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Abstract. We are interested in efficient algorithms for generating ran-
dom samples from geometric objects such as Riemannian manifolds. As a
step in this direction, we consider the problem of generating random sam-
ples from smooth hypersurfaces that may be represented as the bound-
ary ∂A of a domain A ⊂ Rd of Euclidean space. A is specified through a
membership oracle and we assume access to a blackbox that can gener-
ate uniform random samples from A. By simulating a diffusion process
with a suitably chosen time constant t, we are able to construct algo-
rithms that can generate points (approximately) on ∂A according to a
(approximately) uniform distribution.
We have two classes of related but distinct results. First, we consider
A to be a convex body whose boundary is the union of finitely many
smooth pieces, and provide an algorithm (Csample) that generates (al-
most) uniformly random points from the surface of this body, and prove

that its complexity is O∗( d4

ε
) per sample, where ε is the variation dis-

tance. Next, we consider A to be a potentially non-convex body whose
boundary is a smooth (co-dimension one) manifold with a bound on its
absolute curvature and diameter. We provide an algorithm (Msample)
that generates almost uniformly random points from ∂A, and prove that
its complexity is O( R√

ετ
) where 1

τ
is a bound on the curvature of ∂A,

and R is the radius of a circumscribed ball.

1 Introduction

Random sampling has numerous applications. They are ingredients in statisti-
cal goodness-of-fit tests and Monte-Carlo methods in numerical computation.
In computer science, they have been used to obtain approximate solutions to
problems that are otherwise intractable. A large fraction of known results in
sampling that come with guarantees belong to the discrete setting. A notable
exception is the question of sampling convex bodies in Rd . A large body of work
has been devoted to this question (in particular [8], [10]) spanning the past 15
years leading to important insights and algorithmic progress.

However, once one leaves the convex domain setting, much less is known. We
are interested in the general setting in which we wish to sample a set that may
be represented as a submanifold of Euclidean space. While continuous random
processes on manifolds have been analyzed in several works, (such as those of P.
Matthews [11],[12]), as far as we can see, these do not directly lead to algorithms
with complexity guarantees.



Our interest in sampling a manifold is motivated by several considerations
from diverse areas in which such a result would be applicable. In machine learn-
ing, the problem of clustering may be posed as finding (on the basis of empirically
drawn data points) a partition of the domain (typically Rd) into a finite number
of pieces. In the simplest form of this (partition into two pieces) the partition
boundary (if smooth) may be regarded as a submanifold of co-dimension one and
the best partition is the one with smallest volume (in a certain sense correspond-
ing to a natural generalization of Cheeger’s cut of a manifold). More generally,
the area of manifold learning has drawn considerable attention in recent years
within the machine learning community (see [5, 18] among others) and many of
the questions may be posed as learning geometric and topological properties of
a submanifold from randomly drawn samples on it. In scientific computing, one
may be interested in numerical methods for integrating functions on a manifold
by the Monte Carlo method. Alternatively, in many physical applications, one
may be interested in solving partial differential equations where the domain of
interest may have the natural structure of a manifold. In contrast to a finite
element scheme on a deterministic triangulation (difficult to obtain in high di-
mensions), one may explore randomized algorithms by constructing a random
mesh and solving such PDEs on such a mesh. Finally, in many applications to
dynamical systems, one is interested in the topology of the space of attractors
which have the natural structure of a manifold (see [13]). In statistics, one is
interested in goodness of fit tests for a variety of multivariate random variables.
For example, testing for a gamma distribution leads one to consider (positive
real valued) random variables X1, . . . , Xn such that

∑
i Xi = a and

∏
j Xj = b.

The set of all (X1, . . . , Xn) under these constraints is the boundary of a convex
body in the hyperplane defined by

∑
i Xi = a. Sampling this is a question that

arises naturally in this setting (see [6], [7]).
Thus, we see that building an efficient sampler for a manifold is a problem

of fundamental algorithmic significance. Yet, not much is known about this and
as a step in this general direction, in the current paper, we address the problem
of sampling manifolds that are boundaries of open sets in Rd from the measure
induced by the Lebesgue measure. The particular setting we consider in this
paper has direct applications to clustering and goodness of fit tests where co-
dimension 1 manifolds naturally arise. In addition, we also provide an algorithm
and obtain complexity bounds for sampling the surface of a convex body – a
problem to which we have not seen a solution at the present moment.

1.1 Summary of Main Results

We develop algorithms for the following tasks.
Our basic setting is as follows. Consider an open set A ⊂ Rd specified through

a membership oracle. Assume we have access to an efficient sampler for A and
now consider the task of uniformly sampling the (hyper) surface ∂A. We consider
two related but distinct problems in this setting.

(i) A is a convex body satisfying the usual constraint of Br ⊂ A ⊂ BR where
Br and BR are balls of radius r and R respectively. Then an efficient sampler for



A is known to exist. However, no sampler is known for the surface of the convex
body. It is worth noting that a number of intuitively plausible algorithms suggest
themselves immediately. One idea may be draw a point x from A, shoot a ray
in the direction from 0 to x and find its intersection with the boundary of the
object. This will generate non-uniform samples from the surface (and it has been
studied under the name Liouville measure.) A second idea may be to consider
building a sampler for the set difference of a suitable expansion of the body
from itself. This procedure has a complexity of at least O∗(d8.5) oracle calls
with the present technology because there is no method known to simulate each
membership call to the expanded body using less than O∗(d4.5) calls (see [4]).

Our main result here (Theorem 1) is to present an algorithm that will gen-
erate a sample from an approximately uniform distribution with O∗(d4

ε ) calls to
the membership oracle where ε is the desired variation distance to the target.

Beyond theoretical interest, the surface of the convex body setting has natural
applications to many goodness of fit tests in statistics. The example of the gamma
distribution discussed earlier requires one to sample from the set

∏
i Xi = b

embedded in the simplex (given by
∑

j Xj = a). This set corresponds to the
boundary of a convex object.

(ii) A is a domain (not necessarily convex) such that its boundary ∂A has
the structure of a smooth submanifold of Euclidean space of co-dimension one.
A canonical example of such a setting is one in which the submanifold is the
zeroset of a smooth function f : Rd → R. A is therefore given by A = {x|f(x) <
0}. In machine learning applications, the function f may often be related to
a classification or clustering function. In numerical computation and boundary
value problems, one may wish to integrate a function subject to a constraint
(given by f(x) = 0).

In this setting, we have access to a membership oracle for A (through f)
and we assume a sampler for A exists. Alternatively, A ⊂ K such that it has
nontrivial fraction of a convex body K and one can construct a sampler for A
sampling from K and using the membership oracle for rejection.

In this non-convex setting, not much is known and our main result (Theo-
rem 2) is an algorithm that generates samples from ∂A that are approximately
uniform with complexity O∗( R

τ
√

ε
) where τ is a parameter related to the curva-

ture of the manifold, R is the radius of a circumscribed ball and ε is an upper
bound on the total variation distance of the output from uniform.

1.2 Notation

Let ‖.‖ denote the Euclidean norm on Rd. Let λ denote the Lebesgue measure
on Rd. The induced measure onto the surface of a manifold M shall be denoted
λM. Let

Gt(x, y) :=
1

(4πt)
d
2
e−

‖x−y‖2
4t .

be the d dimensional gaussian.



Definition 1 Given two measures µ and ν over Rd, let

‖µ− ν‖TV := sup
A⊆Rd

|µ(A)− ν(A)|

denote the total variation distance between µ and ν.

Definition 2 Given two measures µ and ν on Rd, the transportation distance
dTR(µ, ν) is defined to be the infimum

inf
γ

∫
‖x− y‖ dγ(x, y).

taken over all measures γ on Rd × Rd such that for measurable sets A and B,
γ(A× Rd) = µ(A), γ(Rd ×B) = ν(B).

Notation: We say that n = O∗(m), if n = O(m polylog(m)). In the com-
plexity analysis, we shall only consider the number of oracle calls made, as is
customary in this literature.

2 Sampling the Surface of a convex body

Let B be the unit ball in Rd. Let Bα denote the ball of radius α centred at the
origin. Consider a convex body K in Rd such that

Br ⊆ K ⊆ BR.

Let B be a source of random samples from K. Our main theorem is

Theorem 1. Let K be a convex body whose boundary ∂K is a union of finitely
many smooth Hypersurfaces.

1. The output of Csample has a distribution µ̃, whose variation distance mea-
sured against the uniform distribution λ̃ = λ̃∂K is O(ε),

‖µ̃− ν‖TV ≤ O(ε).

2. The expected number of oracles calls made by Csample (to B and the member-
ship oracle of K) for each sample of Csample is O∗(d

ε ) (, giving a membership
query complexity of O∗(d4

ε ) for one random sample from ∂K.)

2.1 Algorithm Csample

Algorithm 1 Csample

1. Estimate (see [15]) with confidence > 1− ε, the smallest eigenvalue κ of the
Inertia matrix A(K) := E[(x− x)(x− x)T ] where x is random in uniformly
K, to within relative error 1/2 using O(d log2(d)log 1

ε ) random samples (see
Rudelson [16].)



2. Set
√

t :=
ε
√

κ

32d
.

3. (a) Set p = Ctry (t) .
(b) If p = ∅, goto (3a). Else output p.

Algorithm 2 Ctry (t):

1. Use B to generate a random point x from the uniform distribution on K.
2. Let y := Gaussian(x, 2tI) be a random vector chosen from a spherical d-

dimensional Gaussian distribution with covariance 2tI and mean x.
3. Let ` the segment whose endpoints are x and y.
4. If y 6∈ K output ` ∩ ∂K, else output ∅.

2.2 Correctness

In our calculations, z ∈ ∂K will be be a generic point at which ∂K is smooth. In
particular for all such z, there is a (unique) tangent hyperplane. Let λ∂K denote
the n− 1-dimensional surface measure on ∂K. Let S and V denote the surface
area and volume, respectively, of K. Let µ∂K denote the measure induced by
the output of algorithm Csample . Let |µ| denote the total mass for any measure
µ. We shall define a measure µ∂K on ∂K related to the “local diffusion” out of
small patches. Formally, if ∆ a subset of ∂K, the measure assigned to it by µ∂K

is

µ∂K(∆) :=
∫

x∈S

∫

y∈Rd\S
Gt(x, y)I [xy ∩∆ 6= ∅] dλ(x)dλ(y) (1)

where I is the indicator function and Gt(x, y) is the spherical Gaussian kernel
with covariance matrix 2tI. Note that

V P[Ctry (t) ∈ ∆] = µ∂K(∆).

Theorem 1 (part 1)
The output of Csample has a distribution µ̃ = µ∂K

|µ∂K | , whose variation distance

measured against the uniform distribution λ̃∂K is O(ε),

‖µ̃− λ̃∂K‖TV ≤ O(ε).

Proof: It follows from lemma 3 to note that at generic points, locally the measure
generated by one trial of Ctry (t) is always less than the value predicted by its

small t asymptotics
√

t
π

S
V , i. e.

∀ generic z ∈ ∂K,
dµ∂K

dλ∂k
<

√
t

π
S.



Thus we have a local upper bound on dµ∂K

dλ∂K
≤

√
t
π uniformly for all generic points

z ∈ ∂K. It would now suffice to prove almost matching global lower bound on
the total measure, of the form

|µ∂K | > (1−O(ε))

√
t

π
S.

This is true by Proposition 4.1 in [3]. This proves that

‖µ̃− λ̃M‖TV ≤ O(ε.)

. ¤

2.3 Complexity

The number of random samples needed to estimate the Inertia matrix is O∗(d)
(so that the estimated eigenvalues are all within (0.5, 1.5) of their true values
with confidence 1− ε) from results of Rudelson ([16]). It is known that a convex
body contains a ball of radius ≥

√
Λmin(K). Here Λmin(K) is the smallest

eigenvalue of A(K). Therefore, K contains a ball of radius rin, where r2
in = 9

10κ.
Theorem 1 (part 2):
The expected number of oracles calls made by Csample (to B and the membership
oracle of K) for each sample of Csample is O∗(d

ε ) (, giving a total complexity
of O∗(d4

ε ) for one random sample from ∂K.)
Proof: The following two results will be used in this proof.

Lemma 1. Lemma 5.5 in [3]]Suppose x has the distribution of a random vector
(point) in K, define A(K) := E[(x − x)(x − x)T ]. Let 5

2r2
in be greater than the

smallest eigenvalue of this (positive definite) matrix, as is the case in our setting.
Then, V

S < 4rin.

Define Ft :=
√

π
t |µ∂K |.

Lemma 2 (Lemma 5.4 in [3]). Suppose K contains a ball of radius rin, (as
is the case in our setting) then S

(
1− d

√
πt

2rin

)
< Ft.

Applying Lemma 2, we see that

Ft > (1−O(ε))S.

The probability that Ctry succeeds in one trial is

P[Ctry (t) 6= ∅] =

√
t

π

Ft

V
(2)

>

√
t

π

S

V
(1−O(ε)) (3)

>

√
t

π

1−O(ε)
4rin

(By Lemma 1) (4)

> Ω(
ε

d
). (5)



Therefore the expected number of calls to B and the membership oracle is
O∗(d

ε ). By results of Lovász and Vempala ([9]) this number of random samples
can be obtained using O∗(d4

ε ) calls to the membership oracle. ¤

2.4 Extensions

S. Vempala [17] has remarked that these results can be extended more generally
to sampling certain subsets of the surface ∂K of a convex body such as ∂K ∩H
for a halfspace H. In this case K ∩H is convex too, and so Csample can be run
on K ∩ H. In order to obtain complexity guarantees, it is sufficient to bound
from below, by a constant, the probability that Csample run on H ∩K outputs
a sample from ∂K ∩ H rather than ∂H ∩ K. This follows from the fact that
∂H ∩K is the unique minimal surface spanning ∂K ∩ ∂H and so has a surface
area that is less than that of ∂K ∩H.

3 Sampling Well Conditioned Hypersurfaces

3.1 Preliminaries and Notation

R

U

M

τ

Fig. 1.

Let M be a (codimension one) hypersurface.

Definition 3 Let M be a codimension 1 hypersurface. The condition number of
M is defined as 1

τ where τ is is the largest number with the following property:
No two normals to M of length less than τ intersect.

In fact 1
τ is an upper bound on the curvature of M ([14]). In this paper, we shall

restrict attention to a τ -conditioned manifold M that is also the boundary of a
compact subset U ∈ Rd.

Suppose we have access to a Black-Box B that produces i.i.d random points
x1, x2, . . . from the uniform probability distribution on U . We shall describe a
simple procedure to generate almost uniformly distributed points on M.



3.2 Algorithm Msample

The input to Msample is an error parameter ε, a guarantee τ on the condition
number of M and a Black-Box B that generates i.i.d random points from the
uniform distribution on U as specified earlier. We are also provided with a mem-
bership oracle to U , of which M is the boundary. We shall assume that U is
contained in a Euclidean ball of radius R, BR. Msample , like Csample is a Las
Vegas algorithm.

Let the probability measure of the output be µ̃out. The following is the main
theorem of this section. Note that given perfectly random samples from U , the
output probability distribution is close to the uniform in `∞, which is stronger
than a total variation distance bound, and the number of calls to the Black box
B is independent of dimension.

Theorem 2. Let M be a τ -conditioned hypersurface that is the boundary of
an open set contained in a ball of radius R. Let µ̃out be the distribution of
the output of Msample .
Let ˜λM be the uniform probability measure on M. Then, for any subset ∆
of M, the probability measure µ̃out satisfies

1−O(ε) <
µ̃out(∆)
λ̃M(∆)

< 1 + O(ε).

1.2. The total expected number of calls to B and the membership oracle of U is
O(R(1+ 2

d ln 1
ε )

τ
√

ε
).

Algorithm 3 Msample

1. Set
√

t := τ
√

ε
4(d+2 ln 1

ε )
.

2. Set p = Mtry (t) .
3. If p = ∅, goto (2). Else output p.

Algorithm 4 Mtry (t)

1. Use B to generate a point x from U .
2. Generate a point y := Gaussian(x, 2tI) from a spherical d-dimensional

Gaussian of mean x and covariance matrix 2tI.
3. If y ∈ U output ∅.

Else output an arbitrary element of xy∩M using binary search. (Unlike the
convex case, |xy ∩M| is no longer only 0 or 1.)

3.3 Correctness

Proof of part (1) of Theorem 2: We shall define a measure µM on M related
to the “local heat flow” out of small patches. Formally, if ∆ a subset of M, the
measure assigned to it by µM is

µM(∆) :=
∫

x∈U

∫

y∈Rd\U
Gt(x, y)I [xy ∩∆ 6= ∅] dλ(x)dλ(y) (6)



where I is the indicator function and Gt(x, y) is the spherical Gaussian kernel
with covariance matrix 2tI. For comparison, we shall define µout by

µout := V µ̃outP[Mtry (t) 6= ∅].
Since Msample outputs at most one point even when |xy ∩M| > 1, we see that
for all ∆ ⊆M,

µout(∆) ≤ µM(∆).

The following Lemma provides a uniform upper bound on the Radon-Nikodym
derivative of µM with respect to the induced Lebesgue measure on M.

Lemma 3. Let λM be the measure induced on M by the Lebesgue measure λ
on Rd. Then

dµM
dλM

<

√
t

π
.

The Lemma below gives a uniform lower bound on dµout

dλM
.

Lemma 4. Let
√

t = τ
√

ε
4(d+2 ln 1

ε )
. Then

dµout

dλM
>

√
t

π
(1−O(ε)).

Together the above Lemmas prove the first part of the Theorem. Their proofs
have been provided below.

3.4 Complexity

Proof of part (2) of Theorem 2: Let S be the surface area of U (or the
d− 1-dimensional volume of M.) Let V be the d-dimensional volume of U . We
know that U ⊆ BR. Since of all bodies of equal volume, the sphere minimizes
the surface area, and S

V decreases as the body is dilated,

S

V
≥ d

R
.

Lemma 4 implies that

P[Mtry (t) 6= ∅] >
S

√
t
π (1−O(ε))

V
(7)

≥ d

R

τ
√

ε(1−O(ε))
8(d + 2 ln 1

ε )
(8)

= Ω(
τ
√

ε

R(1 + 2
d ln 1

ε )
). (9)

This completes the proof. ¤
In our proofs of Lemma 3 and Lemma 4, we shall use the following Theorem

of C. Borell.



Theorem 3 (Borell, [2]). Let µt = Gt(0, ·) be the d-dimensional Gaussian
measure with mean 0 and covariance matrix 2It. Let A be any measurable set
in Rd such that µ(A) = 1

2 . Let Aε be the set of points at a distance ≥ ε from A.

Then, µt(Aε) ≥ 1− e
−ε2
4t .

Fact: With µt as above, and B(R) the Euclidean ball of radius R centered
at 0, 1

2 < µt(B(
√

2dt)).
Proof of Lemma 3: Let H be a halfspace and ∂H be its hyperplane bound-

ary. Halfspaces are invariant under translations that preserve their boundaries.
Therefore for any halfspace H, µ∂H is uniform on ∂H. Noting that the image of a
Gaussian under a linear transformation is a Gaussian, it is sufficient to consider
the 1-dimensional case to compute the d− 1-dimensional density dµ∂H

dλ∂H
.

dµ∂H

dλ∂H
=

∫

R−

∫

R+
Gt(x, y)dλ(x)dλ(y), (10)

which evaluates to
√

t
π by a direct calculation. For any z ∈ M, let Hz be the

halfspace with the same outer normal as U such that ∂Hz is tangent to M at
z. Let ∆ be a small neighborhood of z in Rd, and |∆| denote its diameter.

dµM
dλM

(z) = lim
|∆|→0

∫
x∈U

∫
y∈Rd\U Gt(x, y) I [xy ∩∆ 6= ∅] dλ(x) dλ(y)

λM(∆)

= lim
|∆|→0

∫
x∈Rd

∫
y∈Rd Gt(x, y) I [xy ∩∆ 6= ∅] I[x ∈ U and y ∈ Rd \ U ] dλ(x) dλ(y)

λM(∆)

< lim
|∆|→0

∫
x∈Rd

∫
y∈Rd Gt(x, y) I [xy ∩∆ 6= ∅] dλ(x) dλ(y)

2λM(∆)

=
dµ∂Hz

dλ∂Hz

(z)

=

√
t

π
.

The inequality in the above array of equations is strict because U is bounded. ¤
Proof of Lemma 4: Let ∆ be a small neighborhood of z in Rd. Since M

is a τ -conditioned manifold, for any z ∈ M, there exist two balls B1 ⊆ U and
B2 ⊆ Rd \ U of radius τ that are tangent to M at z.

dµout

dλM
(z) > lim

|∆|→0

∫
x∈B1

∫
y∈B2

Gt(x, y) I [xy ∩∆ 6= ∅] dλ(x) dλ(y)

λM(∆)
.

The above is true because |xy ∩M| = 1 if x ∈ B1 and y ∈ B2. Let us define

Pτ := lim
|∆|→0

∫
x∈B1

∫
y∈B2

Gt(x, y) I [xy ∩∆ 6= ∅] dλ(x) dλ(y)∫
x∈Hz

∫
y∈Rd\Hz

Gt(x, y) I [xy ∩∆ 6= ∅] dλ(x) dλ(y)
. (11)



Then

Pτ <

√
π

t

dµout

dλM
(z) .

The proof now follows from

B1 B2

x

yz

α

k

2τw

u

Fig. 2.

Lemma 5. Pτ > 1−O(ε). ¤

Proof of Lemma 5: In order to obtain bounds on Pτ , we shall follow the
strategy of mapping the picture onto a sufficiently large torus and doing the
computations on this torus. This has the advantage that now averaging argu-
ments can be used over the torus by virtue of its being compact (and a symmetric
space.) These arguments do not transfer to Rd in particular because it is not
possible to pick a point uniformly at random on Rd.
Consider the natural surjection

φk : Rd → Tk (12)

onto a d dimensional torus of side k for k >> max(diam(U),
√

t). For each point
p ∈ Tk, the fibre φ−1

k (p) of this map is a translation of kZd.
Let x be the origin in Rd, and e1, . . . , ed be the canonical unit vectors. For a

fixed k, let
Ξk := φk(κe1 + span(e2, . . . , ed)),

where κ is a random number distributed uniformly in [0, k), be a random d− 1-
dimensional torus aligned parallel to φk(span(e2, . . . , ek)). Let y := (y1, . . . , yd)
be chosen from a spherical d-dimensional Gaussian in Rd centered at 0 having
covariance 2tI.

Define P(k)
τ to be

P(k)
τ := P[y2

2 + · · ·+ y2
d < |y1|τ < τ2

∣∣ 1 = |φk(xy) ∩Ξk|] (13)



It makes sense to define B1 and B2 on Ξk exactly as before i. e. tangent to Ξk at
φk(xy)∩Ξk oriented so that B1 is nearer to x than B2 in geodesic distance. For
geometric reasons, P̃(k)

τ is a lower bound on the probability that, even when the
line segment xy in figure 2 is slid along itself to the right until x occupies the
position where z is now, y does not leave B2. Figure 3 illustrates ball B2 being
slid, which is equivalent. In particular, this event would imply that x ∈ B1 and
y ∈ B2.

lim sup
k→∞

P(k)
τ ≤ Pτ .

In the light of the above statement, it suffices to prove that for all sufficiently
large k,

P(k)
τ > 1−O(ε)

which will be done in Lemma 6. This completes the proof of this proposition. ¤

y

k

2τ

√

y2
2 + . . . + y2

d

0

|y1|
Ξk

Tk

B2→

B2

Fig. 3.

Lemma 6. For all sufficiently large k,

P(k)
τ > 1−O(ε).

Proof: Recall that x is the origin and that y := (y1, . . . , yd) is Gaussian(0, 2tI).
Denote by Ek the event that

|φk(xy) ∩Ξk| = 1.

We note that

P[Ek | y1 = s] =
|s|
k
I[|s| < k].

By Bayes’ rule,

ρ[y1 = s |Ek] P[Ek] =
|s|
k

(
e−s2/4t

√
4πt

)
I[|s| < k],



where I denotes the indicator function. In other words, there exists a constant
ck := P[Ek]−1

√
4πt

such that

ρ[y1 = s | |Ξk ∩ φk(xy)| = 1] = ck
|s|
k

e−s2/4tI[|s| < k].

A calculation tells us that
ck ∼ k

4t
.

Let
Iτ := I [

τ | y1| > y2
2 + · · ·+ y2

d

] I[|y1| < τ ]I[Ek].

By their definitions , E[Iτ |Ek] = P(k)
τ . Define

Iq := I
[
| y1| 6∈ [

√
εt, τ ]

]
I [Ek] ,

and

I⊥ := I
[
y2
2 + . . . y2

d > 4t(d + 2 ln
1
ε
)
]
I [Ek] .

A direct calculation tells us that E[Iq|Ek] = O(ε). Similarly E[I⊥|Ek] = O(ε)
follows from Theorem 3 and the fact mentioned below it. This Lemma is implied
by the following claim. ¤

Claim.
Iτ ≥ I[Ek]− Iq − I⊥.

Proof:

I⊥ = I
[
y2
2 + · · ·+ y2

d > 4t(d + 2 ln
1
ε
)
]
I [Ek]

= I
[
y2
2 + · · ·+ y2

d > τ
√

εt
]
I [Ek]

Therefore

I[Ek]− Iq − I⊥ ≤ I[Ek] [y2
2 + · · ·+ y2

d < τ
√

εt < τ |y1| ] I[|y1| < τ ] (14)
≤ Iτ (15)

¤
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