BLAST

- Bates Large Acceptance Spectrometer Toroid
- Polarized electron beam to 1 GeV
- Polarized, internal, gas targets of pure H, D, or He-3
- Symmetric detector
- Systematic study of spin dependent electro-magnetic interaction of few nucleon systems

Polarized Internal Gas Target

South Hall Ring

- pure target
- high polarization
- thin cell walls
- low holding field

$L = 10^{32} - 10^{33}$ atoms cm⁻² s⁻¹

Compton and Möller Polarimeters

•

- Compton polarimeter
 - Laser light incident on electron beam
 - Detect backscattered photons in Csl
 - Online measure of beam polarisation
 - Möller polarimeter
 - Symmetric Möller angles
 - Check on target polarisation
 - Doubles as luminosity monitor
 - Also beam quality monitor

BLAST Detector

- Toroidal magnetic field
- Symmetric detector design \bullet
- **Opposing sectors instrumented**
 - Silicon strip recoil detectors
 - Recoil D and He
 - Wire chambers
 - Charged particle tracking in 3D
 - Cerenkov detectors
 - Electron / pion identification
 - Time of Flight scintillators
 - Trigger
 - Time differences
 - Lead glass calorimeter
 - Neutron scintillators
 - Upgrade with LADS bars

BLAST Toroid

8 copper coils 6730 A Max B 3.7 kG

BLAST Detector

- Symmetric detector subtends
 - 20-80 deg polar angle
 - +/-17 deg azimuthal angle
- Wire chambers
 - 3 chambers per sector
 - single gas volume
 - 2 superlayers of drift cells / chamber
 - +/- 5 deg stereo
 - 3 sense layers / superlayer
 - 1-2% momentum resolution
- Cerenkov, TOF, Lead Glass
- Programmable, scalable trigger
 - Simultaneous experiments
 - Inclusive / exclusive
 - Elastic / quasi-elastic / production

7

BLAST Sub-detector Assembly

Wire chamber Cerenkov TOF (behind) Fits between coils Independent motion

16/5/03

BLAST

TOF Scintillators

> Trigger Timing

Internal Targets

- Atomic beam source internal target
 - 5 x 10**13 atoms /cm**2
 - 80% polarization
 - Polarized hydrogen
 - Vector and tensor polarized deuterium
 - Change polarization every 20 s, ~1 second deadtime
 - Flip spin during run
 - Reduce systematics
 - Flip vector and tensor polarizations
 - Simultaneous measurements
- Laser driven source (LDS)
 - 10**15 10**16 atoms/cm**2
- Polarized helium-3
 - Effective polarized neutron target
 - Independent measurement for neutron form factor
- Ion polarimeter
 - Direct measure of tensor polarization
 - Mass spectrometer

Neutron Charge and Magnetic Form Factors

- Quasi-elastic scattering from both D and He-3
 - Effective polarized neutron targets
 - Cross check results
- Common, symmetric detector simultaneous measurements of (e,e'p), (e,e'n)
 - Internal target

BLAST - D.K. Hasell

- Rapid spin flip
- Pure target
- Minimize systematic errors

Proton Charge and Magnetic Form Factors

- Elastic ep Scattering
- $Q^2: 0.1 1.0 (GeV/c)^2$
- Polarized beam and target
- Measure G_E/G_M

BLAST - D.K. Hasell

• Benchmark measurement for BLAST spin program

Recent Hall C Results

Hall C Experiment E94-110: Precise Measurement of $R = \sigma_L / \sigma_T$ in the Resonance Region, *Elastics as Calibration Checks*

(Previous) options for solution to disagreement between Rosenbluth and polarization transfer techniques:

- SLAC or Hall A data have some large ε dependent experimental systematic uncertainty
- An unconsidered ε dependent radiative correction
 - The two types of measurements are somehow not equivalent

The new Hall C data rule out the possibility for SLAC experimental systematic uncertainty to be the explanation.

Proton Charge Radius

- 275 MeV (Q²: 0.13-2.2 fm⁻²)
- spin-dependent e-p elastic
- ratio from asymmetry measurements
- magnetic form factor from unpolarized σ (relative)
- Factor of 3 improvement

•QCD: nucleon structure

• QED: Lamb shift

$$r_p = \langle r^2 \rangle^{\frac{1}{2}}; \quad \langle r^2 \rangle = -6 \left(\frac{dG_E}{dQ^2}\right)_{O^2}$$

=0

14

16/5/03

Deuteron Form Factors

- Electro-magnetic structure of D
 - 3 form factors

$$G_C, G_M, \text{ and } G_Q$$

- unpolarised experiments can not separate factors
- previous experiments measure polarisation of scattered D
- BLAST measures directly
 - polarised electrons
 - Vector and tensor polarized D
- Nuclear potential models
 - deuteron D state contributions
 - spin-spin interaction

Astrophysics

Si

2002 Commissioning

- Summer, 2002
 - Magnetic field mapped
 - TOF, Cerenkov, and Wire chambers installed
 - Optical survey of position
- Fall, 2002
 - Commissioning studies of detector
 - Mostly with unpolarised H target
 - TOF
 - Setup timing for trigger +/- 1 ns
 - Some loss due to magnetic field
 - Added shielding
 - Cerenkov
 - 50% inefficiency with magnetic field
 - Improved shielding being installed this week

- Wire chambers
 - Tracks clearly seen
 - But significant background from space charge noise
 - Sensitive to beam tune
 - Installed beam quality monitor
 - Calibration studies with wire target and no magnetic field
 - Point source, straight tracks
- ABS target
 - Lots of problems reduced flow
 - Pumping
 - Sextapole magnets weak
 - Operation in tranverse field
 - Spin precession, transport fails

Commissioning TOF Detector

Hydrogen in target

• Timed to +/- 1 ns and trigger established

No Hydrogen in target

- Toroid operating at full field (cleans up events)
- Clear ep elastic events from TOF timing alone
 - Cross section in agreement to first order

Commissioning Wire Chambers

- Wire chambers 70:30 Helium : Isobutane
- After optimising beam steering and tune
 - Beam quality monitor
- Signal to background 5:1
 - No charging over time experienced
 - Actually S/B much better
 - Noise not associated with proper events
 - True events very clean

16/5/03

Track Reconstruction

- Still need improved calibration constants
- Double tracks due to multiple hits
- All track solutions shown

ep Track Reconstruction 22004 -0.0087 Mean Mean 10 Vertex Z Momentum RMS 0.055 Sigma 20 1800 1600 1400 1200 1000 800 n -60 -40 -20 20 40 0 600 $\Delta P/P \sim 5\%$, Z shows 40 cm target • 400 Still need to improve calibration \bullet 200 Energy loss and kinematic \bullet constraints still to be 0.3 .3 0.4 -0.2 implemented 16/5/03 21 BLAST - D.K. Hasell

2003 Run Plan

- Shutdown until April, 2003
 - Maintenance, minor upgrades
 - Work on ABS
- Commissioning resumed April
 - Optimised beam with beam quality monitor, verified WC operation
 - Checked timing and trigger
- ABS
 - First polarised H last weekend
 - Indication of asymmetry
 - Old target cell, not cooled
 - Installing ion polarimeter and cooling this week
 - Continue ABS studies to end May
 - New storage cell

BLAST Physics June, 2003

16/5/03