Studying Nucleon Structure with BLAST and Prospects at a Future Electron-Ion Collider

Motivation

Recent Results from the BLAST Experiment

Possible Future for BLAST

Prospects at a Future Electron-Ion Collider

Solar system

• scale the solar radius to 1 m

Solar system

• scale the solar radius to 1 m

Pluto at 8.5 km

Gold atom

• scale the nuclear radius to 1 m

Atomic radius 17.8 km

Solar system

• scale the solar radius to 1 m

Pluto at 8.5 km

Gold atom

• scale the nuclear radius to 1 m

Atomic radius 17.8 km

Nucleon in nucleus

• scale nucleon radius to 1 m

Solar system

• scale the solar radius to 1 m

Binding Energy and Nucleon Mass

For stable molecules, atoms, nuclei binding energy is positive.

- e.g. gold nucleus
 - 79 * 938.2... + 118 * 939.5... 196.9...* 931.4... = 1520 MeV
 - approximately 7.7 MeV / nucleon

For a nucleon

- up quark mass ~5 MeV
- down quark mass ~7 MeV
- proton binding energy
 - 2 * 5 + 1 * 7 938.2... = 921... MeV

Nucleon binding energy negative but stable !

- constituent quarks only provide a fraction of the mass
- mass arises from kinetic energy of valence quarks, sea quarks, and gluons
- colour confinement binds them inside the nucleon

Nucleon Spin

4

WSJ THE WALL STREET JOURNAL.

Wall Street Journal - 19/5/06

http://online.wsj.com/article_email/SB114798871342257010lMyQjAxMDE2NDE30Tkx0Dk4Wj.html

Mass of nucleon

1.5 % attributed to valence quarks

Nucleon spin

20-30 % from quarks

Nucleon magnetic moment

1/3 from quarks

Role of sea quarks?

Role of gluons?

20 February, 2008

QCD Remarkably Successful

5

20 February, 2008

Nucleon Not Understood

QCD describes the colour force

- very successful at high Q²
 - asymptotic freedom
- not currently applicable to nucleon
 - pQCD not possible at confinement
- lattice QCD?

Nuclear force screened colour force

• current models phenomenological

Need to know more

- nucleon structure
- spin distribution
- flavour distribution
- distributions in nuclei
- data to test QCD

Electron Scattering as a Probe

Electron ideal

- lepton vertex know from QED
- virtual photon probes hadron
 - interacts with quarks
 - measures hadronic charge and magnetic currents

$$\bar{u}(P')\left[\gamma^{\mu}F_1^N(Q^2) + i\sigma^{\mu\nu}\frac{q_{\nu}}{2M}F_2^N(Q^2)\right]u(P)$$

• ignoring parity violating term

de Broglie wavelength

- 100 MeV/c \Rightarrow 12.6 fm
- $1 \text{ GeV/c} \Rightarrow 1.26 \text{ fm}$
- $10 \text{ GeV/c} \Rightarrow 0.126 \text{ fm}$

Nucleon Elastic Form Factors

• for point-like, spin=1/2 particles QED gives:

$$\sigma_{Dirac} = \sigma_{Mott} \left(1 + 2\tau \tan^2 \frac{\theta}{2} \right)$$

• for extended objects, like nucleons, require form factors:

$$\sigma_{lab} = \sigma_{Mott} \left[\begin{pmatrix} \frac{G_E^{N2} + \tau G_M^{N2}}{1 + \tau} \end{pmatrix} + 2\tau G_M^{N2} \tan^2 \frac{\theta}{2} \right]$$
$$G_E^N = F_1^N - \tau F_2^N; \qquad G_M^N = F_1^N + F_2^N$$

• traditionally measure using Rosenbluth technique

$$\sigma_{lab} = \sigma_{Mott} \left(\frac{\epsilon G_E^2 + \tau G_M^2}{\epsilon (1+\tau)} \right), \qquad \tau = \frac{Q^2}{4M^2}, \qquad \epsilon = \frac{1}{1+2(1+\tau)\tan^2 \frac{\theta}{2}}$$

Rosenbluth Separation

20 February, 2008

Nucleon Elastic Form Factors

Usually parameterised as dipole in momentum space.

$$G_D(Q^2) = \frac{1}{\left(1 + \frac{Q^2}{0.71}\right)^2} \quad \leftrightarrow \quad \rho_D(r) = \rho_0^{-\sqrt{0.71}r}$$

- corresponds to a exponential distribution in position space
- single dipole describes G^{p}_{E} , G^{p}_{M} , and G^{n}_{M}
- G^{n}_{E} is the exception, order of magnitude smaller
 - traditionally hard to measure, small, no convenient neutron targets

But dipole not perfect, does not describe details $Q^2 < 1 (GeV/c)^2$ Friedrich and Walcher have proposed a new parameterisation:

$$G^{N}(Q^{2}) = G^{N}_{S}(Q^{2}) + \alpha_{B}Q^{2}G^{N}_{B}(Q^{2})$$

- S- smooth term of two dipoles
- B bump part of two gaussians
- fit to a collection of the world's data

Friedrich and Walcher Fit to G^pM

Friedrich and Walcher Fit to G^pM

Friedrich and Walcher Fit to G^p_E

Friedrich and Walcher Fit to G^p_E

The BLAST Collaboration

R. Alarcon, E. Geis, J. Prince, B. Tonguc Arizona State University, Tempe, AZ, USA

E. Booth

Boston University, Boston, MA USA

J. Althouse, C. D'Andrea, A. Goodhue, J. Pavel, T. Smith Dartmouth College, Hanover, NH, USA

> D. Dutta, H. Gao, W. Xu Duke University, Durham, NC, USA

> > H. Arenhövel

Johannes Gutenberg-Universität, 55099 Mainz, Germany

T. Akdogan, W. Bertozzi, T. Botto, B. Clasie, C. Crawford, A. DeGrush, W. Donnelly, K. Dow, M. Farkhondeh, R. Fatemi, W. Franklin, S. Gilad, D.K. Hasell, E. Ihloff, J. Kelsey, M. Kohl, H. Kolster, S. Krause, A. Maschinot, J. Matthews, N. Meitanis, R. Milner, R. Redwine, J. Seely, A. Shinozaki, S. Širca, S. Sobczynski, C. Tschalaer, E. Tsentalovich, W. Turchinetz, J. van der Laan, F. Wang, Y. Xiao, C. Zhang, Z. Zhou, V. Ziskin, T. Zwart

Massachusetts Institute of Technology, Cambridge, MA, USA and MIT-Bates Linear Accelerator Center, Middleton, MA, USA

H.J. Bulten, H.R. Poolman, J.F.J. van den Brand

Vrije Universitaet and NIKHEF, Amsterdam, The Netherlands

J. Rapaport

Ohio University, Athens, OH, USA

K. McIlhany, A. Mosser

United States Naval Academy, Annapolis, MD, USA

J.R. Calarco, O. Filoti, W. Hersman, M. Holtrop, P. Karpius, T. Lee, A. Sindile University of New Hampshire, Durham, NH, USA

W. Haeberli, T. Wise

University of Wisconsin, Madison, WI, USA

Bates Large Acceptance Spectrometer Toroid

Systematic study of spin-dependent electromagnetic interaction

Polarized electrons in MIT-Bates SHR storage ring

• 850 MeV, 200 mA (typical), 65% polarization (typical)

Highly polarized, internal gas target, isotopically pure H or D

• 6×10¹³ atoms/cm², 80% vector (H and D), 70% tensor (D) polarization

L/R Symmetric, large acceptance, general purpose detector

- 20°- 80° polar, $\pm 15^{\circ}$ azimuthal, $0.1 < Q^2 < 0.8 (GeV/c)^2$
- Simultaneous detection of e^{\pm} , π^{\pm} , p, n, d

MIT-Bates Linear Accelerator Center SAMPLE **Polarized Source** Linac Recirculator BLAST OOPS Polarised Electron Source strained GaAs_{0.95}P_{0.05}

- 70% polarisation typical
- $1/_2$ wave plate flip helicity / fill

500 MeV Linac + Recirculator

- polarised electrons up to 1 GeV North and South Expt. Halls
 - SAMPLE north hall
 - OOPS/BLAST south hall

South Hall Ring

- stack to 225 mA typical
- 30 minute lifetime
- 65 % polarisation typical
- Siberian snake maintains longitudinal spin at target

South Hall Ring

Compton Polarimeter

Monitor polarisation in ring

- 5 W laser, 532 nm, circularly polarised incident on oncoming electron beam
- Back-scattered photons detected in CsI
- Laser helicity flipped in Pockels cell
- Asymmetry yields beam polarisation
- Chopper wheel allows simultaneous measure of background
- Typical beam polarisation 65 %

Internal, Polarised Gas Target

Atomic Beam Source

- series of focusing magnets and RF transition units populate and transport the desired spin state to the target cell
- target cell thin walled, open ended tube, 60 cm long, Ø15 mm
- isotopically pure ¹H or ²H
- vector polarised ¹H
- vector and tensor polarised ²H
- randomly change spin state every 5' during run
- target density 6×10¹³ atoms/cm²
- vector polarisation 80 % typical
- tensor polarisation 68 % typical

- 8 sector toroid magnet
 - minimise effect on beam and target polarisation
- 3.8 kG maximum field
- two horizontal sectors instrumented

- 3 wire chambers / sector
 - single gas volume
- 2 superlayers / chamber
 - +/- 10° stereo
- 3 sense layers / superlayer
- total 18 layers of tracking
- momentum analysis
- scattering angles
- event vertex
- particle charge

- Aerogel Cerenkov
- pion / electron separation

- back angle detectors
- extend coverage, no tracking

BLAST Detector Components

BLAST Detector Components

Target spin angle

- 32° (2004) / 45° (2005)
- horizontal into the left sector

Target spin angle

- 32° (2004) / 45° (2005)
- horizontal into the left sector

Electron scatters to left sector

- $q \approx$ perpendicular to target spin
- $\theta^* \approx 90^\circ$
- "spin perpendicular" kinematics

Target spin angle

- 32° (2004) / 45° (2005)
- horizontal into the left sector

Electron scatters to right sector

- $q \approx$ parallel to target spin
- $\theta^* \approx 0^\circ$
- "spin parallel" kinematics

Target spin angle

- 32° (2004) / 45° (2005)
- horizontal into the left sector

Electron scatters to left sector

- $q \approx$ perpendicular to target spin
- $\theta^* \approx 90^\circ$
- "spin perpendicular" kinematics

Electron scatters to right sector

- $q \approx$ parallel to target spin
- $\theta^* \approx 0^\circ$
- "spin parallel" kinematics
BLAST Physics

Polarised Hydrogen

Vector Polarised Deuterium

$^{2}ec{H}(ec{e},e')$	$^{2}ec{H}(ec{e},e'd)$	$^{2}\vec{H}(\vec{e},e'p)n$ ²	${}^2ec{H}(ec{e},e'n)p$	$^{2}ec{H}(ec{e},e'\pi^{\pm,0})$
G ⁿ M	$T^{e_{11}}: G^{d_M}$	A^{v}_{ed} : L=2	G ⁿ E	N-A

Tensor Polarised Deuterium

Event Selection

Elastic Scattering from Hydrogen

With polarized beam and target can measure asymmetries

$$A_{exp} = P_b P_t \frac{-2\tau v_{T'} \cos \theta^* G_M^{p-2} + 2\sqrt{2\tau(1+\tau)} v_{TL'} \sin \theta^* \cos \phi^* G_M^p G_E^p}{(1+\tau) v_l G_E^{p-2} + 2\tau v_T G_M^{p-2}}$$

• note some terms vanish in perpendicular or parallel kinematics

With symmetric detector can form ratio of left/right asymmetries

$$R_{A} = \frac{A_{L}}{A_{R}} = \frac{z_{L}^{*} - x_{L}^{*}G_{E}^{p}/G_{M}^{P}}{z_{R}^{*} - x_{R}^{*}G_{E}^{p}/G_{M}^{P}}$$

- beam and target polarisations cancel
- all that remains is kinematic terms

Ratio of Proton Elastic Form Factors

Impact of BLAST Results on World Data

Proton elastic form factors

- G^{p}_{E} and G^{p}_{M}
- divided by dipole
- collection of unpolarised data

Ph.D. Theses C. Crawford and A. Sindile PRL 98 (2007) 52301

Impact of BLAST Results on World Data

Proton elastic form factors

- G^{p}_{E} and G^{p}_{M}
- divided by dipole
- collection of unpolarised data

World data combined

- averaged and rebinned
- over BLAST range

Ph.D. Theses C. Crawford and A. Sindile PRL 98 (2007) 52301

Impact of BLAST Results on World Data

Proton elastic form factors

- G^{p}_{E} and G^{p}_{M}
- divided by dipole
- collection of unpolarised data

World data combined

- averaged and rebinned
- over BLAST range

Constraining with BLAST

• uncertainties reduced factor 2

Ph.D. Theses C. Crawford and A. Sindile PRL 98 (2007) 52301

BLAST Data with Friedrich and Walcher

Ph.D. Thesis C. Crawford and A. Sindile

BLAST Data with Friedrich and Walcher

Elastic Electron - Deuteron Scattering

Deuteron spin S = 1

- three form factors G^{d}_{C} , G^{d}_{M} , and G^{d}_{Q}
- G^d_Q arises from tensor force, D-wave
- normalisation $G^{d}_{Q}(0)=M^{2}_{d}Q_{d}$

Unpolarised elastic cross section - insufficient

$$A(Q^2) = G_C^{d\ 2} + \frac{8}{9}\eta^2 G_Q^{d\ 2} + \frac{2}{3}\eta G_M^{d\ 2}$$

$$B(Q^2) = \frac{4}{3}\eta(1+\eta)G_M^{d-2}; \qquad \eta = Q^2/(4M_d^2)$$

Need additional measurement - tensor asymmetry

$$T_{20} = -\frac{1}{\sqrt{2}S} \left[\frac{8}{3} \eta G_C G_Q + \frac{8}{9} \eta^2 G_Q^2 + \frac{1}{3} \eta [1 + 2(1+\eta) \tan^2(\frac{\theta}{2}) G_M^2] \right]$$

T₂₀

Reduced T₂₀

 T_{21}

G_C and G_Q

G_C and G_Q

T^{e}_{10} and T^{e}_{11} and G^{d}_{M}

Quasi-Elastic Scattering from Deuterium

Extracting Gⁿ_E from A^V_{ed}

$$A_{ed}^{V} = \frac{aG_{M}^{n} c\cos\theta^{*} + bG_{E}^{n}G_{M}^{n}\sin\theta^{*}\cos\phi^{*}}{cG_{E}^{n} cG_{M}^{n} cG_{M}^{n}} \approx a\cos\theta^{*} + b\frac{G_{E}^{n}}{G_{M}^{n}}\sin\theta^{*}\cos\phi^{*}$$

Beam-Target vector asymmetry gives Gⁿ_E assuming Gⁿ_M known

- full Monte Carlo simulation
- deuteron electro-disintegration by H. Arenhovel
- account for FSI, RC, IC, MEC
- "spin-perpendicular" kinematics shows largest effect

Gⁿ_E from **BLAST**

Gⁿ_M from Inclusive Scattering

Breit Frame Distributions

Breit Frame Distributions

Isoscaler and Isovector Distributions

Up and Down Quark Distributions

Deuteron Wavefunction

D state normally 4-6 %

- but beyond 0.3 GeV dominant
- region to study tensor force
- in D state nucleon spins flip

Quasi-Elastic e'p Scattering from Deuterium

Ph.D. Thesis A. DeGrush

Quasi-Elastic e'p Scattering from Deuterium

Ph.D. Thesis A. Maschinot

BLAST Collaboration

Possible Future for BLAST

Discrepancy in Proton Form Factor Ratio

Discrepancy in Proton Form Factor Ratio

Two Photon Effect

Seminar at DESY and DESY-Zeuthen, R. Milner, May, 2007

An Experiment to Definitively Determine the Contributions of Multiple Photon Exchange in Elastic Lepton-Nucleon Scattering

Measure ratio of e^+p / e^-p elastic scattering

- BLAST detector on DORIS storage ring
- 2-4 GeV electrons and positrons (change daily with toroid polarity)
- unpolarised, internal hydrogen gas target
- systematics cancel (to first order)

R. Heuer suggested presentation to DESY PRC

DESY PRC requested a brief document for review

Interference in e⁺p/e⁻p Cross Section Ratio

Interference in e⁺p/e⁻p Cross Section Ratio

Proposed Experiment - BLAST@DORIS

DORIS Electron/Positron Storage Ring

DORIS Electron/Positron Storage Ring

Internal Target Experiment at DORIS

Detector & Target Exist

Young-Kee Kim, on behalf of PRC PRC64 Meeting: Findings / Recommendations DESY Extended Scientific Council Meeting, November 19-20

- Proposal of a new experiment at DORIS using the available MIT-BLAST detector and an unpolarized hydrogen gas target.
- The goal is to determine the contribution of multiple photon exchange processes and to resolve the existing discrepancy in lepton-nucleon scattering data.
 Dedicated data taking for one month per year for several years would be sufficient.
- External referees to review. They strongly support the physics case. The PRC recommends DESY management discuss with the accelerator group.
- Formal proposal for fall, 2008
- Looking for collaborators !

Future for Studying Nucleon Structure

A High Luminosity Electron - Ion Collider

References / Acknowledgements

Study of the Fundamental Structure of Matter with an Electron-Ion Collider, Ann. Rev. Nucl. Part. Sci. 55 (2005) 165, A. Deshpande, R. Milner, R. Venugopalan, W. Vogelsang

eRHIC - Zeroth Order Design Report, C-A/AP/142 March, 2004, BNL, MIT-Bates, BINP, DESY

http://casa.jlab.org/research/elic/elic.shtml

Deep Inelastic Electron-Nucleon Scattering at the LHC, DESY 06-006, J.B. Dainton, M. Klein, P. Newman, E. Perez, F. Willike

Electron-Ion Collider Concept

Range of centre of momentum energíes

Existing Kinematics - Mostly Unpolarised

Polarized Electron - Ion Collider Coverage

Luminosity versus Q²

Why Lepton - Ion Collider

Unpolarized DIS at EIC

 $\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha_{em}^2}{Q^4} \left[\left(1 + (1-y)^2 \right) F_2(x,Q^2) - y^2 F_L(x,Q^2) \right]$ $F_2(x,Q^2) = \sum e_q^2 \left(xq(x,Q^2) + x\bar{q}(x,Q^2) \right)$ 0.75 0.50.25Measurements will add to F_2 data set Variable CM energy allows measure of ¹0.75 longitudinal structure function F₁ 0.5 $F_L = F_2 - 2xF_1$ 0.250 Can be determined from scaling violations 0.75 $F_L \propto \alpha_S x G(x,Q^2)$ 0.50.25

Negative gluon distributions at low Q² Possible direct measurement at EIC by varying centre of momentum energy

Spin Structure of Nucleons

Parton Spin Distributions

p, n, d Spin Structure Functions

D.K. Hasell

Spin Structure Function g₁^p at Low x

Currently known to ~10%

EIC would verify to -1%Improved measure of α_s

Nucleon Spin Puzzle

Nucleon spin = $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$

Quark contribution

$$\Delta \Sigma = \int_0^1 dx (\Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s})$$

 $\Delta\Sigma \approx 0.2$

Gluon contribution $\Delta G = \int_0^1 dx \Delta g(x)$ $\Delta g(x) = \underbrace{\text{outp}}_{\text{Currently}} - \underbrace{\text{outp}}_{\text{Currently}}$ 1.0 ± 1.0 (stat) ± 0.4 (sys) ± 1.4 (th)

Many experiments underway on ΔG COMPASS, STAR

ΔG at EIC

Best determination from scaling violations of $g_1(x,Q^2)$

- EIC will extend range in x and Q^2
- improve existing measurement factor of 3 in 1 week

Direct measure via photon-gluon fusion

- di-jets, high P_T hadrons
- Successfully used at HERA
- NLO calculations exist
- Constrains shape in mid x region

A.De Roeck, A.Deshpande, V. Hughes, J. Lichtenstadt, G. Radel

1 fb⁻¹ in 2 week at EIC

Scaling violation data plus di-jet analysis will yield total uncertainty 5-10% after 1 year

D.K. Hasell

Parity Violating Structure Function g₅

Use asymmetry between electrons and positrons in CC reactions

Unique measurement at EIC

eRHIC

C-A/AP/142 March 2004

eRHIC

Zeroth-Order Design Report

BNL

 L. Ahrens, D. Anderson, M. Bai, J. Beebe-Wang, I. Ben-Zvi, M. Blaskiewicz, J.M. Brennan, R. Calaga, X. Chang, E.D. Courant, A. Deshpande, A. Fedotov, W. Fischer, H. Hahn, J. Kewisch, V. Litvinenko, W.W. MacKay, C. Montag, S. Ozaki, B. Parker, S. Peggs, T. Roser, A. Ruggiero, B. Surrow, S. Tepikian, D. Trbojevic, V. Yakimenko, S.Y. Zhang

> MIT-Bates W. Franklin, W. Graves, R. Milner, C. Tschalaer, J. van der Laan, D. Wang, F. Wang, A. Zolfaghari and T. Zwart

> > BINP A.V. Otboev, Yu.M. Shatunov

> > > DESY D.P. Barber

Editors: M. Farkhondeh (MIT-Bates) and V. Ptitsyn (BNL)

Detailed design report on accelerators and interaction region for both Ring-ring Linac-ring

Joint effort by BNL, MIT-Bates, Novosibirsk, and DESY

www.agsrhichome.bnl.gov/eRHIC/eRHIC_ZDR.htm

eRHIC - Ring-Ring Design

Linac injects into electron storage ring at full energy 2-10 GeV 0.5 A

RHIC can run in parallel

Polarized electrons and positrons

Similar to PEP II Same components?

Single interaction point

Requires spin rotators

±3 m IP to nearest magnet

20 February, 2008

eRHIC - Linac-Ring Design

Luminosity not limited by beam-beam interaction But need high intensity ion source kW IR laser ERL-FEL (significant R&D)

D.K. Hasell

eRHIC - Linac-Ring Design

Superconducting, energy recovery linac feeds directly into IP

Possible multiple IP's

Rapid reversal of polarisation

No depolarizing energy regions

Spin rotators not needed

 ± 5 m IP to nearest magnet

No positrons

Luminosity not limited by beam-beam interaction But need high intensity ion source kW IR laser ERL-FEL (significant R&D)

D.K. Hasell

ELIC

http://casa.jlab.org/research/elic/elic.shtml

LHeC

DESY 06-006 Cockcroft-06-05

Deep Inelastic Electron-Nucleon Scattering at the LHC^{*}

J. B. Dainton¹, M. Klein², P. Newman³, E. Perez⁴, F. Willeke²

 ¹ Cockcroft Institute of Accelerator Science and Technology, Daresbury International Science Park, UK
 ² DESY, Hamburg and Zeuthen, Germany
 ³ School of Physics and Astronomy, University of Birmingham, UK
 ⁴ CE Saclay, DSM/DAPNIA/Spp, Gif-sur-Yvette, France

Abstract

The physics, and a design, of a Large Hadron Electron Collider (LHeC) are sketched. With high luminosity, 10^{33} cm⁻²s⁻¹, and high energy, $\sqrt{s} =$ 1.4 TeV, such a collider can be built in which a 70 GeV electron (positron) beam in the LHC tunnel is in collision with one of the LHC hadron beams and which operates simultaneously with the LHC. The LHeC makes possible deep-inelastic lepton-hadron (*ep*, *eD* and *eA*) scattering for momentum transfers Q^2 beyond 10^6 GeV^2 and for Bjorken x down to the 10^{-6} . New sensitivity to the existence of new states of matter, primarily in the lepton-quark sector and in dense partonic systems, is achieved. The precision possible with an electron-hadron experiment brings in addition crucial accuracy in the determination of hadron structure, as described in Quantum Chromodynamics, and of parton dynamics at the TeV energy scale. The LHeC thus complements the proton-proton and ion programmes, adds substantial new discovery potential to them, and is important for a full understanding of physics in the LHC energy range.

*Contributed to the Open Symposium on European Strategy for Particle Physics Research, LAL Orsay, France, January 30th to February 1st, 2006. 70 GeV electron/positron ring on top of LHC ring

Assumes nominal LHC parameters

Possible multiple IP's

74 mA electron current

25 ns bunch spacing

10³³ cm⁻²s⁻¹ luminosity

Conclusion

BLAST provides new precision data on nucleon form factors, deuteron structure, and other data to constrain nuclear models.

We hope to study two photon effect with BLAST@DORIS.

Unpolarised DIS region has been well explored at HERA

More spin dependent data is needed to understand the nucleon structure, mass, spin, etc.

A new, polarised electron-ion collider can best address these issues in an efficient, comprehensive manner.