In most
cases, only one specific variable at a specific place is
needed rather than the full subroutine input fields. Note
also, that multiple storing of the same variable within a
subroutine may be necessary if this variable appears in
several nonlinear expressions and changes its value in
between. Storing efficiency relies crucially on identi-
fying the right variable and the right place to store. Fi-
nally, directives may have to be accompanied (or may
be avoided), occasionally, by additional measures to
break data dependency flows. For instance, aDO-loop
which contains multiple nonlinear state-dependent as-
signments of a variable may be broken into several
loops, to enable intermediate results to be stored be-
fore further state-dependent calculations are performed
[19].

Table 1gives a summary of the number of arrays
stored at the different checkpointing levels.

3

tres
r im-
i ay
p any
o the
s als
t del
s , the
a ate,
t iva-
t tart.
F r-
e ing
t

orward and one adjoint integrations, with the latter
ng about 2.5 times a forward integration. Thus a
ard/adjoint sweep requires a total of roughly 5.5 tim
forward integration. For a given decomposition of

otal number of time stepsntimeSteps= 77,760 (corre
ponding to a 9-year integration at an hourly times

nto a hierarchy of three levels of sub-intervalsn1 = 24,
2 = 30, n3 = 108 with ntimeSteps= n1 · n2 · n3, the
toring amount is drastically reduced. Pure recom
ation would incur a computation cost ofntimeSteps=
7,7602.

The full model state of the two outer loops are sto
o disk using an explicit TAMC directive, correspon
ng to a storing factor ofn2+ n3 = 138 times the di

ension of the model state. The state here is defin
he set of quantities required to pick up the model i
ration at an intermediate timestep. The procedur

he innermost checkpointing loop differs from thos
.2. Adjoint dump and restart

Most high performance computing (HPC) cen
equire the use of batch jobs for code execution. L
ts in maximum available CPU time and memory m
revent the adjoint code execution from fitting into
f the available queues. The MITgcm itself enables
plit of the total model integration into sub-interv
hrough standard dump/restart of/from the full mo
tate. For a similar procedure to run in reverse mode
djoint model requires, in addition to the model st

he adjoint model state, i.e. all variables with der
ive information which are needed in an adjoint res
or this to work in conjunction with automatic diffe
ntiation, an AD tool needs to perform the follow

asks:
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Table 1
Number of fields stored to disk (level3, level2) and held in main
memory (level1) for the basic model and additional packages

Level3, Level2 (file)
Basic model state 14
INCLUDE CD CODE 7
EXACT CONSERV 2
EXTERNAL FORCINGPACKAGE 18

Level1 (common)
Model (41)

calc phi hyd 2
convectiveadjustment 6
Dynamics 7
Thermodynamics 26

KPP (21)
kppmix 8
bldepth 6
blmix 2
Dynamics 1
Thermodynamics 4

GM/Redi (29)
gmredi calc tensor 6
gmredi slopelimit 13
gmredi xtransport 2
gmredi ytransport 2
Dynamics –
Thermodynamics 6

EXF (22)
exf mapfields 4
the main loop 18

(1) Identify an adjoint state, i.e. those sensitivi-
ties whose accumulation is interrupted by a
dump/restart and which influence the outcome of
the gradient. Ideally, this state consists of
• the adjoint of the model state,
• the adjoint of other intermediate results (such

as control variables, cost function contributions,
etc.),

• bookkeeping indices (such as loop indices, etc.).
(2) Generate code for storing and reading adjoint state

variables.
(3) Generate code for bookkeeping, i.e. maintaining a

file with index information.
(4) Generate a suitable adjoint loop to propagate ad-

joint values for dump/restart with a minimum over-
head of adjoint intermediate values.

TAF is presently unique among existing AD tools to
provide these capabilities. Through a simple TAF di-
rective it generates code for divided adjoint execution.

Taking advantage of its checkpointing algorithm, the
outermost checkpoints are at the same time defined
as dump/restart points for the adjoint state. Thus, for-
ward/adjoint code execution can be limited to one seg-
ment of the length of the outermost checkpointing in-
terval � = klev3

i − klev3
i−1 . In addition to dumping the

model statevklev3
i

and the adjoint state advklev3
i

, the

bookkeeping indices of the outermost checkpoint loop
is saved to file for the start and the end of the interval.

In a consecutive adjoint code execution, the model
state is recomputed fromvklev3

i−1
over one outer check-

point interval toklev3
i . Then the adjoint state advklev3

i

is read, and the accumulation of adjoint sensitivities
resumes up toklev3

i−1 , at which place advklev3
i−1

is dumped.

The divided adjoint capability is of crucial practical
importance, since it enables the fitting of long-term,
large-scale adjoint ocean and climate model calcula-
tions on HPC machines despite their strict batch exe-
cution limitations.

3.3. Exploiting formal self-adjointness

The character of theDS computational phase has
important implications for adjoint computations. The
equation solved inDS, is self-adjoint. Exploiting this
fact in reverse mode, no derivative code needs to be gen-
erated. Instead the original, optimized code is invoked
by providing a TAMC directive, thus saving substantial
computing cost. Note that an iterative conjugate gradi-
e nal,
g u-
t ired
v ypi-
c

3

cal-
a ho-
s sists
o for
t

3
de,

s re-
q ort
p

nt method is implemented for the two-dimensio
lobal elliptic problem. An explicit adjoint of this ro

ine would have required substantial storing of requ
ariables for each intermediate solver iteration (t
ally 50–200).

.4. Parallel implementation

In the following we discuss issues related to the s
bility of the model and its adjoint. The approach c
en to generate efficient scalable adjoint code con
f retaining the parallel design of the model code

he adjoint.

.4.1. Adjoints of parallel support routines
In order to generate efficient scalable adjoint co

ubstantial intervention into the original code was
uired.Table 2summarizes the main parallel supp
rimitives and their corresponding adjoint.
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Table 2
Summary of parallel support primitives and their hand-written adjoint

Operation/primitive Forward Reverse

Communication (MPI,. . . ) Send & assign ←→ Receive & accumulate
Arithmetic (global sum,. . . ) Gather ←→ Scatter
Active parallel I/O Read & assign ←→ Write & accumulate

3.4.1.1. Exchanges between neighboring tiles. Do-
main decomposition is at the heart of the MITgcm’s
parallel implementation. Each compositional unit (tile)
representing a virtual processor consists of an inte-
rior domain, truly owned by the tile and a halo region,
owned by a neighboring tile, but needed for the com-
putational stencil within a given computational phase.
By means of overcomputing in the halo region the
PS computational phase within which no communi-
cation is required can be extended to a large fraction
of the full timestep phase. Following thePS phase,
a communication intensiveDS phase ensues during
which processors will make calls to WRAPPER func-
tions which can use support libraries for portable par-
allel programming such as Message Passing Interface
(MPI), OpenMP, or combination thereof to commu-
nicate data between tiles (so-called exchanges) in or-
der to keep the halo regions up-to-date. Furthermore, a
global elliptic problem is solved which invokes global
sum operations. The separation into extensive, unin-
terrupted computational phases and minimum com-
munication phases controlled by the WRAPPER is
an important design feature for efficient parallel ad-
joint code generation. The adjoint code maintains the
separation between compute-intensivePS phase and
communication-intensiveDS phase (but in reverse or-
der, and with appropriately modified function seman-
tics). In addition, the use of WRAPPER functions is
maintained by providing to each function a correspond-
ing hand-written adjoint WRAPPER function. TAMC
r tines
b

3
w a
p gion
o ries
m , all
g uced
t as
t the

context of the MITgcm involve the elliptic solver,
and global averages e.g. when accumulating a sum
over least square cost function). WRAPPER routines
exist, which adapt the specific form of the global sum
primitive to a given platform. Corresponding adjoint
routines were written ‘by hand’, and directives to use
these routines are provided to TAMC.

3.4.1.3. Active file handling on parallel architectures.
Fig. 1also shows an isolated I/O phase that deals with
external data inputs that affect the calculation ofJ and
∂J
∂C

. This isolation of “active” I/O simplifies AD code
transformations. Read and write operations in model
code are accompanied by corresponding write and read
operations (plus variable reset), respectively, in adjoint
mode required for active variables. The MITgcm pos-
sesses a sophisticated I/O handling package to enable
a suite of global or local (tile- or processor-based) I/O
operations consistent with its parallel implementation.
Adjoint support routines were written to retain compat-
ibility in adjoint mode with both distributed memory
and shared memory parallel operation, as implemented
in the I/O package of the WRAPPER.

3.4.2. Analysis of model and adjoint scaling
By considering the algorithm and the details of the

scalable formulation described above we can make
some estimates of likely scaling for the different prob-
lem sizes as a function of key computational parame-
ters.

3 tic
p
g ute
t hen
w ,

cond
o e effi-
c ncy
c a em-
p

ecognizes when and where to include these rou
y means of directives provided by the user.

.4.1.2. Global arithmetic primitives. Operations
ithin the DS communication phase, for which
rocessor requires data outside of the overlap re
f neighboring processors, communication libra
ust be used, such as MPI or OpenMP. So far
lobal operations could be decomposed and red

o arithmetic elements involving the global sum
he only global operation (major applications in
.4.2.1. PS phase. We first consider the prognos
hase. We assume that the time to update thehalo re-
ions is proportional to their size and that the comp

ime is proportional to the effective domain size. T
e can write an approximate formula1 for the time

1 The formula will only be approximate because there are se
rder effects that mean that updating large halo regions is mor
ient than updating small regions and similarly computing efficie
an vary with tile size and aspect ratio. Nevertheless the formul
loyed does give reasonable insights into scalability.
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TPS, to complete aPS cycle

TPS = τ̄flopsNPSopsNrNh︸ ︷︷ ︸
TPScomp

+ τPSexchNPSexchNrOhaloLhalo︸ ︷︷ ︸
TPSexch

, (5)

where τ̄flops is the per grid-point single arithmetic
operation time τ̄flops= n̄τflops; NPSops the number
of lines of arithmetic operationsNPSops∼ 2000;
n̄ the average number of flops per code line;
Nr the number of vertical layers;Nh the number
of points in horizontal tile, including haloNh =(

Ñx

Px
+ 2Ohalo

) (
Ñy

Py
+ 2Ohalo

)
; τPSexchthe time of per

grid-point exchange operation;NPSexch the number
of exchanged fields duringPS; Ohalo the width of
halo region;Lhalo the tile edge length, including halo

Lhalo= 2
(

Ñx

Px
+ 2Ohalo

)
+ 2

(
Ñy

Py
+ 2Ohalo

)
.

In essence,TPS is determined by the computational
phaseTPScompand the ensuing communication phase
TPSexch. The former is obtained by estimating the num-
ber of lines containing arithmetic operationsNPSops, the
average number of flops per line, and the field dimen-
sionNrNh. The latter is obtained through the number
of exchangesNPSexchtimes the dimension of the ex-
changed fields and their overlaps (see the online docu-
m

3 , a
s ow-
e per-
a s to
c nju-
g ned
c ure
i ean
m res-
s bal
c and
a are
c ian,
y
s

TDS = NDSiter


τ̄flopsNDSopsNh︸ ︷︷ ︸

TDScomp

+ τDSexchNDSexchOhaloLhalo︸ ︷︷ ︸
TDSexch

+ τDSsumNDSsumlog2(NP)︸ ︷︷ ︸
TDSsum


 . (6)

In essence, the estimate is obtained as the sum of com-
putationsTDScomp, exchangesTDSexch, and global sums
TDSsumfor evaluating a dot product for each iteration of
the conjugate gradient solver times the number of itera-
tions required for convergenceNDSiter. The global sum
is assumed to scale as log2 of the number of processors
NP.

3.4.2.3. Adjoint model. The scaling of the adjoint
model is to be compared to the total time

T = TPS + TDS.

We limit our analysis to the innermost checkpointing
loop. We already discussed the occurrence of a factor
of N incurred by theN-level checkpointing scheme,
in our caseN = 3 (an additional term comes through
the I/O of the model state from/to disk by the outer
c

•
•

T plit
i

a

W llip-
t f
T

I es-
t me-
t oint
s the
entation[21] for more details).

.4.2.2. The DS phase. ForDS, the diagnostic phase
imilar estimation model can be made. This time h
ver we need to account for additional global o
tions which sum up a scalar over all processor
alculate a dot product needed as part of the co
ate gradient solution procedure. The preconditio
onjugate gradient algorithm is a common proced
n codes designed for parallel computation. In oc

odeling it is widely used to solve for the surface p
ure/height field. Accounting for the fact that a glo
onnection is established through a dot product
djusting for the fact that the hydrostatic case we
onsidering only entails a two-dimensional Laplac
ield formulae for the timing and scaling of theDS
tage:
heckpointing loops).
Crucially, the adjoint code maintains

domain decomposition
the separation between PS and DS phase.

he timing for the adjoint code may thus again be s
nto

dT = adTPS + adTDS.

e note that in view of the self-adjointness of the e
ic solver, the estimate for adTDS is identical to that o
DS. We can thus limit our analysis to the term adTPS.
t is difficult to give some generally valid precise
imate that would be based on model code para
ers only. This is because the complexity of the adj
tatement depends on the operations involved in
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model code statement. An upper bound of achievable
scaling for an efficient adjoint may, nevertheless, be
given. We first propose an equation and then discuss the
contributions:

adTPS = TPScomp
{

1+ γaccum+ γreset+ γrecomp

+γnonlin} + Tstore+ TPSexch. (7)

The three major contributions thus come from (i)
TPScompitself which is augmented by a sum of fac-
tors

∑
i γi, (ii) Tstore, a new term for the storing re-

quired for nonlinear and active variable-dependent con-
ditional expressions, and (iii)TPSexch, which remains
unchanged, since the exchange pattern is unaltered and
thus does not need to be discussed (we neglect here
the slight difference in the number of FLOPs between,
e.g. a gather versus scatter, or a send versus receive
expression).

We first consider the termTstore, the time spent in
the innermost checkpointing loop to store/restore re-
quired variables to/from common blocks. In keeping
with the previous approach, an estimate may be given
by

Tstore= 2τflopsNstoreNrNh.

The number of required storing per timestep in the
innermost checkpointing loop can be inferred from
T us-
i

t del
c ad-
j in
[

r of
e of
te-
ent.

to

(b) The following operation generates two
lines of adjoint code:
original y(i, j) = c1 x(i, j)

+c2 x(i, j + 1)

adjoint adx(i, j + 1)= adx(i, j + 1)

+c2 ady(i, j),

adx(i, j) = adx(i, j)

+c1 ady(i, j).

It should, however, be noted that arith-
metic statements which involve passive vari-
ables only, can be discarded altogether in
the adjoint calculation. In summary, an upper
bound would beγaccum = 2, but a more re-
alistic estimate would be somewhat less than
1.

(γreset) All expressions, except those of recursive
form x = f (x, y, . . .), require the adjoint of
the original l.h.s. variable to be reset (new as-
signments break dependency flow). Thus, in
the above example (b), the adjoint statements
have to be followed by a reset

ady(i, j) = 0.

Again, only a fraction of the number of
arithmetic operations in the code will need
this statement. Furthermore, for each line
of arithmetic operations which comprises an
average of ¯n FLOPs the resetting consists of

nd
n

( ta-
s-

ion.
h
-
ld

f
pri-
in

,
oc-
able 1for the basic model and enhanced versions
ng different parameterization packages.

We next consider the factorsγ which contribute
o the adjoint computation in excess of the mo
omputation (a comprehensive collection of
oint code for various operations may be found
19]):

(γaccum) In many cases, the accumulative characte
the adjoint operation leads to an increas
the number of FLOPs of the adjoint sta
ment as compared to the original statem
Two examples illustrate this:

(a) The following operation adds a FLOP
the adjoint statement:
original y = cx(c passive)

adjoint adx = adx+ c ady.
only one operation. Thus, an upper bou
would beγreset= 1/n̄, but a number less tha
this is likely.

γrecomp) This factor refers to efficient recompu
tions. An example is the volume tran
port uTrans introduced in Section3.1.1,
where it was needed in an adjoint operat
Since the variableuVel is available (throug
store/restore),uTrans can be readily com
puted as the product of the velocity fie
and its areal element,uTrans=uvel*xa.
We estimateγrecomp to be of the order o
0.2. Note that in the absence of appro
ate storing/restoring, this factor could,
the best case go up toNstore∼ 40–100 or
in the worst case, when recomputations
cur within loops over the domain, toN2

h ∼
(Nx ·Ny)2.
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(γnonlin) For nonlinear expressions, the product rule is
invoked, increasing the number of arithmetic
operation compared to the original code (see
Section3.1.1). If Nnonlin refers to the num-
ber of lines involving nonlinear expressions
andNops the total number of lines of arith-
metic operations, a very rough estimate for
γnonlin would beNnonlin/Nops. With Nnonlin
being on the order of the number of required
store directives in the innermost checkpoint-
ing loop,Nnonlin ∼ Nstore, which is between
40 and 100, we obtainγnonlin ∼ 1/20.

An approximate factor of 5.5 of a full exact adjoint
calculation over a forward calculation of the nonlinear
parent model has been found for a variety of MITgcm
setups involving different configurations and packages.
This is important since the inclusion of a specific pack-
age, e.g. the parameterization of vertical mixing (com-
putation of viscosity and diffusivity coefficients) may
incur additional complexities in the reverse flow de-
pendency and the storing/recomputation requirements
due to additional nonlinear expressions and switches.
Thus, each addition of code requires careful analysis
and possibly update in user-defined directives to retain
the adjoint code’s efficiency and storing versus recom-
putation balance.

3.5. Correctness of the adjoint and gradient checks

and
m ing
d ess
o po-
n ents
o (ii)
v on-
t han
“
s es
w rast
t ay
d eme
a

•
-
the

centered-finite difference of the perturbed cost func-
tion

Gfd
i =

J(Ci + ε)− J(Ci − ε)

2ε
(8)

and compare it to the adjoint-generated gradientGad
i

by considering the deviation of the ratioGfd
i /Gad

i

from 1,

Rfd
i = 1− Gfd

i

Gad
i

. (9)

This requires two full model runs for each com-
ponentCi to evaluate the perturbed cost functions
J(Ci ± ε).

• Tangent linear gradient checks
Alternatively or additionally, we may explore the

availability of the tangent linear model, also ob-
tained via TAF. However, in contrast to the reverse
mode, which yields the full gradient�∇CJ

T with one
adjoint integration, the forward mode only yields
one component per tangent linear integration. It is
obtained by setting theith componentδCi = 1 and
all other componentsδCj = 0, j 	= i,

Gtl
i = �∇CJ · δ�C = ( �∇CJ)i. (10)

Thus, one tangent linear integration is required for
each componentCi whose gradient is to be tested.
Again, we consider the ratio

tl Gtl
i

F
w s
f

4

4

a-
t onal
fi al
l ents
w truly
e hor-
i

A crucial element in adjoint code development
aintenance of adjoint code along with the ongo
evelopment of the full model is to ensure correctn
f the adjoint. We achieve this by comparing com
ents of the adjoint-generated gradient to compon
f a gradient obtained (i) via finite differences, or
ia the tangent linear model. We note that in this c
ext we prefer the notion of “correctness” rather t
exactness” of the gradient. As described in[18], a ba-
ic feature of AD is to obtain, in principle, derivativ
hich are “exact” up to machine precision, in cont

o finite difference derivatives, whose precision m
epend substantially on the finite difference sch
nd magnitude of perturbation chosen.

Finite difference gradient checks
For a given componentCi (or a set of com

ponents) of the control vector we compute
Ri = 1−
Gad

i

. (11)

or the fully fledged global model setup values ofRfd
i

ere found to be on the order of 10−3 or less. Value
or Rtl

i were consistently smaller (10−5 or less).

. Applications

.1. Global ocean state estimation

The model state of the underlying global estim
ion problem consists of 17 three- and two-dimensi
elds at a 1◦ × 1◦ horizontal resolution and 23 vertic

ayers, yielding a model state of 5,659,200 elem
hich are updated at each time step (note, that a
ddy-resolving setup would require a much higher

zontal resolution of about 1/10◦ × 1/10◦ as well as
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Fig. 4. Mean changes in heat flux relative to the NCEP first guess fields (taken from[1]).

higher vertical resolution, and, to remain numerically
stable, a shorter model time step). The model is run over
a 9-year period between 1992 and 2000 at an hourly
timestep. It is forced twice daily with realistic air-sea
surface fluxes of momentum, heat and freshwater, pro-
vided by the National Centers for Environmental Pre-
diction (NCEP)[29].

The inverse method iteratively reduces the model
versus data misfit(1), by successive modification to the
controls,C, which consist of three-dimensional initial
temperature and salinity distributions, as well as time-
varying surface forcing fields.

To infer the update in the control variables, the
cost gradient(2), is subject to a quasi-Newton vari-
able storage line search algorithm[30]. The updated
control variables serve as improved initial and bound-
ary conditions in a consecutive forward/adjoint cal-
culation. Thus,�∇CJ, the outcome of the adjoint cal-
culation, is a central ingredient for the optimization
problem.

By way of example,Fig. 4, taken from[1], de-
picts the surface heat flux correction estimated from
the optimization. The mean changes of the flux rela-
tive to the NCEP input fields are large over the area
of the Gulf Stream and in the Eastern tropical Pacific.
The heat flux corrections inferred here were shown to
agree with independent studies of the NCEP heat flux
analyses.

4.2. Sensitivity analysis

Complementary to the estimation problem, the first
adjoint sensitivity studies with a full general circula-
tion model and its adjoint generated by means of AD
have been performed with the MITgcm[31], aiming at
interpreting the adjoint or dual solution of the model
state. In this context the cost function is a much sim-
pler one. Instead of a least square misfit between model
and data over a large amount of data points, a scalar
quantity is considered, usually diagnosed after a model
integration. As an example,Fig. 5 depicts the sensi-
tivity of the North Atlantic annual mean heat trans-
port at 29◦N to changes in surface temperature over
a 1-year integration period, starting January 1, 1993,
thus,

J = 1

τ
cpρ0

∫ ∫ ∫
vT dλ dr dt

which assumes a value of 1.2 PW (Peta Watt) in the
Atlantic at 29◦N. The control variable is the initial sea
surface temperature (SST) distribution.

The kinematic effect of advection of temperature
anomalies in the western boundary current is read-
ily apparent from the large upstream sensitivity pat-
tern. Over the 1-year integration period a temperature
anomaly can be carried by a 10 cm/s zonal velocity
field over a 3000 km distance. Explaining the sensi-
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Fig. 5. The sensitivity,∂J
∂θ

, of the annual mean North Atlantic heat transport at 29◦N, J, to changes in temperature,θ, at the ocean surface. At
point “a” a persistent change inθ of +1◦ will produce a 1.2× 1012 W increase in annual mean poleward heat transport. The same change at
point “b” produces a 0.8× 1012 W decrease (taken from[31]).

tivities in the interior ocean and off the African coast
is more subtle, requiring the consideration of the dy-
namical effect of temperature and salinity anomalies
on the density field and the corresponding changes in
sea level.

5. Summary and outlook

Reverse mode AD applications emerge as a power-
ful tool to address a suite of ocean science issues. Cru-
cial features are efficient recomputation algorithms and
checkpointing. Scalability of the adjoint code, main-
tained by hand-written adjoint functions, complements
parallel support functions of the model code. These
features render computationally tractable adjoint code,
despite the flow reversal in adjoint mode. Applied to
the global time-dependent ocean circulation estimation
problem, the code has been successfully used to solve a
gigantic optimization problem. Complementary, a host
of physical quantities can be efficiently and rigorously
investigated in terms of their sensitivities by means of
the dual solution provided by the cost gradient, thus
providing novel insight into kinematical and dynamical
mechanisms. Further reverse mode applications play an
equally important role in oceanographic research, and

are being pursued using the MITgcm and its adjoint.
They include optimal perturbation/singular vector
analyses in the context of investigating atmosphere–
ocean coupling. A natural extension of the state
estimation problem is the inclusion of estimates of the
errors of the optimal controls. The computation of the
full error covariance remains prohibitive, but dominant
structures may well be extracted from the Hessian ma-
trix. As ambitions grow the ECCO group has recently
switched to the TAF tool, the successor of TAMC
which has enhanced features. Furthermore, ECCO
supports efforts of the Adjoint Compiler Technology &
Standards (ACTS) project to increase accessibility to
and development of AD algorithms by a larger commu-
nity through the definition of a common intermediate
algorithmic platform, within which AD algorithms
can be easily shared among different developers and
tools.
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Appendix A. TAF: a short description

A.1. Overview

TAF is a source-to-source translator for Fortran
77-95 code, i.e. TAF accepts Fortran 77-95 code as
input, applies a semantic transformation, and gener-
ates Fortran 77-95 code as output. TAF supports sev-
eral semantic transformations. The most important one
is Automatic Differentiation (AD), i.e. generation of
code for evaluation of the first-order derivative (Ja-
cobian matrix). This generated code can operate in
forward or reverse mode (tangent linear or adjoint
model). TAF can generate code to evaluate Jacobian
times vector products or the full Jacobian. Higher order
derivative code is generated by applying TAF multiple
times.

Another TAF transformation is Automatic Sparsity
Detection (ASD), i.e. efficient determination of the
sparsity structure of the Jacobian matrix. This trans-
formation is important, because the Jacobian’s sparsity
pattern can be exploited to render the evaluation of the
Jacobian more efficient.

A.2. Special features

A
flow

a pen-
d iven
t spec-
i u-
t only
f

A
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A.2.3. Parallelization
TAF offers basic support of OpenMP and MPI.

A.2.4. Readability
TAF generated code is structured an well readable.

The derived structures are closely inherited from the
original code, as are names (variables, subroutines).

Details on the structure of directives and TAF-
generated code can be found in[19].
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