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Abstract

This paper contains results relating currents and voltages in resistive networks to
appropriate random trees or forests in those networks. Since each resistive network
has a reversible Markov chain equivalent, we obtain equivalent results for the latter
as well. We describe a way of obtaining a harmonic function on a weighted graph
given the boundary values, by choosing random forests of the graph. As applica-
tions of the theorems discussed, (which give formulae of the Kirchhoff tree kind),
we obtain an expression for the expected transit time from one state to another in
a reversible Markov chain in terms of its arborescences.

The methods of this paper can also be used to give alternative proofs of the Kirch-
hoff tree formula.

1 Introduction

The first formula involving trees in electrical networks is due to Kirchhoff (see
[1]). He gave an expression for the equivalent conductance between two nodes of
a resistive (or as we shall henceforth say, conductive) network. Kirchoff’s formula
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states that the equivalent conductance between two nodes of a network is %" 7
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where, ¢; is the product of the conductances of the ith tree and f; is the produc]t of
the conductances of the jth forest that separates the nodes in question.

In recent years,formulae involving trees have been discovered for general Markov
chains too (see [2], [3]).

The physical model used to explain Ohm’s law involves Brownian motions of
charge carriers. So it is not surprising that a conductive network may be mapped
onto a Markov chain with very similar properties. Trees seem to figure in Markov
chains as “partial histories”. In a Markov chain started at time —oo and ended at
time 7, the set of directed edges corresponding to the final visits to each state, form
a directed tree rooted at the state reached at time 7. The evolution of these histories
as the Markov chain progresses is another Markov chain which has arborescences
(i.e rooted trees) as states. This Markov chain has interesting properties, and can
be regarded as underlying the results that appear in this paper.

The formulae presented here are multiterminal extensions of the Kirchhoff tree
formula. They all have equivalent forms in reversible Markov chains, which can be
written out by simply substituting for injected current, branch current and node
voltage, their Markov chain equivalents given in Section ?7 .

We obtain Kirchhoff’s formula for the equivalent conductance between two nodes,
from the result we have called the VJ Theorem, when we apply a unit voltage across
them. Since the proof of the VJ Theorem is purely graph theoretic, we get a new
derivation of the Kirchhoff conductance formula as well, quite different in nature
from the usual proof using Binet - Cauchy Theorem.

Although this is not the concern of this paper, we state that these formulae can be
implemented in a natural way using randomized algorithms to give fast approximate



solutions to network problems. The essential idea is that we make numerous “ob-
servations” of the network, each of which is computationally light, and the “overall
picture” that we get is an approximation to the network’s actual behaviour. The
more observations we make, the better our approximation is expected to be. The
critical step in each observation is that of picking a random tree (forest), the chance
of picking a particular tree (forest) being proportional to the product of its branch
conductances.

Picking random trees has been found useful in other contexts as well, such as op-
timizing on server positions in a computer network, and finding euler paths in a
graph, and this problem has been well studied (see [4], [5], [10], [13]). There are a
variety of efficient algorithms available that perform this task.

Here is a preview of three of the theorems in network form.

The VV Theorem (special case):

In a conductive network with nodes Si,...,S,, apply an external voltage source of
1 volt across S1 and Sy and choose Sy as the ground. Let v be the voltage at Sy.
(Thus v; = 1, v = 0).

Then vy, is given as follows :

Consider all those forests f (of the network) which have n — 2 branches, (consisting
of two disjoint trees, whose union touches every vertex of the network), such that
S1 and Sy are not vertices of the same tree in f.

Call this set Fi5. Choose a forest randomly out of Fi», with probability propor-
tional to the product of its branch conductances. The voltage vy at node Sy is the
probability that in the chosen forest f, Si is a node of the same tree as S.

This theorem is really a result on harmonic functions on weighted graphs, since
but for the “poles” S; and S, the voltage at any vertex is the weighted mean of its
neighbour’s voltages.

The JI Theorem:

In the network mentioned above, let currents Ji,...,J, be injected externally into
nodes Si,...,S,. Choose a random spanning tree t of the network, the probability
of choosing ¢ being proportional to the product of its branch conductances. Setting
all conductances other than those of ¢ to 0, we get a certain current distribution
according to which the current in any branch not in ¢ is 0. The actual current
distribution is the expected distribution, under a random choice of tree ¢, or the
average of the distributions taken over all trees (the weight of a distribution being
the product of the conductances of the corresponding tree).

The IV Theorem:

Let the Ji’s be as above. Suppose we are given any current distribution in the
branches of the graph that is consistent with the injected currents, but which does
not necessarily satisfy the Kirchhoff voltage law. Choose a random tree ¢ as in the
JI Theorem. Take any vertex as ground (potential zero). Calculate the node poten-
tial of a vertex by adding the branch voltages along the unique path in ¢ from the
ground to that vertex. A correct node voltage distribution is given by the expected
value of node potentials under the choice of a random tree ¢.

The JI and IV theorems above, involve choosing random trees while the VV Theo-
rem involves choosing a random forest. In each case, the probability of a choice is
proportional to the product of its conductances. There is a well-known algorithm
using Markov-chains for choosing random trees with this probability distribution
(see [4], [5]). As we shall see in the section with Theorem V'V, this algorithm can
modified to choose random forests too.



2 The network - Markov equivalence

We now talk about the correspondence between electrical networks and re-
versible Markov chains. This is well-known (see [6], [7], [8], [9]), but has been
included for the sake of completeness.

Consider a conductive network with nodes Sy, ..., S,. Let gr; = gjx be the branch
conductance between the nodes S; and Sg. If j = k the conductance obviously has
no effect on the electrical behavior of the network, however, because in our Markov
analogue they do contribute, we allow g;; to be positive. Let v, be the voltage of
Sk, Jr the current injected from outside the network into the node Sy and iy the
branch current flowing from Sy to S; in the conductance gg; . (Conductance is the
inverse of resistance. In this paper, where there is no ambiguity, we shall use the
word conductance for a branch as well.)

The Kirchhoff current law is expressed in the following equation :-

Ji = Ezl:l gmk (Vg — vy). Let the injected current vector be called J, the vector
of node voltages be V, and the branch current matrix be I. Thus J = (J1,...,Jy),
V= (’1)1, . ,’Un), and I = {ikl}nxn-

Consider the Markov chain with states Sy, ..., S, (these will correspond to nodes
of our network anyway, so there is no clash of notations). Let transition probability
pri be % where g, = > | gkm. Let us further assume that

Zzgkl =1L

k=11=1

This is just a scaling of the conductances, but is convenient. We assume that the
network is connected, and therefore that the corresponding Markov chain has a
path of positive probability from any state to any other - i.e the markov chain is
strongly connected. If it is also aperiodic, it has a unique stationary distribution,
which can be easily verified to be 7 = (g1, ..., gn), with the scaled conductances.
Let the initial probability distribution be p(®). Suppose we have a stopping rule
under which the expected run-time, for some (and hence, since the Markov chain
is strongly connected and finite, every) initial probability distribution is finite. Let
the probability of the walk terminating at Sy be p,(gu), and the corresponding vector
be p(®). Let ej, be the expected number of times the walker visits state Sy, where
the last move of the walk at which the walker stops is not counted as a visit. Thus
for example if the walk began at S; and the stopping rule declares that at the first
visit to S, the walk ends, then according to us the number of visits to Sy is always
0. With this notation, the following statement can be easily verified for each k:

n
pECO) _pECU) =€k — Z (pmk em)-
m=1

This essentially says that “initial probability - final probability = net outflow - net
inflow” In our present situation, p,r = 2% so we have

T gm

n

PO _p® =gy 3 (Zﬂ)em_

m=1

In anticipation, let ;—Z be called v, (this will actually behave like voltage), and
let Ji denote the L.H.S (which will play the role of injected current). Our equa-
tion then becomes Jr = gr X vg — >0 (gmk Um) OF T = >0 | Gmk(Vk — V),



which is identical to the Kirchhoff current equation we had earlier. This verifies
the correspondence. In a network, i, = (vg — v;)gr, which therefore becomes
er(pri) — er(pir) in the Markov chain. Therefore the Markov analogue of current iy,
is the expected difference between the number of transitions from Sy to S; and the
number of transitions from S; to Si. In the network results that follow, whenever
we use the phrase “A node S whose voltage is fixed externally”, we mean that the
injected current Jj at Sy is not necessarily 0. However, for a node S; whose voltage
is not fixed externally, J; is necessarily 0.

3 Preliminaries

An arborescence of a directed graph is a tree, in which a node has been singled
out as root and all branches are so directed that from any node of the graph to the
root, there is a unique directed path. A Markov chain is a process consisting of a
succession of events where the probability of an event happening is a function of
the preceding event that has occurred in the process. In this paper, we only con-
sider Markov chains which are finite and which are strongly connected. By strongly
connected, we mean that if £y and E, are any events in our sample space, and
our process launches itself with E;, the probability that E> occurs n events later is
non-zero for some integer n. If a Markov chain is aperiodic and strongly connected,
it is a result that whatever be the probability distribution with which the process
begins, the probabilities of the various events tend to a “stationary probability dis-
tribution” if we wait sufficiently long. We call the events from the sample space of a
Markov chain, states, and given that F; has just occurred, call the probability that
E; occurs next, the transition probability from E; to E;, which we denote by p;;.
Let the stationary probability distribution of a finite, irreducible Markov chain be
{m1, 72, ...}, corresponding to events {E1, Es,...}. If m; X p;j = 7 X pj;, the Markov
chain is called reversible.

Let R be a subset of S = {S1,...,S,}. We then call by Fg the set of all max-
imal forests of the network that “separate” states in R. Thus Fg consists of all
those subgraphs f of the network for which any Sj in S is connected by a unique
(conducting) path in f to some state in R (a state is always regarded to be con-
nected to itself by the null path). It follows that by the condition of connectivity in
f, the states of S are partitioned into |R| blocks such that each block has exactly
one state of R. If S, belongs to R and f to Fg, we shall denote by By(k), the set
of states which are connected to Sy by a path in f. We will often perform algebraic
operations with a forest f in Fr. In every such case, f is interpreted as the product
of the conductances of the forest f. This is a helpful abuse of notation; it creates
no ambiguity, but does simplify our expressions. (For example, f; + fo represents
the sum of the products of conductances of the forests f; and fs.)

We define Sy (k), for f in Fg to be the unique state (we henceforth use ‘state’ syn-
onymously with node and vertex, since nodes become states of the related Markov
chain) of R that Sy, is connected to by a path in f. vs(k) is taken to be the voltage
of the state Sy (k). It is true that a forest f may belong to both Fr and Fg, where
R and @ are different vertex sets, but in all our expressions, we talk of forests f in
a particular Fg, and so S¢(k), and vy(k) are well defined by the context in which
they appear.



4 The VJ Theorem

We now give a formula for the injected currents Jj, in terms of the externally fixed
voltages of the network. When J is the vector (—1,1,0,...,0), we get Kirchhoff’s
formula for equivalent conductance.

Theorem VJ:
Let R be a nonempty subset of S not containing S;. Let Q = RU S;. Let the
voltages at nodes of ) be the only ones fixed externally.

Then
J = EheFR(Ul —op(1) h
1 > rerg ()

Proof :

We say that a forest f; is contained in another forest fo if every branch of f is
also a branch of f>. If f belongs to Fg, h belongs to Fr and f is contained in h,
then h has exactly one branch that f doesn’t, which we shall denote as h/f. If we
look at the partition of S induced by the forest f (in which, we recall, every block
has exactly one representative of @), we see that h/f has exactly one endpoint in
By(1). Let v(h/f) be the voltage of h/f, taken directed outward from By(1). We
observe that the net current leaving By(1), (and entering states outside) is J; for
any f in F since the only state in By(1) that can possibly have non-zero injected
current is Sy. Therefore,

J1 = > it (Vg — vr)-
(kL s.t Sp(k)=51#57(1))
ie

Jl(z f)=

FE€Fq
> > (F)(grt) (i — v1))-
FEFg (kl st Sp(k)=S1#£Ss(1))
This may be rewritten as

> h x v(h/f)

(fEFQ,hEFR s.t fCh)

=D hx( > wh/f)

hEFR (feFg s.t fCh)
But for a fixed h in Fpg,

> /]

(fEFg s.t fCh)

is the sum of branch voltages along the path from S; to S, (1) contained in h , and
this is just v; — v, (1). Therefore

N =D hx (v —va(1).

fEFq heFRr

This proves the theorem.

The VJ Theorem has a probabilistic interpretation. In what follows, whenever
we say choose a random forest in F, it is implicit that the probability of choosing
f is proportional to the product of its conductances. Similarly by a random branch



we mean that it is chosen with probability proportional to its conductance. Let g
be the sum of all conductances of our network. Choose a random forest f in Fg.
Choose a random branch gj; from the network. Then S¢(k) and Sy (l) are states in
@. Let the number of branches in the unique path from S, to S¢(m) in f be called
d¢(m) for each m and each f .

Consider the current vector J(f, kl) given by

JIm = 0 if Sy, is not Sy(k) or Sr(l).

v (k)—vge (D)) -

Im = S m = S;0)

Then, the theorem says that the expected value of J(f,kl) when f and gy are
random, is the actual J that is injected into the network. 1+ dy(k) + dy(I) is just
the length of the connecting path via g (in f ) between S¢(k) and S¢(l) when
these are distinct ; it was used to simplify the expression.

To see why the two forms of the VJ Theorem are identical, let us find the
expected value of Jy(f,kl), the first component of J(f,kl). If Sy is not in @, the
result is obvious since then Ji(f, kl) is always 0, so we assume that S; belongs to
Q and let R=Q — S;.

E[Ji(f, k)] =

2 perg (2w st sveny ) (NG 01 =0 (0) (rgm5ram)
EfeFQ f '

We observe that if S; is not in Bf(1), then f x gg; corresponds to a forest h in Fg,
while if it is, v1 — vys(1) is 0. Further, the number of pairs of the form (f, gx;) that
lead to a forest h in Fg, is the number of branches in the unique path from S; to
Sp(1) in h. This is the same as 1+ dy(k) + dy () for any pair {f, gr} that gives rise
to h. Therefore the above expression is equal to

Yohers (W1 —vn(1)) X h
ZfeFQ f ’

which is J;.

5 The VV Theorem

Theorem VV :
Let R be a non-empty subset of S, not containing S;. Let the states of R be the
only ones whose voltages are fixed externally, (i.e for all S; in S — R, let J; be 0).

Then,
- ZheFR(Uh(l) x h)
' ZhGFR(h)

Proof :

Let @ = RUS;. By the VJ Theorem,

J1 = ZheFR(Ul —wvp(1)) x h‘
ZfeFQ f

J1 =0, and so
= 3 (0 - on(1)) % B,

heFr



which implies the stated theorem.
All that was needed in proving the above VV Theorem is that for any state S; in

S —R,

2 met (gm) (Vm))
an:1 gim
holds, which is a condition of harmonicity outside R.

v =

Here is the equivalent probabilistic version :

Choose a random forest h out of the set Fg, with probability proportional to the
product of its conductances. The voltage at Sp, then is the expected value of the
voltage of the unique state of R that S; is connected to via h.

A Markov chain, having elements of Fr as states and stationary probability of f
proportional to the product of its conductances can be obtained from the Markov
chain that gives random trees. Take the network, and fuse all states of R. We now
have a new conductive network whose branches all come from the original (though
some may have become parallel ). It is clear that the forests in Fg, consist of
precisely those collections of branches that form the trees of the new network, and
that this correspondence is bijective. Now, simply use the tree Markov chain to give
trees of the new network (this method works perfectly even when we have parallel
branches), and pick corresponding forests from Fg. This gives random forests of
Fr with the right probabilities.

6 The JI Theorem

Here is a theorem that expresses the current distribution in a network in terms
of the injected currents. Let T' be the set of all (spanning) trees. Let I be the
current matrix {ig; }nxn where iy is the current flowing in the conductance from &
to I. Let J be the vector of injected currents. If we were to set all conductances
other than those in a particular tree ¢t to 0, we would have a current distribution
that would be 0 in all branches except those of ¢. Let this current distribution in
matrix form be denoted as I;.

Theorem JI :

— ZteTt 2 (It)
iert

(where as in our previous theorems, when ¢ appears in an algebraic expression, it is
taken to be the product of the conductances in ¢.)

1

Proof :
The current matrix I is a linear function of the vector of injected currents J. A
vector is a valid J if and only if the sum of its components Ji, ...,J, is 0. Such

vectors form a vectorspace and it is sufficient to prove the theorem for a basis of
this vectorspace. It is clear that vectors of the form zy, £ = 2 to n form a basis,
where zj is the vector with (zx); = —1, (2x)r = 1 and all other entries (z); = 0.
For simplicity in notation, we shall prove the theorem for J = z,. Let S; be taken
to be ground, ( i.e vy =0). Let R be {S1,S2}. We need to prove that

_ ZteT(It)lk Xt
2iert

for each pair {S;, Sr}. We know that i;, = gi, X (v — vg) which, using the VV

Theorem is
(X hery X va(1)) = (X pery I X va(k))
gik X .
ZhEFR h

Lk




This is

ik ZhEFR h(vi(l) — vn(k))

ZhEFR h
Now, the possible values of vy, (I) — v, (k) over varying forests h are —vy,vs and 0,
which arise respectively from the cases when
(a) Sl is in Bh(l) and Sk is in Bh(2)
(b) Sl is in Bh(2) and Sk is in Bh(l)
(c) Both belong to the same block with respect to h.
Therefore,

i = (=2 )% { Y hx vy +

h
2 hern (hEFgR st Si€EBK(2) and SkE€By(1))

> hx (—vy)}.

(hEFR,SlEBh(l), s.t Sx,EBp, (2))

From Theorem VJ,

Jy = Yoier(t) X (va — Ul)'

ZheFR h
So,
1= ZtETt X (vz)
ZhEFR h ,
and therefore
o~ Shera

 Xeert

This is actually just Kirchhoff’s formula for equivalent resistance. We have it as a
special case of Theorem VJ. Substituting this for v,

i = (=25 ) x ( 3 h

t
Dter (h€Fg s.t S;€B(2) and SkxEB(1))

+ —h)
(hEFR s.t SZEBh(l) and SkEBh(Z))

Given a tree t, if gy, is in ¢, call by h the forest corresponding to gsz (which therefore
“separates” S; and Si). Then, (I;) is

(a) 0 if h is not in Fg.

(b) 1if E is in FR, Sﬁ(l) = SQ and Sﬁ(k‘) = Sl.

(c) —1if hisin Fg, Sz(I) = Si and Sr(k) = Ss.

These exhaust all possibilities. Therefore,

2operT)u X t = ( gtk ) x{ Z (h)

2ter(t) Yiert (h€EFR s.t Si€EBL(2) and SkEBL(1))

+ Z (_h)}7

(hEFR s.t SIEBh(l) and SkEBh(Z))

which from what we just saw is i;;. This proves our theorem.

The JI Theorem has a compact probabilistic interpretation. Choose a random
tree t (with probability proportional to t), and calculate the branch current matrix
after all conductances not in ¢ have been set to 0. Then, the expected value of the
current distribution that we would get is the actual distribution.



7 The IV Theorem

This theorem gives node voltages for a particular J. Like the previous theorem,
it involves picking a random tree. Let J be the vector of injected currents. Let I
be a current matrix {ijm }nxn such that >0 . (iym) = Ji.
We note that this need not be the actual current distribution that results from .J
in the network we are working with. We could, for example, obtain a valid I of
this kind by taking some tree of the network and finding the current distribution if
all other conductances were set to 0. This is (in general) a much easier task than
solving for the branch currents in our network which could have as many as w
branches.
Theorem IV :
Choose a random tree t in T (with notation from Theorem JI), with probability
proportional to the product of its conductances. Choose S; as ground (this choice
is arbitrary). For each Sy, walk along the unique path that is in tree ¢ from S to
Sk, find

3 (lm),

all g1, traversed from [ to m in that path im

call this v(k), and call the voltage vector (0,v:(2),...,v:(n)) V4.

Then, the actual voltage vector V' (with S; as ground) is the expected value of the
voltage vectors V;.

ie

_ Seertx ()

v
iert

Proof:

Consider the "(”;1) current matrices I[k,!] corresponding to ordered pairs (k,1),
k > 1, such that in I[k,l], ix; = 1, i) = —1 and all other entries are 0. These form
a basis of the vectorspace of all possible current matrices. Given a current matrix
I, there is a unique injected current vector J corresponding to it which is a linear
function of I. Given J, and the values of the conductances, taking S; as ground,
there is a single (node) voltage vector V. All of these are related linearly, so it is
enough to prove the theorem in the case where I has iz; = 1, 435 = —1, and all
other entries 0. If we prove this case, it proves the theorem for any of our basis
matrices; the fact that S; has been chosen as ground does not affect generality - it
only causes a constant shift in the voltages. The I we have chosen corresponds to
J=(-1,1,0,...,0). It clearly suffices to prove that the theorem gives the correct
value of v3 and of vy.

To prove the v3 case, we partition the set of all trees into three classes :

Ty, the set of all trees ¢ which do not contain the branch gis.

T1, the set of all trees ¢ which contain gi2 and have the property that the path
joining S3 and S; in ¢ does not go through S,.

T5, the set of all trees ¢ which contain g5 and have the property that the path
joining S5 and S in t goes through Ss.

If we choose a random tree ¢,

(Vi) is 0if ¢t is in T or Ty. If t is in Ts, (V;)3 is g%.
Let R = {S1,S2}. Then, tis in T if and only if g2 is in ¢ and the forest h obtained
by removing g1» from ¢ (which always is in Fg) is such that S;(3) = Ss.
Therefore,




Y (Vs t= > (1/g12) x (h x g12) = > h.

teT hEFR,Sh(3):SZ hEFR,Sh(3):SZ

Using the VJ Theorem, we have proved that if J =(-1,1,0,...,0),
ZhEFR h

then vy = DRCE where S is ground. This proves the theorem for v,. From this,
teT

1 V2
St 2 =T 3 b

heFRr s.t Sh(3):5'2 hEFR,Sh(Z‘}):SQ

which from the VV Theorem is vz. This completes our proof.

8 Applications to reversible Markov chains

Using the equivalence that was mentioned in the beginning, all of the network
theorems can be translated quite literally into theorems for reversible Markov chains.
Here however we shall only consider some interesting special cases. We start with
a reversible Markov chain given by transition matrix P with states (Si,...,Sn)-
Construct the equivalent electrical network in which the nodes are the states Sy
and the conductance gy is pri(mr) = pix (7)), 7 being the stationary distribution.
Then py; = %, where

n
9k = Z 9km -
m=1

gr becomes the stationary probability at Si. We will need to manipulate clumps
of arborescences or “orchards” of the weighted directed graph represented by our
Markov chain, so we need some more notation. (here the weight of the directed
edge from k to [ is taken as py;). An orchard is a rooted forest; If we take a forest f,
choose a root for every connected component of it, and direct all the edges in each
connected component, so that there is a directed path from every state to the root
of the component of f that it is in, we get an orchard. An orchard is fully deter-
mined by the forest that is its imprint in the graph, and the set of nodes or states
that are its roots. The orchard corresponding to a forest f, and root set R will be
denoted by [f, R]. We shall denote the product of its edge transition probabilities
by o[f, R]. Let R be a subset of S. Assume for convenience that S; is not in R, but
52 is.

Consider a random walk that originates at S; at time 0. Impose a stopping rule
according to which we stop the walk the first time the walker reaches a state in
R. We shall now give formulae for the expected duration of the walk (which we
shall henceforth call 75 ), and the probability that the walk terminates at S,. The
electrical equivalent of this problem is as follows (from what we did in Section ?7):
The voltages of states in = RU {S;} are fixed externally, with the voltages of
states in R set to 0. We don’t know vy,(which is the expected number of visits to
Sj into gx) but we do know that J; = 1, since the walker is known to start from S;
with probability 1. From the VJ Theorem, we have

_ o 2nerg (W01 —vn(1))
SRR S ¢ R

In our problem, v, (1) is always zero. So

S rery ()

V] = ————

- ZhEFR (h)

10



Let eg be the expected number of departures from the state S; during the course

of the walk. . .
TR = Zek = Z’Uk X gk
k=1 k=1
Using Theorem V'V, this becomes

Zzzl(gk) EfeFQ [ xvp(k) _ EfeFQ Dok st Sker(l)(f X g X v1)
S ers () - S rern () |

vf(k) is non-zero only if Sy is in B¢(1)). Substituting for vy, this is
f f

Y feko 2k st Sweny ) X gr)
ZhEFR (h) '

Dividing numerator and denominator by [[g cs r(gk), we get

TR = th—hR Z Z o[f, RU{Sk}],

fEFG (k st SkEBf( )

which is a formula only in terms of transition probabilities of the Markov chain.
The probability that the chain terminates at Ss is the current that flows out of the
network from Ss, which is —J,. We use the VJ Theorem to find this. Let set U be

Q —{S:}. 1
—J2= x> ((vu(2) = v2)(w))

=L Y W

ZfEFQ f u€ly, s.t Sy, (2)=51

1
N ZhEFR h * Z (U)

u€EFy, s.t Sy (2)151

1
N ZhGFR h * Z (h)

heFR, s.t Sh(l):SQ

Dividing numerator and denominator by [] S.e5- R ks we have

hE=e—t % Y (ohR)

> ey Ol Bl hEFg s.t S1€B(2)

This is the probability that the walk terminates at S». We shall now give an
application of Theorem JI. Suppose, in the Markov chain considered above, we
started out with an initial probability distribution p(®). Let us denote by (i(™)y
the expected number of transitions from k to [ minus those from [ to & upto time
m. Let 1™ be {(i(m))kl}nxn. We shall find a formula for lim,,_,., ™ which we
call I(>) This is in some sense the net flow that takes place in the Markov chain to
reach equilibrium. let p{™ be the resulting probability distribution at time m.Let

ZtGT I t
t

teT
t and T are from the corresponding electrical network, and have their customary

meanings (I; being calculated using J(™)). (We have this formula whenever the
expected run-time is finite.) Therefore, to find I in the limit, it is enough to use
J(©) = p® _ 7 where 7 is the stationary probability, since p("™ tends to = as m
tends to infinity. With our scaling of conductances, 7 is simply (g1,...,9n)- Let
vector wy, be a vector of length n, where (wg); , the component in its Ith position
,is p(@ if I # k, and p(® — 1 if [ = k. This clearly is a valid J vector, and further,

J(™) be p(® —p(m)  Then, by the equivalence seen earlier, (") = , where
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J®) =35 _ ((gm)(wm)). For an arborescence [t, S,,] (the orchard corresponding
to a spanning tree rooted at Sy,), given a probability distribution p, we talk about
the “fow” U([t, Sy]) through it. This is an n x n matrix whose klth entry,

ug; = 0 if neither py; nor pyy is a directed edge of the arborescence.

If py; is in [t, S,], uk is the sum of probabilities of all states for which the path to
S in the arborescence goes through py;.

If pyg, is in [t, Sk], ugr is —ug, where uyy, is defined using the previous statement. Let
A be the set of all arborescences. If a € A, let o(a) be the product of a’s transition
probabilities.

(All this seems a little elaborate and artificial, but is necessary if we want to get
results about the reversible Markov chain from its own parameters, without going
to the equivalent electrical network.) Our claim is that

o) _ TaealU@ o(@)
ZaGA O(a)

where the flow matrix U (a) is calculated using p(°). We observe that here, U([t, S,,]
is just I calculated using w,, as the injected current vector. Also, o[t,Sg] =

(i)(igk), and therefore 2t — elt-51] Thus,
gm Gk gt

m=1

dserli t)
Yiert

(where J is wy,)

_ 2eer Ut SeDolt, Skl) | TTny 9
gk Prer(t)

3 (U5 Dolt,5k))

= S ol S

(The denominator takes this form when we use >_;_, (gr) = 1) Now , using the fact

that J(>) = > 1 (gm wp), and combining linearly the corresponding expressions

for I, we get the desired result.

9 Conclusion

In this paper we have proved four theorems about electrical networks, namely the
theorems VJ, JI, IV and VV. Theorem VJ expresses the currents injected into the
network in terms of the voltages of nodes into which they are injected. Theorem JI
expresses branch currents in terms of the currents injected externally. In Theorem
IV, an arbitrary current distribution is taken which, for the given injected currents,
satisfies the Kirchoff current law. The voltages at nodes are expressed in terms
of this current distribution. The VV Theorem expresses the voltages of each node
in terms of the voltages of the nodes into which currents are injected. The mode
of proof used for these results can also be used to give alternative proofs of the
Kirchhoff tree formula. We have noted that the formulae give expressions in terms
of expected values, and so might lead to efficient methods of solving resistive cir-
cuits approximately. Finally, we have obtained three formulae for reversible Markov
chains, one of which gives an expression for transit time from one state to another.
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