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Morphing Banner Advertising 

Abstract 

 Researchers and practitioners devote substantial effort to targeting banner advertisements 

to consumers, but focus less effort on how to communicate with consumers once targeted. 

Morphing enables a website to learn, automatically and near optimally, which banner advertise-

ments to serve to consumers in order to maximize click-through rates, brand consideration, and 

purchase likelihood. Banners are matched to consumers based on posterior probabilities of latent 

segment membership, which are identified from consumers’ clickstreams. 

 This paper describes the first large-sample random-assignment field test of banner 

morphing—over 100,000 consumers viewing over 450,000 banners on CNET.com. On relevant 

webpages, CNET’s click-through rates almost doubled relative to control banners. We supple-

ment the CNET field test with an experiment on an automotive information-and-

recommendation website. The automotive experiment replaces automated learning with a longi-

tudinal design that implements morph-to-segment matching. Banners matched to cognitive 

styles, as well as the stage of the consumer’s buying process and body-type preference, signifi-

cantly increase click-through rates, brand consideration, and purchase likelihood relative to a 

control. The CNET field test and automotive experiment demonstrate that matching banners to 

cognitive-style segments is feasible and provides significant benefits above and beyond tradi-

tional targeting. Improved banner effectiveness has strategic implications for allocations of 

budgets among media. 

 

Keywords: On-line advertising, banner advertising, behavioral targeting, context matching, 

website morphing, cognitive styles, field experiments, electronic marketing, dy-

namic programming, bandit problems, strategic optimization of marketing.
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1. Introduction 

 This paper describes the first random-assignment field test of morphing with a sample 

size sufficient to observe steady-state behavior (116,168 unique CNET consumers receiving 

451,524 banner advertisements). A banner advertisement morphs when it changes dynamically 

to match latent cognitive-style segments which, in turn, are inferred from consumers’ clickstream 

choices. Examples of cognitive-style segments are impulsive-analytic, impulsive-holistic, delib-

erative-analytic, and deliberative-holistic. The website automatically determines the best 

“morph” by solving a dynamic program that balances exploration of morph-to-segment effec-

tiveness with the exploitation of current knowledge about morph-to-segment effectiveness. Ban-

ner morphing modifies methods used in website morphing (Hauser, Urban, Liberali, and Braun 

2009), which changes the look and feel of a website based on inferred cognitive styles. (For 

brevity we use HULB as a shortcut citation to the 2009 website-morphing paper.) Morphing adds 

behavioral-science-based dynamic changes which complement common banner-selection meth-

ods such as context matching and targeting. 

 HULB projected a 21% improvement in sales for BT Group’s broadband-sales website, 

but the projections were based on simulated consumers whose behavior was estimated from data 

obtained in vitro. The BT Group did not allocate resources necessary to obtain sufficient sample 

for an in vivo field-test.1 (By in vivo we refer to actual websites visited by real consumers for in-

formation search or purchasing. By in vitro we refer to laboratory-based websites that simulate 

actual websites and which are visited by a randomly recruited panel of consumers. In vitro exper-

iments attempt to mimic in vivo field experiments, but never do so perfectly.)  

Online morphing is designed for high-traffic websites with tens of thousands of visitors. 

                                                 
1 Hauser, Urban, and Liberali (2012) report a field implementation of website-morphing with a small sample. Their 
results are suggestive but not significant. The morphing algorithm did not reach steady-state on their sample. 
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Simulations in HULB (Figure 3, p. 209) suggest that 10,000-20,000 consumers are necessary to 

realize substantial gains from website morphing. Banner morphing is likely to require higher 

sample sizes than website morphing because successful banner outcomes (click-throughs) occur 

relatively less often than successful website-morphing outcomes (sales of broadband services). 

Our field test (§4.9) has sufficient sample to observe a significant 83-97% lift in click-through 

rates between test and control cells above and beyond context matching.  

Although click-through rates are a common industry metric, we also sought to test 

whether banner morphing increases brand consideration and purchase likelihood. Because brand-

consideration and purchase-likelihood measures are intrusive, such metrics are difficult to obtain 

in vivo. We therefore supplement the large-sample field test with a smaller-sample random-

assignment experiment on an in vitro automotive information-and-review website. We avoid the 

need for extremely large samples with three longitudinal surveys that act as surrogates for the 

HULB dynamic program. The first two surveys measure advertising preference, cognitive styles, 

and the stage of the consumer’s buying process. The third survey, separated from the pre-

measures by four and one-half (4½) weeks, exposes consumers to banner advertising while they 

search for information on cars and trucks. In the test group, consumers see banners that are 

matched to their cognitive style and buying stage. Banners are not matched in the control group. 

The sample (588 consumers) is sufficient because (1) we substitute direct measurement for 

Bayesian inference of segment membership and (2) we substitute measurement-based morph as-

signment for the HULB dynamic program. The in vitro experiment suggests that matching ban-

ners to segments improves brand consideration and purchase likelihood relative to the control.  

2. Banner Advertising – Current Practice 

 In the last ten years online advertising revenue has tripled. Banner advertisements, paid 
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advertisements placed on websites, account for 24% of online advertising revenue—about $6.2 

billion in 2010. Banner advertisement placements cost roughly $10 per thousand impressions. 

Click-through rates are low and falling from 0.005 click-throughs per impression in 2001 to 

0.001 in 2010 (Dahlen 2001; PricewaterhouseCoopers 2011). Website managers and marketing 

managers are highly interested in methods that improve banner effectiveness. 

Current theory and practice attempt to increase click-through rates with a variety of 

methods. For example, Sundar and Kalyanaraman (2004) use laboratory methods to examine the 

effect of the speed and order of animation. Gatarski (2002) uses a genetic algorithm on a training 

sample to search 40 binary features of banners. He achieves a 66% lift above a 1% click-through 

rate based on sixteen “generations” seeing approximately 200,000 impressions. 

Iyer, Soberman, and Villas-Boas (2005) and Kenny and Marshall (2000) suggest that 

click-through rates should improve when banners appear on webpages deemed to be relevant to 

consumers. Early attempts matched textual context. For example, Joshi, Bagherjeiran, and 

Ratnaparkhi (2011) cite an example where “divorce” in a banner is matched to “divorce” on the 

webpage. But context matters—it is not effective to place a banner for a divorce lawyer on a gos-

sip account of a celebrity’s divorce. Instead, Joshi, et al. achieved a 3.3% lift by matching a ban-

ner’s textual context to a combination of webpage content and user characteristics. In a related 

application to Yahoo!’s news articles rather than banners, Chu, et al. (2009, p. 1103) use context-

matching methods to increase click-through rates significantly (3.2% lift based on “several mil-

lion page views”). Context matching is quite common. For example, General Motors pays Kelly 

Blue Book to show a banner advertisement for the Chevrolet Sonic when a consumer clicks on 

the compact-car category.  

Relevance can also be inferred from past behavior: “[b]ehavioral targeting leverages his-
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torical user behavior to select the most relevant ads to display.” (Chen, Pavlov and Canny 2009, 

p. 209). Chen, et al. use cookie-based observation of 150,000 prior banners, webpages, and que-

ries to identify the consumers who are most likely to respond to banners. They report expected 

lifts of approximately 16-26% based on in-sample analyses.  

Laboratory experiments manipulate consumers’ goals (surfing the web vs. seeking infor-

mation) to demonstrate that banner characteristics, such as size and animation, are more or less 

effective depending upon consumers’ goals (Li and Bukovac 1999; Stanaland and Tan 2010). 

This web-based research is related to classic advertising research that suggests advertising quali-

ty and endorser expertise (likability) are more or less effective depending upon relevance (in-

volvement) for consumers (e.g., Chaiken 1980; Petty, Cacioppo and Schumann 1983). 

Morphing differs from prior research in many ways. First, banners are matched to con-

sumers based on cognitive styles rather than context relevance or past behavior. Second, latent 

cognitive-style segments are inferred automatically from the clickstream rather than manipulated 

in the laboratory. Third, morphing learns (near) optimally about morph-to-segment matches in 

vivo as consumers visit websites of their own accord. Thus, morphing is a complement rather 

than a substitute for existing methods such as context matching. If successful, morphing should 

provide incremental lift beyond context matching. 

3. Brief Review of Banner Morphing 

 The basic strategy of morphing is to identify a consumer’s segment from the consumer’s 

clickstream and show that consumer the banner that is most effective for the consumer’s seg-

ment. Because the clickstream data cannot completely eliminate uncertainty about the consum-

er’s segment, we treat these segments as latent—we estimate probabilities of segment member-

ship from the clickstream. In addition, there is uncertainty about which banner is most effective 
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for each latent segment. Using latent-segment probabilities and observations of outcomes, such 

as click throughs, the morphing algorithm learns automatically and near optimally which morph 

to give to each consumer. Morphing relies on fairly complex Bayesian updating and dynamic 

programming optimization. Before we provide those details, we begin with the conceptual de-

scription in Figure 1. 

In Figure 1 we label the latent segments as Segment 1 through 4. Typically, the segments 

represent different cognitive styles, but segments can also be defined by other characteristics 

such as the stage of the consumer’s buying process. A design team uses artistic skills, intuition, 

and past experience to design a variety of alternative websites (HULB) or alternative banners 

(this paper). We call these banners (or websites) “morphs.” In Figure 1 we label the morphs as 

Morph 1 through Morph 4. Designers try to give the system a head start by designing morphs 

they believe match segments, but, in vivo, the best matches are identified automatically and op-

timally by the morphing algorithm.  

[Insert Figure 1 about here.] 

If the segments could be measured directly, rather than identified latently, the morphing 

optimization would be “indexable.” Indexability implies we can solve the optimal allocation of 

morphs to segments by computing an index for each morph x segment combination. The index is 

called a Gittins’ index. The Gittins’ indices evolve based on observed consumers’ behavior. The 

optimal policy for the ݊௧௛ consumer would be to assign the morph with the largest index for the 

consumer’s segment. For example, if the upper-left bar chart represents the Gittins’ indices com-

puted after 100 consumers, and if segments were known, the algorithm would assign Morph 3 to 

Segment 4 because Morph 3 has the largest Gittins’ index for Segment 4 (largest of the dark 

bars). Similarly, it would assign Morph 1 to Segment 2. 
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 But segment membership cannot be observed directly. Instead the HULB algorithm uses 

a pre-calibrated Bayesian model to infer the probabilities that the consumer belongs to each la-

tent segment. The probabilities are inferred from the clickstream on the website, possibly includ-

ing multiple visits. Illustrative probabilities are shown by the bar chart in the middle of Figure 1. 

We use these segment-membership probabilities and the Gittins’ indices to compute Expected 

Gittins’ Indices (bar chart in the upper right of Figure 1). There is now one Expected Gittins’ In-

dex per morph. Based on research by Krishnamurthy and Mickova (1999), the (near) optimal 

policy for latent segments is to assign the morph with the highest Expected Gittins’ Index. The 

bar chart in the upper-right corner tells us to assign Morph 3 to the 101st consumer. Because a 

sample size of 100 consumers is small, the system is still learning morph-to-segment assign-

ments and, hence, the bars are more or less of equal height. If the 101st consumer had made dif-

ferent clicks on the website, the segment probabilities would have been different and, perhaps, 

the morph assignment would have been different. 

 As more consumers visit the website, we observe more outcomes—sales for website 

morphing or click-throughs for banner morphing. Using the observed outcomes the algorithm re-

fines the morph x segment indices (details below). The middle-left and lower-left bar charts re-

flect refinements based on information up to and including the 20,000th and 80,000th consumer, 

respectively. As the indices become more refined, the morph assignments improve. (In Figure 

1’s illustrative example, the Expected Gittins’ Index assigns Morph 3 after 100 consumers, 

changes to Morph 2 after 20,000, and discriminates even better after 80,000 consumers.) 

 State-of-the art morphing imposes limitations. First, because many observations are 

needed for each index to converge, the morphing algorithm is limited to a moderate number of 

morphs and segments. (HULB used 8	ݔ	16 ൌ 128 Gittins’ indices rather than the 16 indices in 
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Figure 1.) Second, although designers might create morphs using underlying characteristics and 

morphing may define segments based on underlying cognitive dimensions, the dynamic program 

does not exploit factorial representations. Schwartz (2012) and Scott (2010) propose an im-

provement to handle such factorial representations to identify the best banners for the non-

morphing case, but their method has not been extended to morphing. 

We now formalize the morphing algorithm. Our description is brief, but we provide full 

notation and equations in Appendix 1. Readers wishing to implement morphing will find suffi-

cient detail in the cited references. Our code is available upon request. 

3.1. Assigning Consumers to Latent Segments based on Clickstream Data 

 Figure 2 summarizes the two phases of morphing. We call the first phase a calibration 

study. The in vitro calibration study measures cognitive styles directly using established scales. 

Such measurement is intrusive and would not be feasible in vivo. Respondents for the calibration 

study are drawn from the target population and compensated to complete the calibration tasks. 

Using the questions designed to identify segment membership, we assign calibration-study con-

sumers to segments. For example, HULB asked 835 broadband consumers to complete a survey 

in which the consumers answered 13 agree-vs.-disagree questions such as “I prefer to read text 

rather than listen to a lecture.” HULB factor analyzed answers to the questions to identify four 

bipolar cognitive-style dimensions. They used median splits on the dimensions to identify six-

teen (2 x 2 x 2 x 2 = 16) segments. 

[Insert Figure 2 about here.] 

 Calibration study respondents explore an in vitro website as they would in vivo. We ob-

serve their chosen clickstream. We record each respondent’s clickstream as well as the character-

istics of all possible click choices (links) on the website. An example “click characteristic” is 
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whether the click promises to lead to pictures or text. Other click characteristics are dummy vari-

ables for areas of webpage (such as a comparison tool), expectations (the click is expected to 

lead to an overall recommendation), or other descriptions. These calibration data are used to es-

timate a logit model that maps click characteristics to the chosen clicks (see Appendix 1, Equa-

tion A1). The parameters of the logit model are conditioned on consumers’ segments. The cali-

bration study also provides the (unconditioned) percent of consumers in each segment—data that 

form prior beliefs for in vivo Bayesian calculations. 

 During day-to-day operation of the in vivo website we do not observe consumers’ seg-

ments; instead, we observe consumers’ clickstreams. The calibrated model and observed click 

characteristics give likelihoods for the observed clickstream conditioned upon a consumer be-

longing to each of the (now latent) segments. Using Bayes Theorem (and prior beliefs) we com-

pute the probabilities that a consumer with the observed clickstream belongs to each segment (as 

shown in the middle of Figure 1.) See Appendix 1, Equation A1. In notation, let ݊ index con-

sumers, ݎ index segments, and ݐ index clicks. Let Ԧܿ௡௧ be consumer ݊’s clickstream up to the ݐ௧௛ 

click. The outcomes of the Bayesian calculations are the probabilities, Prሺݎ௡ ൌ |ݎ Ԧܿ௡௧ሻ, that con-

sumer ݊ belongs to segment ݎ conditioned on the consumer’s clickstream. 

In HULB the first 10 clicks on the in vivo website were used to identify the consumer’s 

segment and select the best morph. We adopt the same strategy of morphing after a fixed and 

pre-determined number of clicks. We label the fixed number of clicks with ݐ௢. Hauser, Urban 

and Liberali (2012) propose a more complex algorithm to determine the optimal time to morph, 

but their algorithm was not available for our experiments. Thus, our experiments are conserva-

tive because morphing would likely do even better with improved algorithm. 



Morphing Banner Advertising 

9 
 

3.2. Automatically Learning the Best Banner for Each Consumer 

For ease of exposition, temporarily assume we can observe directly the consumer’s latent 

segment. Let ݉ index morphs and let ݌௥௠ be the probability of a good outcome (a sale or a click-

through) given that a consumer in segment ݎ experienced morph ݉ for all clicks after the first ݐ௢ 

clicks. One suboptimal method to estimate ݌௥௠would be to observe outcomes after assigning 

morphs randomly to a large number, ௟ܰ௔௥௚௘, of consumers. This policy, similar to that used by 

Google’s web optimizer and many behavioral-targeting and context-matching algorithms, is sub-

optimal during the calibration period because ௟ܰ௔௥௚௘ consumers experience morphs that may not 

lead to the best outcomes.2 To get a feel for ௟ܰ௔௥௚௘, assume eight morphs and four segments as in 

the CNET experiment, assume a typical click-through rate of 2/10ths of 1 percent, and calculate 

the sample size necessary to distinguish 2/10ths of 1 percent from a null hypothesis of 1/10th of 1 

percent. We would need to assign suboptimal banners to approximately 128,000 consumers to 

obtain even a 0.05 level of significance (exact binomial calculations for each morph x segment). 

Morphing identifies optimal assignments with far fewer suboptimal banners. 

Optimal assignment for directly observed segments is a classic problem in dynamic pro-

gramming. The dynamic program balances the opportunity loss incurred while exploring new 

morph-to-segment assignments with the knowledge gained about the optimal policy. The updat-

ed knowledge is gained by observing outcomes (sales or click-throughs) and is summarized by 

posterior estimates of the ݌௥௠’s. (See Appendix 1, Equation A2.) Improved posterior estimates 

enable us to assign morphs more effectively to future consumers. 

For known segments, the optimal solution to the dynamic program has a simple form: we 

compute an index for each ݎ,݉-combination. The index, called the Gittins’ index, ܩ௥௠௡, is the 

                                                 
2 Google is now implementing Gittins’ experimentation but has not yet implemented morphing (private communica-
tion and http://support.google.com/analytics/bin/answer.py?hl=en&answer=2677320). 
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solution to a simpler dynamic program that depends only on assignments and outcomes for those 

consumers who experienced that ݎ,݉-combination (see Appendix 1, Equation A3). For the ݊௧௛ 

consumer, the optimal policy assigns the morph which has the largest index for the consumer’s 

segment (Gittins (1979). The indices evolve with ݊. 

Because we do not observe the consumer’s segment directly, we must estimate the prob-

abilities that the consumer belongs to each latent segment. Thus, in vivo, the problem becomes a 

partially observable Markov decision process (usually abbreviated POMDP). Krishnamurthy and 

Mickova (1999) establish that the POMDP is indexable and that an intuitive policy is near opti-

mal. Their policy assigns the morph with the largest Expected Gittins’ index. The Expected Git-

tins’ Index is defined by ܩܧ௠௡ ൌ ∑ Prሺݎ௡ ൌ 	|	ݎ Ԧܿ௡௧ሻܩ௥௠௡௥ . We still update the ݌௥௠’s and the 

௡ݎ௥௠௡’s, but we now do so using the Prሺܩ ൌ |ݎ Ԧܿ௡௧ሻ’s. The key differences between the Expected 

Gittins’ Index policy and the naïve calibration-sample policy ( ௟ܰ௔௥௚௘) is that the Expected Git-

tins’ Index policy (1) learns while minimizing opportunity loss, (2) continues to learn as ݊ gets 

large, and (3) can adapt when ݌௥௠ changes due to unobserved shocks such as changes in tastes, 

new product introductions, or competitive actions. Recalibration is automatic and optimal.  

4. CNET Field Experiment 

4.1. Smart Phone Banners on CNET.com 

 CNET.com is a high-volume website that provides news and reviews for high-tech prod-

ucts such as smart phones, computers, televisions, and digital cameras. It has 8 million visitors 

per day and has a total market valuation of $1.8 billion (Barr 2008). Banner advertising plays a 

major role in CNET’s business model. Context-matched banners demand premium prices. For 

example, a computer manufacturer might purchase banner impressions on web pages that pro-

vide laptop reviews. Non-matched banners are priced lower. Morphing provides a means for 
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CNET to improve upon context-matching and, hence, provide higher value to its customers. 

CNET accepted our proposal to compare the performance of morphing versus a control on their 

website and to explore interactions with context matching. 

 The banners advertised AT&T smart phones. Consumers visiting CNET.com were as-

signed randomly to test and control cells. In each experimental cell some banners were context-

matched and some were not (as occurred naturally on CNET). To assure sufficient sample for the 

morphing algorithm to be effective, we assigned 70% of the consumers to the test cell. CNET’s 

agency developed a pool of eight AT&T banner advertisements about HTC refurbished smart 

phones. Five of the banners were square banners that could appear anywhere on the website and 

three of the banners were wide rectangular banners that appear at the top of the page. See Figure 

3—we provide more detail in §4.3. (AT&T was out of stock on new HTC smart phones; AT&T 

followed industry practice to focus on refurbished smart phones when new phones were out of 

stock. Industry experience suggests lower click-through rates for refurbished products, but the 

decrease should affect the test and control cells equally.) 

[Insert Figure 3 about here.] 

4.2. CNET Calibration Study 

 We first identified a candidate set of cognitive-style questions using those suggested by 

HULB augmented from the references therein and from Novak and Hoffman (2009). We drew 

199 consumers from the Greenfield Online panel for a pre-study. These consumers answered all 

cognitive-style questions. Factor analysis and scale purification identified eleven questions likely 

to categorize CNET consumers. (Detailed questions and pre-study analyses are available from 

the authors.) 

 In the calibration study, 1,292 CNET users answered the eleven purified questions. We 
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factor analyzed the answers and identified three factors which we labeled impulsive vs. delibera-

tive, analytic vs. holistic, and instinctual vs. not. See Appendix 2. Following standard procedures 

(e.g., Churchill 1979), we re-purified these scales resulting in three multi-item bipolar cognitive-

style dimensions with reliabilities of 0.75, 0.66, and 0.57, respectively. CNET’s designers felt 

they could target most effectively consumer segments that varied on the two most-reliable cogni-

tive-style dimensions. We follow the methods in HULB and assign consumers to segments based 

on median splits of the two bipolar scales. The four segments were deliberative-holistic, delib-

erative-analytic, impulsive-holistic, and impulsive-analytic. While the dimensions are orthogonal 

by construction, there is no reason that the four segments contain equal numbers of consumers. 

In vivo posterior estimates were 9%, 42%, 23%, and 27%, respectively. 

4.3. Banner Characteristics (designed by CNET’s agency) 

 CNET’s agency varied characteristics of the morphs such as the smartphone image (home 

screen vs. pictures of people), the size of the image, the size and colors of the fonts, the back-

ground colors, and information content (online only, free shipping vs. a list of smart phone fea-

tures). The designers also varied hot links such as “get it now,” “learn more,” “watch video,” 

“benefits of Android technology,” “see phone details,” and “offer details.” With a moderate 

number of banners it was not feasible to vary all of these banner characteristics in a fractional 

factorial. Rather, we relied on CNET’s designers to provide banners that varied substantially. 

The morphing algorithm automatically and optimally assigned the banners to latent segments 

(via the Gittins’ indices). CNET’s choice of potential banners is an empirical tradeoff—more 

banners might achieve greater discrimination, but more banners might compromise the optimal 

policy by spreading updating over a greater number of morph x segment indices. More empirical 

experience might suggest procedures to determine the number of banners that optimizes this 
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tradeoff.  

CNET’s agency relied on the judgment of their designers. With more empirical experi-

ence, banner designers will be better able to design banners to target latent segments. Research-

ers might use pre-studies to link banner characteristics to segments identified in the calibration 

study. Analyses similar to the logit model that links click preferences to segments could help de-

signers select banner characteristics. 

4.4. Calibrated Model of Segment-Specific Click Preferences 

 We observed the clickstreams for all 1,292 consumers in the calibration study. We de-

compose every click alternative into a vector of 22 click characteristics including dummy varia-

bles for areas on the homepage (“carousal,” “navigation bar,” “promotion bar,” “more stories,” 

“popular topics,” etc.), areas on other pages (product-specific reviews, “CNET says,” “inside 

CNET,” etc.), usage patterns (search category, social influences, tech-savvy news, etc.), and in-

dependent judges’ evaluations of expected click outcomes (pictures, graphs, data, etc.). The same 

decomposition applied to the website in the calibration study and to the tracked areas of the in 

vivo website. Using the calibration data we estimated segment-specific click-characteristic 

weights, ሬ߱ሬԦ௥. The specific model mapping characteristics to clicks is a logit model that is condi-

tioned upon segment membership. See Appendix 1 (Equation A1) and HULB (p. 211, Equation 

4). Parameter values are given in Appendix 3. 

4.5. Posterior Beliefs about Latent Cognitive-Style Segments in vivo 

During day-to-day operation on the CNET website, we use Bayesian updating to estimate 

the probabilities that each consumer belongs to each latent segment. See Appendix 1 (Equation 

A1) and HULB (p. 211, Equation 5). Simulations based on the calibration study suggested that 

five clicks (ݐ଴ ൌ 5) would provide sufficient observations to obtain reasonable posterior esti-
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mates of Pr	ሺݎ௡ ൌ |ݎ Ԧܿ௡௧ሻ.  

In CNET, unlike in HULB, we use cookies so that updating continues through multiple 

consumer visits to CNET. We define an active consumer as a consumer who has made at least 

five clicks on tracked areas of the website. In the control cell we track clicks but only to deter-

mine whether a consumer is active. Before becoming active, consumers are not shown any ban-

ners (neither in test nor control). After becoming active, test consumers see a banner selected by 

the morphing algorithm and control consumers see a randomly chosen banner. 

4.6. Defining a Successful Click-through when there are Multiple Sessions 

 The same banner might be shown in many sessions. (CNET considers a session new after 

30 minutes of inactivity.) CNET (and AT&T) consider the banner a success if the consumer 

clicks through in at least one session. We adopt their definition when we update the ݌௥௠’s. To 

account for interrelated sessions, we use a strategy of temporary updates and potential reversals.  

This strategy is best illustrated with a three-session example. Suppose that a consumer 

sees the same banner in three sessions and clicks through only in the second session. A naïve ap-

plication of HULB would make three updates to the parameters of the posterior distributions for 

the success probabilities, ݌௥௠. The updates would be based erroneously on observations classi-

fied as a failure, then a success, and then a failure. Instead, using CNET’s success criterion, the 

correct posterior is computed after the third session based on one success because the banners 

achieved their collective goal of at least one consumer click-through. Until we reach the third 

session, updates should represent all information collected to that point. We update as follows. 

After the first session (no click through), we update the posterior distribution based on a fail-

ure—this is the best information we have at the time. After the second session (click through), 

we reverse the failure update and update as if success. After the third session (no click through), 
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we do nothing because the update already reflects a success on CNET’s criterion. The mathemat-

ical formulae for CNET’s success criterion are given in Appendix 1. 

4.7. Priors for Morph x Segment Probabilities (as Used in Computing Indices) 

The morphing algorithm requires that we set priors for the morph x segment click-

through probabilities. The findings in HULB suggest that weakly-informative priors suffice. We 

set priors equal to the historic click-through probability for banners for refurbished smart 

phones—the same for all banners. To ensure that the priors are weakly informative, we select pa-

rameters of the prior distribution based on an effective sample size of forty consumers—small 

compared to the anticipated number of CNET consumers. 

4.8. Interaction between Morphing and Context Matching 

CNET uses context matching, thus one goal of the field experiment was to determine 

whether morphing adds incremental lift. The context-matching literature reports lifts of approxi-

mately 3% for in vivo testing and 26% for in-sample projections (see §2). These lifts were calcu-

lated for banners or page-views (not on a consumer-by-consumer basis). 

The information technology literature consistently postulates that context matching is ef-

fective because the banner is more relevant to the consumer (e.g., Chen, Pavlov, and Canny 

2009, p. 209; Chu, et al. 2009, p. 1103; Joshi, Bagherjeiran, and Ratnaparkhi 2011; p. 59). Rele-

vance has a long history in advertising research. For example, classic studies postulate that “per-

suasion may work best depending on whether … message-relevant thought occurs” (Petty, 

Cacioppo, and Schumann 1983, p. 137). Chaiken (1980, p. 760) manipulates issue involvement 

as “personal relevance” and demonstrates that greater quality advertising is more persuasive with 

high involvement but not with low involvement. Zaichkowsky (1986, p. 12) summarizes that 

“although there does not seem to be a single precise definition of involvement, there is an under-
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lying theme focusing on personal relevance.” Her survey of the literature indicates that “under 

high involvement, attitudes were influenced by the quality of the arguments in the message.” 

Prescriptive theories of targeting make similar predictions (Iyer, Soberman and Villas-Boas 

2005; Kenny and Marshall 2000). 

If these theories apply to banner advertising, and if morphing increases the effective qual-

ity of the communication, then we expect an interaction between morphing (increased quality) 

and context matching (relevance). If cognitive-style matching makes it easier for consumers to 

learn their preferences, then a morphing-by-context-matching interaction is also consistent with 

observed interactions between targeting and preference learning (Lambrecht and Tucker 2011). 

In our field experiment we manipulate morphing (test vs. control) randomly. Within each 

experimental cell, some banners match context and some do not. Context-matching occurs natu-

rally on the CNET website and occurs in the same manner in the test cell as in the control cell.  

4.9. Results of the CNET Field Experiment 

 CNET placed banners on their website for all active consumers in the test and control 

cells during April 11, 2011 to May 13, 2011. Naturally, there were non-AT&T-HTC banners 

placed on CNET during the 31-day test period, but these banners were placed randomly between 

test and control. Both we and CNET went to great lengths to ensure there were no systematic ef-

fects of non-AT&T-HTC banners or interactions with AT&T-HTC advertising. Sampling ap-

peared random—we detected no systematic differences in the placement of control banners 

across estimated (latent) cognitive-style segments (߯ଷ଴
ଶ ൌ 15.9, ݌ ൌ 0.98). 

 Table 1 summarizes the field-test results. Overall, 116,168 consumers saw 451,524 ban-

ners. Of these, 32,084 consumers (27.4%) saw 58,899 banners (13.0%) on webpages where any 

smart phone was rated, compared, priced, discussed, or pictured. We consider such webpages as 
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context-matched. Consistent with theories of relevance-quality interactions, morphing achieves 

significant and substantial incremental improvements for banners on context-matched webpages 

ݐ) ൌ 3.0, ݌ ൌ 0.003). Because many consumers saw multiple banners, we also calculate click-

through rates on a consumer-by-consumer basis. Morphing is significantly better than the control 

on consumer click-through rates when the banners are placed on context-matched webpages 

ݐ) ൌ 2.2, ݌ ൌ 0.028).  

Morphing almost doubled click-through rates for context-matched banners (83% and 

97% lifts, respectively for banners and for consumers). To put these lifts in perspective, context-

matching alone achieved a 5% lift in banner click-through rates, but the difference was not sig-

nificant (ݐ ൌ 0.3, ݌ ൌ 0.803). A 5% lift is consistent with Joshi, et al. (2011) and Chu, et al. 

(2009) who report lifts of 3.3% and 3.2%, respectively, on large samples. Context-matching 

alone had a negative lift on consumer click-through rates, but the lift was not significant 

ݐ) ൌ 1.4, ݌ ൌ 0.167). 

[Insert Table 1 about here.] 

Table 1 also suggests that gains to morphing require that the banners be relevant to the 

webpage visited by the consumer. There was a decline for banners and consumers when the ban-

ners were not on context-matched webpages (ݐ ൌ 0.5, ݌ ൌ 0.495 and ݐ ൌ 1.74, ݌ ൌ 0.081, re-

spectively), but that decline is marginally significant at best. Interactions between morphing and 

context-matching were significant for banners (߯ଶ ൌ 161.8, ݌ ൏ 0.01) and for consumers 

(߯ଶ ൌ ݌ ,8.2 ൌ 0.017). 

4.10. Morphing Discriminates Among Latent Cognitive-Style Segments 

 Segment membership is latent; we do not observe segment membership directly. Instead 

we use posterior estimates of segment membership to examine the probability that morph ݉ was 
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assigned to segment ݎ. Table 2 reports posterior probabilities for square banners and for top-of-

page banners. On average, top-of-page banners did better than square banners—a result that does 

not appear connected to cognitive-style morphing. For example, in the context of search advertis-

ing, eye-tracking studies suggest a “golden triangle” or “F-shaped” attention pattern; top-of-page 

sponsored links receive substantially more attention than right-of-page sponsored links (Buscher, 

Dumais, and Cutrell 2010). Buscher, et al. (p. 47) suggest further that high-quality sponsored 

links receive twice as much visual attention as low-quality sponsored links. For ease of compari-

son between different types of banners we renormalize click-through rates for top-of-page ban-

ners.  

Morph-to-segment matching worked well for square banners. Some square banners are 

differentially better for specific cognitive-style segments. For example, the best morph for the 

deliberative-analytic latent segment (ݎ ൌ 2) is Morph S1. The best morph for the impulsive-

holistic segment (ݎ ൌ 3ሻ is Morph S5. The morphing algorithm discriminates less well for the 

deliberative-holistic segment (ݎ ൌ 1), likely because that segment is a much smaller segment 

than the others (9% of the consumers). 

[Insert Table 2 about here.] 

 The deliberative-analytic segment (ݎ ൌ 2) and the impulsive-holistic segment (ݎ ൌ 3) to-

gether account for 65% of the consumers and each received their best morphs most often. The 

morphing algorithm does less well for the remaining 35% of the consumers. For the impulsive-

analytic (ݎ ൌ 4) segment and the deliberative-holistic segment (ݎ ൌ 1), the best morph was giv-

en more often than average, but other morphs were given more often.  

The posterior probabilities for top-of-page banners illustrate a situation where designers 

did not achieve enough variation. The algorithm learned correctly that Morph T1 was best for all 
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latent segments. Overall, the morph assignments were enough to achieve substantial lift, but the 

lift would likely have improved if the algorithm had run longer. When click-through rates are 

low, the CNET data suggest convergence even beyond 82,000 consumers. This result illustrates 

why large samples are necessary to evaluate in vivo banner morphing.  

 We attempted to link the features of the best morphs to cognitive style segments. Some 

assignments made sense. For example, the best morph for the deliberative-analytic segment in-

cluded a detailed list of product features and the best morph for the impulsive-holistic segment 

included a link to “get it now.” We are hesitant to over-interpret these qualitative insights be-

cause, in the CNET field test, there are many more features than morphs.  

 5. Automotive Experiment to Test Matching Morphs to Segments 

 Banner advertising generates click-throughs, but banners are also display advertising and 

may enhance a brand’s image whether or not a consumer clicks through. For example, Nielsen 

(2011) describes a survey in which “54 of those surveyed believe online ads are highly effective 

at ‘enhancing brand/product image.’” Because managers are often interested in more than click-

through rates, we supplement the CNET field experiment with an in vitro automotive experi-

ment. (Organizational differences between CNET and AT&T, and proprietary concerns, made it 

impossible to track click-through rates back to sales of AT&T telephones.) In the automotive ex-

periment we abstract from the mechanics of Gittins’ learning to test whether morph-to-segment 

matching increases brand consideration and purchase likelihood as well as click-through rates. 

The automotive experiment enables us to further test the hypothesis that banner advertisements 

are more effective when targeted to consumer segments that vary on cognitive styles. 

Measures of brand consideration and purchase likelihood require intrusive questions, un-

like measures of click-through rates which can be observed unobtrusively. To measure brand 
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consideration and purchase likelihood we invited consumers to complete questionnaires before 

and after searching for information on an automotive information-and-review website. Because a 

sample size of tens of thousands of consumers was not feasible with this design, we used longi-

tudinal methods as a surrogate for dynamic program optimization. Figure 4 summarizes the lon-

gitudinal methods. In Phase 1, consumers rated all test and control advertisements for their buy-

ing stage and preferred body-type. Two weeks later, in Phase 2, consumers answered a series of 

questions that enabled us to assign consumers to cognitive-style segments. In Phase 2 we also 

obtained pre-measures of brand consideration and purchase likelihood. Phases 1 and 2 replaced 

Bayesian inference and Gittins’-index-based optimization with in vitro measurement. Phases 1 

and 2 assigned each consumer to a segment and identified the best banners for each segment, 

thus replacing two tasks performed in vivo in the CNET experiment. The actual experiment, 

Phase 3, occurred two and one-half weeks after Phase 2 (4½ weeks after consumers rated ban-

ners in Phase 1). In the experiment (Phase 3) consumers saw banners while exploring an automo-

tive information-and-review website. In the test cell, banners were matched to cognitive styles 

(plus buying stage and body-type preference) while in the control cell banners were matched on-

ly to body-type preference. (Note that this experiment extends the definition of consumer seg-

ments to include buying stage—a practical consideration in the automotive market.)  

[Insert Figure 4 about here.] 

 The experimental design, its implications, and potential threats to validity are best under-

stood and evaluated within context. Thus, before we describe the Phase 3 experiment, we first 

describe the website, the automotive consumer segments, and the test and control banner adver-

tisements. 
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5.1. Automotive Banners on an Information-and-Recommendation Website 

 Information-and-recommendation websites, such as Edmunds’, Kelley Blue Book, 

Cars.com, and AutoTrader, play major roles in automotive purchasing. For example, Urban and 

Hauser (2004) estimate that at least 62% of automotive buyers search online before buying a car 

or truck. More recently, Giffin and Richards (2011) estimate that 71% of automotive buyers 

search online and that online search was more influential in purchase decisions than referrals 

from family or friends, newspapers, and other media sources. Because information-and-

recommendation websites attract potential purchasers, automotive manufacturers invest heavily 

in banner advertising on these websites. The importance of such expenditures motivated General 

Motors to test morph-to-segment-matching for banner advertising targeted for their Chevrolet 

brand. General Motors’ managerial motivation matched our scientific desire to test whether 

morph-to-segment matching would enhance brand consideration and purchase likelihood. 

 We created a website that simulated actual information-and-recommendation websites. 

Figure 5 illustrates the landing page and an example search page. Consumers could search for in-

formation, receive tips and reviews, learn about insurance, and read reviews just like they would 

on commercial information-and-recommendation websites. To mimic best practices, all test and 

control banners were targeted by consumers’ expressed preferences for one of five body types. 

Such targeting is typical on commercial websites. For example, Edmunds.com displays body-

type category links (coupe, convertible, sedan, SUV, etc.) prominently on the landing page and 

uses click-through information from these links to place relevant banner advertising on subse-

quent webpages and site visits. Body-type targeting enhances external validity and relevance. 

(Recall that morphing was most effective on relevant CNET webpages.) 

[Insert Figure 5 about here.] 
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5.2. Cognitive Styles and Stage of the Automotive Buying Process 

 Body-type preference and the automotive buying stage were measured in Phase 1; cogni-

tive styles were measured in Phase 2. General Motors defines buying-stage segments by: collec-

tion, comparison, or commitment. “Collection” segments included consumers who indicated they 

were more than a year away from buying a car or truck, but in the process of collecting infor-

mation. “Comparison” segments included consumers less than a year away from buying a car or 

truck and who had already gathered information on specific vehicles or visited a dealer. “Com-

mitment” segments included consumers who plan to purchase in the next three months, who 

have collected information on specific vehicles, and who have visited a dealer.  

To identify cognitive styles we asked consumers in a pre-study to answer twenty-nine 

questions adapted from HULB and Novak and Hoffman (2009). We factor analyzed their an-

swers to identify three factors. Based on the questions that load together, we labeled the first two 

factors as rational-vs.-intuitive and impulsive-vs.-deliberative. The third factor was hard to de-

fine. See Appendix 2. Following standard procedures (e.g., Churchill 1979), we purified the 

scales resulting in three multi-item cognitive-style dimensions with reliabilities of 0.87, 0.87, and 

0.36, respectively. Because morphing requires a moderate number of discrete segments, we de-

fined four cognitive-style segments by mean splits on the first two cognitive dimensions.3,4 The 

four segments were rational-impulsive, rational-deliberative, intuitive-impulsive, and intuitive-

deliberative. 

                                                 
3 Despite differences in the underlying questions, the type of consumer, and the buying context, the cognitive di-
mensions for high-tech consumers and automotive consumers were not dissimilar. For each set of consumers, one 
dimension was impulsive vs. deliberative. The other dimension was either analytic vs. holistic (high tech) or rational 
vs. intuitive (automotive). More experience might identify common dimensions that can be used across applications. 
If cognitive dimensions are situation-specific, then research might identify a paradigm that relates the dimensions to 
a set of defined situations. 
4 In the automotive experiment GM used mean-splits rather than median-splits to define segments. There is no rea-
son to believe this will affect the results. Indeed, the two categorizations are quite similar. When we correct for the 
differences between median- and mean- splits, the test group is still significantly better than the control group. 



Morphing Banner Advertising 

23 
 

5.3. Test and Control Banner Advertisements 

Banner designers created test banners that varied on characteristics they judged would 

appeal to consumer segments with different cognitive styles. Some banners emphasize infor-

mation; others compare targeted vehicles to competitors, and still others stress test drives, find-

ing a dealer, and purchase details. The banners also varied on the size of the images, the number 

of images, the amount of information provided, the size of the headlines, the amount of content 

in the headlines, whether content emphasized product features or recommendations, and other 

design characteristics. Clicks on banners took consumers to different target webpages (as prom-

ised in the banners). The designers judged that these characteristics provided sufficient variation 

for Phases 1 and 2 to target the banners to each cognitive-style segment. In total there were 75 

test banners: (five variations to appeal to different cognitive styles) x (three variations to appeal 

to different stages of the buying process) x (five variations using Chevrolet vehicles chosen to 

appeal to consumers interested in different body types). Figure 6 provides examples of 15 test 

banners for one body type (Chevrolet Tahoe). 

[Insert Figure 6 about here.] 

In Phase 1, consumers evaluated potential test (and control) banners on meaningfulness, 

relevance, information content, and believability. Using the average score on these measures we 

identified the best two test banners for each consumer segment. In Phase 3, consumers in the test 

cell saw the banners that were matched to their segment. Consumers in the control cell saw the 

control banners. We allowed consumers’ preferences to override designers’ prior beliefs just as 

in the CNET field experiment the dynamic program overrode designers’ prior beliefs. 

There were ten control banners: two banners for each of five body types. Control banners 

did not vary by cognitive style or buying stage. The control banners were the banners that Chev-

rolet was using on real information-and-recommendation websites at the time of the automotive 
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experiment. 

The control banners in Figure 6 were most relevant to General Motors’ business deci-

sions, but if we are to use them as a scientific control we must establish they are a valid control. 

The literature uses a random selection of “morphs” as a no-morphing control. If General Motors’ 

current banners are better than a random selection of test banners, then any differences between 

test and control cells would underestimate the gain due to morph-to-segment matching. We could 

then conclude that the improvement due to matching is at least as large as we measure. However, 

if current banners are worse than a random selection of test banners, then we could not rule out 

that the test banners are, on average, simply better than the control banners.  

The average score for a test banner is 3.36 (out of 5); the average score for a control ban-

ner is 3.70. The combined control banners have significantly larger average scores than random 

test banners (ݐ ൌ 10.3, ݌ ൏ 0.01). For a stronger comparison we compare the two best test ban-

ners to the two control banners. Even in this comparison the average test score is still less than 

the control score (ݐ ൌ 2.7, ݌ ൏ 0.01). We therefore conclude that the current Chevrolet banners 

are a sufficient control. If morph-to-segment matching is superior to the current Chevrolet ban-

ners, then it is highly likely that morph-to-segment matching will be superior to either a random-

ly-selected set of test banners or to a non-matched mix of the two best test banners. 

5.4. Experimental Design and Dependent Measures 

 In Phase 3 consumers were invited to explore an information-and-recommendation web-

site called “Consumer Research Power.” Consumers searched naturally as if they were gathering 

information for a potential automotive purchase. They did so for a minimum of five minutes. 

While consumers searched, we recorded click-throughs on the banners. During this search, we 

placed banner advertisements for Chevrolet models as they would be placed in a natural setting. 
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Test consumers received banners that alternated between the best and second-best banner for 

their cognitive-style and buying-process segment. Control consumers received banners that al-

ternated between the two control Chevrolet banners.5 All banners, both test and control, were 

targeted by body-type preference.  

Consumers who clicked through on banners were redirected to various websites—

websites that varied by banner (and hence consumer segment). For example, banners targeted to 

impulsive consumers in the commitment buying stage linked to maps of nearby dealerships 

while banners targeted to rational consumers in the commitment buying stage linked to infor-

mation on loans, purchasing, and options packages. We balanced the variety of click-through 

targets to include enough variation to implement targeting by segment, but not so much that con-

sumers were directed outside the in vitro web environment. Our in vitro targeting likely underes-

timates variation obtainable in vivo and is, thus, conservative. 

 After consumers completed their search on “Consumer Research Power,” we measured 

Chevrolet brand consideration and purchase likelihood (post measures). 

5.5. Potential Threats to Validity  

One potential threat to validity is that exposure to banners in Phase 1 might have contam-

inated the Phase 3 measures. We took steps to minimize this threat. The Phase 1 questionnaire 

was relatively short (five minutes) and occurred 4½ weeks before the Phase 3 experiment. In 

Phase 1 consumers were not allowed to click through on the banners and, hence, did not receive 

the same rich information experience as in Phase 3. Instructions were written carefully to dis-

guise the goals of the later phases—consumers believed the Phase 3 website experience was a 

                                                 
5 Control consumers also received a more-general banner on the landing page. This more-general banner mimics in 
vivo practice. When we include the more-general banner in our analyses, the exposure-weighted rating of all control 
banners (3.75) remains significantly better than the exposure-weighted rating of the test banners (3.46), reaffirming 
the control as a valid control (ݐ ൌ 3.0, ݌ ൏ 0.01). To be conservative, we do not include clicks from landing-page 
banners for either the test or control cells. 
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test of the website, not an advertising test. We believe that the time delay, the number of banners 

rated, the lack of active click-through in Phase 1, and instructions that disguised later phases 

combine to limit contamination from Phase 1 to Phase 3.  

More importantly, the experimental design minimizes potential false positives that might 

be due to contamination. First, Phase 2 is more proximate in time than Phase 3. Contamination, if 

any, should be larger in Phase 2 than in Phase 3, making it more difficult to show an effect on 

Phase-3-vs.-Phase-2 measures. Second, contamination, if any, would affect test and control cells 

equally and have no impact on statistical tests of differences that are invariant with respect to 

constant effects. 

Another potential threat to validity is that the morph-to-segment test chooses from more 

banners than the control. If a consumer saw a greater variety of banners in the test cell, then we 

would be concerned about biases due to wear-out in the control cell or biases because of greater 

variety in the test cell. All else equal, greater variety in the banners that a consumer actually sees 

increases the odds that a banner is the best banner for a consumer. Our design minimizes this 

threat because consumers in both test and control cells saw only two different banners. 

5.6. Results of the Automotive Experiment Testing the Behavioral Premise of Morphing 

 We invited 2,292 members of the Gongos Automotive Panel to participate in a multi-

phase study of website design. Consumers were screened so that they were an equal or sole deci-

sion maker in automotive purchases and planned to purchase a new car or truck in less than three 

years. This mimics standard practice. Of these, 1,299 consumers agreed to participate (61% re-

sponse rate) and 588 consumers completed Phases 1, 2 and 3 (45.3% completion rate). More 

consumers were assigned to the test cell (70%) than the control cell (30%) so that we had suffi-

ciently many consumers in each consumer segment. All statistical tests take unequal cell sizes in-
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to account. Dependent measures included click-through rates for banners, click-through rates per 

consumer, post-measures of brand consideration and purchase likelihood, and comparisons of 

brand consideration and purchase likelihood between the post-measures (after Phase 3) and the 

pre-measures (during Phase 2). 

5.7. Test-vs.-Control Analyses (Post Only) 

 Because the pre-conditions were the same in the test and control cells, we begin with 

post-only results. Table 3 reports the post-only comparisons for the morph-to-segment-matching 

experiment. As in the CNET field experiment, on body-type-relevant webpages, the lift in click-

through rates is significant. The test-vs.-control difference in click-through rates is significant 

whether we focus on impressions (245% lift, ݐ ൌ 3.3, ݌ ൏ 0.01) or consumers (66% lift, 

ݐ ൌ 4.4, ݌ ൏ 0.01). The automotive experiment enables us to look beyond click-through rates to 

brand consideration and purchase likelihood. Both measures increase significantly based on 

morph-to-segment matching with consideration the most substantial (30% lift, ݐ ൌ 4.9, ݌ ൏ 0.01 

and 8% lift, ݐ ൌ 4.1, ݌ ൏ 0.01, respectively). As a test of face validity, Chevrolet brand consid-

eration is roughly 29% on a nationwide basis—comparable to the 32% measured in the control 

cell. 

[Insert Table 3 about here.] 

 Table 3 compares all consumers in the test cell to all consumers in the control cell wheth-

er or not they clicked on a banner. We gain insight by comparing those consumers who clicked 

on a banner to those who did not. The comparison of clickers to non-clickers is consistent with 

self-selection; brand consideration is 45% higher (ݐ ൌ 2.9, ݌ ൏ 0.01) and purchase likelihood is 

14% higher (ݐ ൌ 13.5, ݌ ൏ 0.01) for clickers vs. non-clickers.  

Brand consideration improved for both non-clickers (22% lift) and clickers (17% lift); 
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purchase likelihood improved for non-clickers (9% lift) and stayed the same for clickers (0% 

lift). Recall that these relative lifts are computed on a higher base for clickers than non-clickers 

because both brand consideration and purchase likelihood are substantially higher for clickers. 

We consider these results tentative because the test vs. control lifts are not statistically significant 

when we split the sample to within clickers or non-clickers. Nonetheless, the results are at least 

consistent with a hypothesis that the banners acted as display advertising.  

5.8. Test-vs.-Control and Pre-vs.-Post Analyses 

 We increase statistical power by accounting for the pre-measures (as in differences of dif-

ferences) and for variation in segment membership or demographics due to stochastic variation 

in random assignment. Table 4 reports the results where we control for pre-measures, segment 

membership, and demographics. Click-through and brand consideration are quantal measures 

(click or not; consider or not), therefore we use a logit formulation for these measures. Purchase 

likelihood is a scaled measure, so a regression suffices. Click-through (all banners) and brand 

consideration are significant at the ݌ ൏ 0.01 level and purchase likelihood is significant at the 

݌ ൌ 0.02 level. Click-through (per consumer) is marginally significant at the ݌ ൌ 0.06 level. 

[Insert Table 4 about here.] 

 In Table 4 we used the pre-measure as an independent variable because the pre-measure 

accounts for both measurement error and, partially, for unobserved heterogeneity in consumers’ 

propensity to consider or purchase Chevrolet. We can also remove unobserved heterogeneity 

with double-difference formulations. When we do so, test vs. control is significant at the 0.01 

level for both brand consideration and purchase likelihood (details from the authors). 

 Together Tables 3 and 4 suggest that morph-to-segment matching increases brand con-

sideration and purchase likelihood (for automotive consumers) as well as click-through rates. In 
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addition, morph-to-segment matching may have improved overall brand image even among con-

sumers who did not click through. When combined with the CNET field experiment, the automo-

tive experiment suggests that the effectiveness of banners improves when morphing targets ban-

ners to consumer segments. 

6. Implications and Future Directions 

 Online morphing is a nascent technology for improving the effectiveness of banner ad-

vertising. HULB established the potential for increasing sales if websites morphed their look and 

feel, but the evaluation was based on data generated in a calibration study. Subsequently, Hauser, 

Urban, and Liberali (2012) demonstrated that website morphing could be implemented in vivo, 

but their sample size was not sufficient to establish that the improved outcomes were significant. 

 The CNET field experiment establishes that an Expected Gittins’ Index policy enables an 

in vivo website to learn automatically the best morph for each consumer segment. Click-through 

rates improve substantially for context-matched (relevant) webpages on a high-traffic website. 

The automotive experiment establishes that morph-to-segment matching also increases brand 

consideration and purchase likelihood.  

 The Expected Gittins’ Index provides near optimal learning; we know of no better strate-

gy. By the principle of optimality, the Expected Gittins’ Index policy is superior to a policy that 

sets aside the first ௟ܰ௔௥௚௘ consumers for a random-assignment experiment. On high traffic web-

sites with low click-through rates, the improvement over an ௟ܰ௔௥௚௘ policy can be substantial. 

6.1. Strategic Implications 

When morphing increases click-through rates, the marginal return to banners increases. 

As firms re-optimize their advertising spending they will allocate proportionally more to banners 

and less to more traditional media. However, there is a fixed cost to the development of multiple 
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banners for use in morphing. The targeted banners for the automotive experiment would have 

cost $250,000 to produce if done at market rates (private communication). For high-volume 

brands, as in our tests, the incremental improvements in click-through rates, consideration, and 

purchase intentions justify the fixed cost. For smaller websites or advertisers, the fixed cost may 

be too steep a price to pay. 

The effect of increased banner productivity on total advertising spending is ambiguous 

and dependent upon the detailed marginal costs and revenues. Addressing this question requires 

meta-analyses across a variety of product categories, media, and countries. Such meta-analyses 

are now underway through a consortium of researchers and should provide insights on the future 

of media spending. 

6.2. Norms Rather than Calibration Studies 

 State-of-the-art morphing technology requires a calibration study to (1) establish the def-

initions of consumer segments and (2) obtain data on click preferences for each segment (the 

ሬ߱ሬԦ௥). We envision future applications that rely on norms rather than calibration studies. For ex-

ample, in the applications to date the definitions of the cognitive-style segments were somewhat 

similar. With more applications, we might use meta-analyses to stabilize cognitive-style defini-

tions so that we might identify segments without a calibration study. Researchers might also in-

vestigate whether consumers’ cognitive styles (as they relate to websites and banners) are inher-

ent characteristics of consumers or whether cognitive styles vary based on the situation the con-

sumer faces as he or she navigates the website. 

Similarly, meta analyses might provide strong priors for segment-based click-

characteristic preferences, ሬ߱ሬԦ௥. We might also identify the click-alternative characteristics that 

best distinguish consumer segments. Such empirical generalizations would enable a website or 
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an advertiser to rely on norms or an abridged calibration study. A similar diffusion of knowledge 

has taken place in pretest market simulators for consumer packaged goods. Initial studies ex-

plored methods, but later studies built the normative databases. Today, most pretest-market fore-

casts rely on norms. When norms become established, we expect morphing to flourish.  

6.3. Practical Challenges 

 The banner-morphing experiments in this paper, and the prior website-morphing tests, re-

lied on experienced designers to develop banners or websites to match consumer segments. 

Morphing implementation updates priors about which banners are best for each segment. The re-

sults were sometimes non-intuitive and serendipitous and spurred further creative development. 

As we gain more experience, we expect that scientific studies will lead to greater insight into the 

challenge of designing a priori banners that best target latent segments. Such studies are fertile 

grounds for new research. Similarly, if banner characteristics are varied systematically, in a de-

sign in which the contribution of each characteristic can be identified, then a posteriori research-

ers might gain further insight into the optimal design of banners. 

Another practical challenge is transportable code. All code has been specific to the appli-

cation (and open source). Conjoint analysis, hierarchical Bayes, multinomial logit analyses, and 

other marketing science methods diffused widely when generalized software became available. 

We hope for the same diffusion with banner and website morphing. 

 Finally, morphing relies on discrete definitions of segments and morphs. We are aware of 

research to define morphs by a factorial design of features and to find the best portfolio of 

morphs (e.g., Schwartz 2012; Scott 2010). We are unaware of any research to match morphs to 

segments that are based on continuous cognitive-style dimensions, but such research would be 

interesting.  
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Table 1 
CNET Field Test of Banner Advertisement Morphing 

 Sample Size Click-through Rate a  
Signif-
icance  Test Control Test Control Lift 

Context-matched webpages     

     All banners 40,993 17,906 0.307 b 0.168 + 83% 0.003 

     Per consumer 22,376 9,708 0.250 b 0.127 + 97% 0.028 

Non-context-matched webpages     

     All banners 262,911 129,714 0.151 0.160 - 6% 0.495 

     Per consumer 59,362 24,722 0.144 c 0.197 - 27% 0.081 

a Click-through rates are given as fractions of a percent, e.g., 0.307 of 1%. 

b Test cell has a significantly larger click-through rate than control cell at the 0.05 level or better. 

c Test cell has a marginally significantly smaller click-through rate than the control cell at the 0.10 level. 
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Table 2 
CNET Field Test: Posterior Click-through Rates and Assignment Probabilities 

 

 Square Banners  Top-of-Page Banners 

Posterior Click-through Rates a, b m = S1 m = S2 m = S3 m = S4 m = S5     

   Deliberative-holistic segment (r = 1, 9%) .16% .12% .28% .27% .13%     

   Deliberative-analytic segment (r = 2, 42%) .47% .43% .30% .42% .43%     

   Impulsive-holistic segment (r = 3, 23%) .42% .25% .24% .40% .44%     

   Impulsive-analytic segment (r = 4, 27%) .41% .65% .33% .54% .63%     

Posterior ܚ۾ሺ࢘|࢓,      ሻ a, b m = S1 m = S2 m = S3 m = S4 m = S5ࢋ࢘ࢇ࢛࢙ࢗ

   Deliberative-holistic segment (r = 1, 9%) 14% 7% 9% 18% 51%     

   Deliberative-analytic segment (r = 2, 42%) 41% 5% 35% 7% 12%     

   Impulsive-holistic segment (r = 3, 23%) 15% 5% 21% 22% 37%     

   Impulsive-analytic segment (r = 4, 27%) 11% 24% 30% 10% 24%     

Posterior Click-through Rates a, b       m = T1 m = T2 m = T3 

   Deliberative-holistic segment (r = 1, 9%)       .35% .26% .26% 

   Deliberative-analytic segment (r = 2, 42%)       .45% .35% .39% 

   Impulsive-holistic segment (r = 3, 23%)       .45% .32% .33% 

   Impulsive-analytic segment (r = 4, 27%)       .63% .48% .35% 

Posterior ܚ۾ሺ࢘|࢓,  ሻ a, b       m = T1 m = T2 m = T3ࢋࢍࢇ࢖ࢌ࢕	࢖࢕࢚

   Deliberative-holistic segment (r = 1, 9%)       46% 13% 41% 

   Deliberative-analytic segment (r = 2, 42%)       76% 12% 12% 

   Impulsive-holistic segment (r = 3, 23%)       66% 21% 13% 

   Impulsive-analytic segment (r = 4, 27%)       75% 16% 9% 

   a Largest values in a column are shown in bold italics. Rows sum to 100%. b Posterior segment sizes are shown in parentheses (percent of total consumers). 
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Table 3 
Automotive Experiment: Banner Advertisement Morphing (Post-only Results) 

(All banners are targeted by body-type preference.) 

 Sample Size Outcome Measure a  
Signif-
icance Test Control Test Control Lift 

Click-through rates       

     All banners 6,348 2,643 0.97% b 0.26% + 245% < 0.01 

     Per consumer 421 167 15.9% b 9.6% + 66% < 0.01 

Brand Consideration 421 167 42.8% b 32.9% + 30% < 0.01 

Purchase likelihood 421 167 3.28 b 3.05 + 8% < 0.01 

a Click-through rates are  given as percentages. Consideration is a consider-or-not measure that we report 
as a percentage of the sample. Purchase likelihood is measured with a five-point scale. 

b Test cell is significantly larger at the 0.01 level. 
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Table 4 
Automotive Experiment: Banner Advertisement Morphing 

Controlling for Pre-measures, Segment Membership, and Demographics 

 
Clicks All Banners Clicks per Consumer Brand Consideration Purchase Likelihood 

 Coefficient Significance Coefficient Significance Coefficient Significance Coefficient Significance

Intercept -7.860 a < 0.01 -3.657 a < 0.01 -4.132 a < 0.01 0.091 0.629 

Test vs. control treatment 1.246 a < 0.01 0.564 b 0.061 0.759 a < 0.01 0.150 a 0.019 

Pre-measure –– –– –– –– 3.570 a < 0.01 0.801 a < 0.01 

Buying-process dummies         

     Collect 0.359 0.458 0.580 0.126 0.777 a 0.026 0.347 a < 0.01 

     Compare 0.763 a < 0.01 1.007 a < 0.01 0.503 b 0.065 0.105 0.205 

     Commit ––   –– –– –– –– –– –– –– 

Cognitive-style segment dummies        

     Rational-deliberative 0.417 0.114 -0.038 0.972 0.389 a 0.038 -0.001 0.172 

     Intuitive-impulsive 0.094 0.290 0.102 0.792 0.221 0.144 0.082 0.142 

     Rational-impulsive 0.537 0.513 0.407 0.259 0.707 a 0.022 0.103 b 0.059 

     Intuitive-deliberative ––  –– –– –– –– –– –– –– 

Male (vs. Female) -0.414 0.157 -0.344 0.162 0.285 0.247 0.079 0.300 

Age 0.025 a 0.033 0.020 b 0.055 0.014 0.184 0.006 b 0.065 

Income 0.000 0.547 -0.002 0.451 0.000 0.476 -0.000 0.767 

Log-likelihood ratio -349.845 a -223.039 a -232.013 a -734.298 a 

a Significant at the 0.05 level.    b Significant at the 0.10 level. Sample size is 8.991 impressions or 588 consumers. All equations are significant at the 0.01 level. 
Test vs. control is also significant at the 0.01 level with a differences of differences specification (available from the authors). 
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Figure 1 
Conceptual Diagram of Banner Morphing (Illustrative Values Only) 
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Figure 2 
The Different Roles of the Calibration Study and the Day-to-Day Banner-Morphing Algorithm 

 

Calibration Study
(prior to in vivo
morphing)

Exploration

1. Measure cognitive styles with 
established questions and 
define cognitive‐style segments.

2. Observe clicks and 
characteristics of clicks for 
consumers in each cognitive‐
style segment.

1. Assign each calibration‐study 
consumer to a cognitive‐style 
segment (using questions only in 
the calibration study).

2. Calibrated model which can infer 
segment membership 
probabilities from clickstream.

Tasks Outcomes

Day‐to‐day 
operation 

(of in vivo website)

Exploitation

1. Observe clickstream. Use 
calibrated model to infer 
consumers’ latent cognitive‐style 
segments. 

2. Observe outcomes (e.g., click‐
throughs). Update Gittins’ 
indices for each segment x 
morph combination.

3. Use latent segment probabilities 
and Gittins’ indices to compute 
Expected Gittins’ index.

1. Cognitive‐style probabilities for 
each latent segment.

2. Gittins’ index value for each 
segment x morph combination 
after the nth consumer.

3. (Near) optimal assignment of a 
morph to the nth consumer to 
balance exploration and 
exploitation.



Morphing Banner Advertising 

 
 

Figure 3 
Square and Top-of-Page Banner Advertisements (CNET Field Experiment) 
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Figure 4 
Automotive Experiment: Longitudinal Design as Surrogate for Morph-to-Segment Matching 

(Phases 1 and 2 replace in vivo Bayesian inference and Expected Gittins’ Index optimization.) 

  

Identify consumer segments.
(4 cognitive styles) x (3 buying  stages)

Assign consumers to segments.

Identify the best two morphs for each segment.
(Two of 15 possible morphs for each segment)

All morphs match body‐style preference.

Phase 3 (experiment, four and one‐half weeks after Phase 1)
Consumers explore “Consumer Research Power” website. Observe click‐throughs on banners.
Consumers exposed to banners in natural search.

Test:  Banners assigned by morph‐to‐segment rules.
Control:  Current in vivo Chevrolet banners.

Post‐measures for consideration and purchase likelihood.
20 minutes

Phase 2 (two weeks later)
Consumers complete 29 cognitive‐style scales.
Pre‐measures for consideration and purchase likelihood.
10 minutes

Phase 1
Develop potential banners (morphs) based on pre‐studies.
Screen consumers for target market
Consumers indicate body‐type preference and stage of buying process.
Consumers rate potential banners on meaningfulness, relevance, information content, and believability.
5 minutes
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Figure 5 

Simulated Website for Automotive Experiment Matching Morphs to Segments 
(Landing page on the left. One of many subsequent pages on the right.) 
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Figure 6 
Example Test and Control Banner Advertisements for the Automotive Experiment 

(The left-most banners are controls. The other columns contain five banners designed for each buy-
ing-stage segment. In the experiment there were 10 potential control banners: body type x two ban-

ners. There were 75 potential test banners: body type x buying-stage x cognitive-style.) 
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Appendix 1. Mathematical Summary of Morphing Algorithm 

A1.1. Notation 

 Let ݊ index consumers, ݎ index consumer segments, ݉ index morphs, ݐ index clicks, and 

݆ index click alternatives. Capital letters indicate totals. Let ܿ௡௧௝ ൌ 1 if ݊ chooses the ݆௧௛ click al-

ternative (link) on the ݐ௧௛ click and ܿ௡௧௝ ൌ 0 otherwise. Let ߜ௠௡ ൌ 1 if we observe a positive 

outcome when ݊ sees morph ݉, and ߜ௠௡ ൌ 0 otherwise. Let Ԧܿ௡் be the vector of the ܿ௡௧௝ up to 

and including ܶ௧௛ click, let ݔԦ௝௧௡ be the vector of characteristics of the ݆௧௛ click alternative for the 

-௧௛ segݎ Ԧ௝௧௡ for theݔ ௧௛ click for consumer ݊, let ሬ߱ሬԦ௥ be the vector of preference weights for theݐ

ment, let Pr଴ሺݎ௡ ൌ  ௥௡ be the probabilityݍ let ,ݎ ሻ be the prior probability that ݊ is in segmentݎ

that ݊ belongs to segment ݎ, let ݌௥௠ be the probability of observing an outcome (sale, click-

through, etc.) if a consumer in segment ݎ sees morph ݉, let ܩ௥௠ be Gittins’ index for ݎ and ݉, 

and let ܽ be the consumer-to-consumer discount rate.  

A1.2. Assigning Consumers to Segments 

 We first estimate the ሬ߱ሬԦ௥ from a calibration study in which consumers answer questions to 

identify their segments. We also we observe the click alternatives they choose. The estimation is 

based on a logit likelihood using either maximum-likelihood or Bayesian methods. Details are 

standard, available in HULB, and not repeated here. For online morphing we know the ݔԦ௝௧௡’s for 

key click alternatives. We compute ݔԦ௝௧௡
ᇱ ሬ߱ሬԦ௥, which is ݊’s observed utility for the ݆௧௛ click alterna-

tive for the ݐ௧௛ click. Using the logit likelihood (HULB, p. 211, Equations 4 & 5), we obtain the 

probability that observed clicks are chosen given that the consumer is in segment ݎ. Bayes Theo-

rem provides ݍ௥௡. 
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(A1) 

Pr൫ Ԧܿ௡்| ሬ߱ሬԦ௥, Ԧ௝௞௡s൯ݔ ൌ Prሺ Ԧܿ௡்|ݎ௡ ൌ ሻݎ ൌෑෑ൭
expൣݔԦ௝௧௡

ᇱ ሬ߱ሬԦ௥൧

∑ expሾݔԦℓ௧௡
ᇱ ሬ߱ሬԦ௥ሿ

୎ౡ
ℓୀଵ

൱

௃ೖ

௝ୀଵ

்

௧ୀଵ

௖೙೟ೕ

 

௥௡ݍ ൌ Prሺݎ௡ ൌ |ݎ Ԧܿ௡்ሻ ൌ
Prሼ Ԧܿ௡்|ݎ௡ ൌ ௡ݎሻPr଴ሺݎ ൌ ሻݎ

∑ Prሼ Ԧܿ௡்|ݎ௡ ൌ ௡ݎሻPr଴ሺݏ ൌ ሻோݏ
௦ୀଵ

 

 

A.1.3. Updating Beliefs about the Probability of an Outcome Given a Morph and Segment 

 After observing outcomes for each consumer, ݊, we update our beliefs about outcome 

probabilities. Call these probabilities ݌௥௠௡. Using beta-binomial updating we represent posterior 

knowledge about these probabilities with a beta distribution with parameters ߙ௥௠௡ and ߚ௥௠௡. If 

we knew the consumer’s segment with certainty, we could update these parameters with standard 

formulae. However, segment membership is only partially observable, hence we use the seg-

ment-membership probabilities to treat the ݊௧௛ observation as ܴ fractional observations where ܴ 

is the number of latent segments. The binomial formula is a well-defined probability density 

function for non-integer values. 

(A2) 

௥௠௡ߙ ൌ ௥௠,௡ିଵߙ ൅ ௥௡ݍ௠௡ߜ  

௥௠௡ߚ ൌ ௥௠,௡ିଵߚ ൅ ሺ1 െ ௥௡ݍ௠௡ሻߜ  

 Equation A2 suffices for website morphing, but for banner morphing the relevant criteri-

on is at least one click-through per consumer. For this criterion we take multiple sessions into 

account. In banner morphing we use Equation A2 at the end of the first session of a new con-

sumer. Subsequently, if the any prior outcome was a success (ߜ௠௡ ൌ 1), we do nothing. If all 

prior outcomes were failures (ߜ௠௡ ൌ 0) and we observe a failure, we do nothing. If all prior out-

comes were failures (ߜ௠௡ ൌ 0) and we now observe a success (ߜ௠௡ ൌ 1), we reverse the update. 



Morphing Banner Advertising, Appendices 

A3 
 

Prior failures did not change the ߙ௥௠௡’s for each ݎ, so we now add ݍ௥௠. When a failure becomes 

a success, we undo the update that was added to the ߚ௥௠௡’s for each ݎ. Earlier failures caused us 

to add ݍ௥௡ for each ݎ to the ߚ௥௠௡’s, hence we now subtract ݍ௥௡ for each ݎ from the ߚ௥௠௡’s. 

A.1.4. Calculating the Gittins’ Indices for Each Morph and Segment 

 First assume the consumer’s segment is known. Gittins’ Index Theorem enables us to de-

compose a dynamic program over ܯ morphs into ܯ much simpler dynamic programs. The opti-

mal strategy is to choose in each period the morph with the largest index in that period. Gittins’ 

index provides the needed metric for each uncertain morph by comparing it to a fixed option 

with a probability, ܩ௥௠, of a positive outcome. Bellman’s equation for the morph-and-segment 

specific dynamic program is given as follows. (Details are in HULB p. 207-208 and Gittins 

1979.) In this equation, ܴሺߙ௥௠௡, ,௥௠௡ߚ ܽሻ is Bellman’s value function. We solve this equation for 

fixed points to table ܩ௥௠ as a function of ߙ௥௠௡ and ߚ௥௠௡. (ܽ is fixed.) 

(A3) ܴሺߙ௥௠௡, ,௥௠௡ߚ ܽሻ ൌ max

ە
۔

ۓ
௥௠௡ܩ

1 െ ܽ
,

௥௠௡ߙ

௥௠௡ߙ ൅ ௥௠௡ߚ
ሾ1 ൅ ܴܽሺߙ௥௠௡ ൅ 1, ,௥௠௡ߚ ܽሿ

൅
௥௠௡ߙ

௥௠௡ߙ ൅ ௥௠௡ߚ
ܴܽሺߙ௥௠௡, ௥௠௡ߚ ൅ 1, ܽሻ

ۙ
ۘ

ۗ
 

 

A.1.5. Choosing the Morph in Each Period 

 When consumer segments are latent, we chose the morph in each period that has the 

highest value for the Expected Gittins’ Index, ܩܧ௠௡. Krishnamurthy and Mickova (1999) show 

that this expected index identifies a (near) optimal policy. 

(A4) ܩܧ௠௡ ൌ෍ݍ௥௡ܩ௥௠௡ሺߙ௥௠௡, ௥௠௡ሻߚ

ோ

௥ୀଵ
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Appendix 2. Factor Loadings Matrices for CNET and Automotive Experiments 

 We factor analyze consumers’ self-evaluations on cognitive-style items questions using 

principle component analysis and varimax rotation with Kaiser normalization retaining factors 

with eigenvalues greater than one. We interpret the factors based on the factor loadings and then 

use scale purification with Cronbach’s alpha to select scale items (Churchill 1979). Segments are 

based on retained scales (sufficient reliability). In the calibration study consumers are assigned to 

segments based on median splits (CNET) or mean-splits (automotive) of sum scores.  

 Although three cognitive-style dimensions were identified initially for both the CNET 

and automotive experiments, each experiment used only the first two cognitive-style dimensions 

to define latent segments. In the CNET experiment, CNET’s designers judged they could best 

target the first two dimensions. In the automotive experiment, the third dimension was difficult 

to interpret and did not have sufficient reliability. For completeness, we report here all three di-

mensions for both experiments. 
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A2.1. Cognitive-Style Factor Loadings for CNET Field Experiment 

 Impulsive vs. 

Deliberative 

Analytic vs.    

Holistic 

Instinctual       

vs. Not 

I rely on my first impressions. 0.086 0.208 0.654 

I am detail oriented and start with the details 
in order to build a complete picture. 

-0.711 -0.066 -0.057 

I find that to adopt a careful, analytic approach 
to making decisions takes too long. 

-0.005 0.699 0.166 

I go by what feels good to me. -0.055 0.289 0.680 

When making a decision, I take my time and 
thoroughly consider all relevant factors. 

-0.794 -0.098 0.067 

I do not like detailed explanations. 0.220 0.570 0.173 

I reason things out carefully. -0.748 -0.139 0.000 

Given enough time, I would consider every 
situation from all angles. 

-0.747 -0.034 0.061 

I do not tackle tasks systematically. 0.058 0.753 0.047 

I use my instincts. -0.100 -0.033 0.798 

I do not approach tasks analytically. 0.108 0.759 0.103 
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A2.2. Cognitive-Style Factor Loadings for Automotive Three-Phase Experiment 

 Rational vs.       
Intuitive 

Impulsive vs.   
Deliberative 

Ignore Images, 
Focus on Details 

I reasoned things out carefully. 0.71 -0.32 0.01 

I tackled this task systematically. 0.58 -0.37 0.15 

I figured things out logically. 0.64 -0.33 0.18 

I approached this task analytically. 0.62 -0.40 0.16 

I applied precise rules to deduce the answer. 0.63 -0.18 0.16 

I was very aware of my thinking process. 0.62 -0.24 0.04 

I used my gut feelings. 0.29 0.72 0.08 

I went by what felt good to me. 0.30 0.69 0.13 

I relied on my sense of intuition. 0.41 0.67 0.06 

I relied on my first impressions. 0.22 0.66 0.14 

I used my instincts. 0.30 0.67 0.11 

Ideas just popped into my head. 0.30 0.59 0.05 

I tried to visualize the images as 3-D shapes. 0.54 0.24 -0.26 

I read the text carefully. 0.57 -0.25 -0.13 

I skimmed the text. -0.18 0.23 0.31 

I concentrated on the images. 0.48 0.44 -0.34 

I ignored the images. -0.20 -0.15 0.66 

I made comparisons of different facts. 0.53 -0.16 -0.09 

I made comparisons between different images. 0.47 0.19 -0.27 

I did not notice there were video reviews. -0.22 0.05 0.58 

The video reviews were helpful in making my 
decision. 

0.49 0.29 -0.19 

I like detailed explanations. 0.53 -0.21 0.02 

I enjoy deciphering graphs, charts and diagrams 
about products and services. 

0.56 -0.19 0.12 

I prefer planning before acting. 0.49 -0.31 0.06 

I'm usually more interested in parts and details 
than in the whole. 

0.31 0.23 0.43 

I like to make purchases without thinking too 
much about the consequences. 

0.11 0.47 0.31 

I tend to see problems in their entirety. 0.52 -0.18 0.08 

I see what I read in mental pictures. 0.55 0.20 -0.13 

I am detail oriented and start with the details in 
order to build a complete picture. 

0.60 -0.23 0.17 
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Appendix 3. Estimation of ሬ߱ሬԦ௥ for the CNET Experiment  

 We follow the procedures detailed in HULB to estimate click-characteristics preferences. 

We use these values to compute the posterior probabilities for latent cognitive-style segments in 

real-time. Table A3.1 provides maximum likelihood estimates of ሬ߱ሬԦ௥. This estimation explains 

60.5% of the uncertainty (ܷଶ [pseudo-ܴଶ] of 0.605). The sample size is likely sufficient; ܷଶ de-

grades only to 59.4%, 57.4%, and 56.7% if we use 50%, 33%, and 20% of the data, respectively. 

Table A3.1. Maximum-Likelihood Estimates of ሬ࣓ሬሬԦ࢘ for CNET Experiment 

  Segment Indicator Variables 

 
Constant Impulsive vs. 

 Deliberative 

Analytic vs. 

Holistic 

Expect the linked page to have pictures or graphs 0.257 a 0.209 -0.292 a 

Expect the linked page to be focused on a specific ques-
tion (technical) -3.947 a -1.120 a 1.351 a 

Expect the linked page to have large amount of data 1.181 a 0.095 -0.221 

Navigation Bar 6.931 a -2.459 a 2.349 a 

Carousel 3.946 a 0.190 0.665 b 

More Stories 5.208 a 1.053 a 0.808 a 

Promotion Bar 5.762 a -1.853 2.630 b 

Popular Topics 3.818 a 1.517 a -0.981 a 

Tabs -14.585 1.236 -0.032 

Inside CNET 5.036 a 2.597 a -0.858 b 

Search category 3.706 a -2.856 a 2.818 a 

Product-specific reviews 3.741 a -2.299 a 2.083 b 

Social Influences: expert opinion ("CNET says") 3.360 a 1.322 a -1.226 a 

Social Influences: consumer opinion ("what others do") 2.087 a 0.768 a -0.237 

Tech-savvy 0.263 b 0.036 -0.176 

a Significant at the 0.05 level.    b Significant at the 0.10 level.  


