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Abstract

We consider the problem of minimizing average latency
cost while obliviously routing traffic in a network with
linear latency functions. This is roughly equivalent
to minimizing the function

∑
e(load(e))2, where for a

network link e, load(e) denotes the amount of traffic
that has to be forwarded by the link.

We show that for the case when all routing requests
are directed to a single target, there is a routing scheme
with competitive ratio O(log n), where n denotes the
number of nodes in the network. As a lower bound we
show that no oblivious scheme can obtain a competitive
ratio of better than Ω(

√
log n).

This latter result gives a qualitative difference in
the performance that can be achieved by oblivious algo-
rithms and by adaptive online algorithms, respectively,
since there exist a constant competitive online routing
algorithm for the cost-measure of average latency [2].
Such a qualitative difference (in general undirected net-
works) between the performance of online algorithms
and oblivious algorithms was not known for other cost
measures (e.g. edge-congestion).

1 Introduction

Oblivious routing deals with the design of routing
protocols that do not dynamically adapt to the particular
traffic pattern (e.g., in a parallel application), but instead
use static precomputed routing tables for selecting
routing paths. The routing path (or paths in the
case of splittable traffic) used between two nodes s
and t only depends on the source s the target t (and
possibly on some random input in the case of randomized
algorithms). Because of their static nature oblivious
routing protocols can be implemented very efficiently
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in a distributed environment, which makes them very
attractive from a practical point of view.

However, an important question in this area is
whether obliviousness is too simplistic an approach
to guarantee good routing performance, and whether
one has to resort to adaptive protocols instead. For
undirected networks it has been shown that oblivious
algorithms perform remarkably well for several cost-
functions.

Work in this area was initiated by Valiant and
Brebner [11] who developed an oblivious routing protocol
for routing in the hypercube that routes any permutation
in time that is only a logarithmic factor away from
optimal. For the cost-measure congestion (the maximum
load of a network link) in a virtual circuit routing model,
Räcke [9] proved the existence of an oblivious routing
scheme with polylogarithmic competitive ratio for any
undirected network. This result was subsequently made
constructive by Harrelson, Hildrum and Rao [8] and
improved to a competitive ratio of O(log2 n log log n).

Gupta et al. present oblivious algorithms for a fairly
general set of cost-functions, including functions of the
form

∑
e `(traffic along e), where ` is a concave cost-

function. They obtain a competitive ratio of O(log2 n)
when the demands have to be routed along single paths
(integral setting), and a competitive ratio of O(log n) if
demands can be split among paths (fractional setting),
and thus can be routed using a flow from the source to
the target vertex.

In this paper we study oblivious routing algorithms
for the cost-measure of average latency. Assume that
we are given linear latency function on the links of the
network, i.e., the latency of a network link e that has
to forward traffic f(e) is re · f(e) for some parameter re

depending on the network link. The latency of a path is
the sum of latencies of all its edges. The total latency
of all connections is then equal to

∑
e re · (f(e))2.

Since the function (f(e))2 is convex, this important
cost-measure of total latency (or equivalently average
latency) is not covered by the work of Gupta et al. [5].
In this work we make an initial approach to handle
this cost-measure by investigating a restricted version
of the problem where all routing requests are directed
to the same target node in the network. We analyze



what we call the näıve oblivious routing algorithm in
a fractional setting: A source node, upon receiving a
request of demand d, routes this demand according to a
flow that would be optimal if no other source node were
active. It turns out that this simple algorithm obtains
a logarithmic competitive ratio:

Main Theorem. Consider a network of n nodes with
linear latency functions on the edges. The näıve oblivious
routing algorithm obtains a competitive ratio of O(log n)
with respect to minimizing the average latency when
routing to a single target.

We further show a matching lower bound on the per-
formance of the näıve algorithm and a lower bound
of O(

√
log n) on the competitive ratio of any oblivious

routing scheme

Proof Techniques. We obtain both our upper and
lower bounds by exploiting the well-known analogy
(cf., the excellent monograph of Doyle and Snell [4])
between (a) single target routing networks with quadratic
cost function and (b) electrical resistive networks (see
Section 3 for more details on this analogy). By this
analogy, a flow in the routing network corresponds to
a current in the analogous resistive network while the
routing cost corresponds to the energy dissipated by
the resistive network. When viewed in this manner, the
optimal routing corresponds to the current distribution
with the minimum energy dissipation (where source
node si pumps Di current to the common target). By
properties of electrical networks, this optimal current
distribution is the super-imposition (with cancellation)
of the optimal current distributions obtained by having
each of the source nodes active individually (i.e., source
node si pumps Di current while all other source nodes
pump zero current). We now observe that the näıve
oblivious routing algorithm routes exactly according to
these individual current distributions, in other words,
according to the optimal current distributions obtained
by having each source node active individually. Thus
the only difference between the optimal routing and the
näıve oblivious routing is that the optimal super-imposes
these current distributions allowing for cancellation
while the oblivious routing super-imposes them without
cancellation.

The main contribution of the paper is to exploit
the above relationship by deriving bounds on the ratio
between the costs of these two super-impositions (with
and without cancellation). In Section 3 we show that
the ratio is bounded by O(log n) which gives our Main
Theorem. Subsequently, in Section 4 we show that the
ratio can become as large as Ω(log n) which gives a
lower bound on the performance of the näıve oblivious

routing scheme. Finally in Section 5 we prove that
the competitive ratio of every oblivious algorithms is
Ω(
√

log n) even for the special case when all sources
route to a single target.

1.1 Related Work. The main body of work about
oblivious routing (see e.g. [9, 7, 6, 1, 3]) aims at
minimizing the edge congestion in the network. Also
the initial work by Valiant and Brebner [11] that uses
permutation time as cost-measure is based on a path-
selection mechanism that produces low edge-congestion.

As mentioned earlier the cost-measure average la-
tency in a network with linear latency functions is es-
sentially equivalent to minimizing the ‖ · ‖2

2-norm of
the link-loads (at least when all resistances re are 1).
An online algorithm with constant competitive ratio
for this problem follows from the work of Awerbuch et
al. [2]. This means there is an adaptive routing algorithm
with competitive ratio O(1), while our lower bound in
Section 4 shows that any oblivious algorithm has a com-
petitive ratio of Ω(

√
log n). This means that for the

cost-measure average latency there exists a qualitative
difference between the performance that can be obtained
by oblivious algorithms on the one hand and adaptive
algorithms on the other. This is not true for the cost-
measure of edge-congestion where it is still possible that
in undirected graphs the performance of oblivious algo-
rithms and of adaptive algorithms are asymptotically
equal.

The model of using linear latency functions and
optimizing for the average latency has been used quite
frequently in the literature, most notably in the area of
game theory. For example Roughgarden and Tardos [10]
analyze routing problems in a game theoretic setting
where the path-selection is performed by selfish agents.
They study the cost-measure average latency in networks
with linear latency function on the edges. However, in
contrast to our model their latency functions are allowed
to have constant offsets while we require that the latency
of a link is directly proportional to its load.

2 Definitions, problem statement, results.

We represent the network as an undirected graph G =
(V,E), where V denotes the set of vertices (or nodes) and
E the set of edges. Each edge e ∈ E has an associated
resistance re, that models the latency behavior of the
edge e as described below. There is a distinguished target
node t. We use n to refer to the number of vertices in
G, and often identify V with the set [n] = {1, 2 . . . , n}.
Though the network is undirected and links are allowed
to carry traffic in both directions simultaneously, it will
be convenient to give each edge an orientation. For an
edge e of the form {v, w}, we will write e = (v, w) when



we want to emphasize that the edge is oriented from v
to w. The traffic on edge e will be a real number. If
this number is positive, it will represent traffic along
e from v to w; if it is negative, it will represent traffic
along e from w to v. Let In(v) be the edges of G that
are oriented into v and Out(v) be the edges of G that
are oriented away from v.

Definition 2.1. (Flow, costs, circulation) A
flow in G from i to t with value d ≥ 0 is an assignment
~f : E → R such that, for all v ∈ V (G) \ {i, t},

∑
e∈In(v)

~f [e] −
∑

e∈Out(v)

~f [e] = 0,(2.1)

and ∑
e∈In(t)

~f [e] −
∑

e∈Out(t)

~f [e] = d;

∑
e∈Out(i)

~f [e] −
∑

e∈In(i)

~f [e] = d.

We will need the following generalization of this ter-
minology for describing simultaneous flows from mul-
tiple sources. We say that a sequence of flows ~f =
〈~fi : i ∈ V (G)〉 meets the demand 〈Di : i ∈ V 〉, if for all
i ∈ V , ~fi is a flow from i to t of value Di. The load on
the edge e under f is given by

`f [e] =
∑

i

|~fi[e]|.

The cost incurred on account of this load is re ·(`f [e])2.
Thus the total cost of ~f is cost(~f) =

∑
e re ·(`f [e])2 =∑

ij

∑
e re ·|~fi[e] · ~fj [e]|.

A circulation in G is an assignment ~c : E → R, such
that for all vertices v ∈ V (G),

(2.2)
∑

e∈In(v)

~c[e]−
∑

e∈Out(v)

~c[e] = 0.

Problem statement: Given a instance 〈G, R,D〉
where G = (V,E) is a graph with associated resistances
R = 〈re : e ∈ E〉 and demands D = 〈Di : i ∈ V 〉, deter-
mine flows ~f = 〈~fi : i ∈ V 〉 such that ~f meets D and
has minimal cost.

Nature of the optimal solution: The minimum cost
solution to this problem can be obtained by viewing G
as an electrical network. Let ~J = 〈 ~J [e] : e ∈ E〉 be the
currents that arise in the edges of G, when a current of
Di is injected into vertex i, and a current of

∑
i Di is

drawn out of t. These currents in ~J can be expressed
as the sum of flows ~o = 〈~oi : i ∈ V 〉, such that for each

edge e ∈ E, all ~oi[e] have the same sign (independent
of i), and ~o meets the demands in D. We will use the
following well-known facts from electrical networks.

Fact 2.2. (Thompson’s principle) The solution ~o
obtained using the currents in ~J has the minimum cost.

The currents in ~J can themselves be obtained by com-
bining the optimal solution for each source, considered
in isolation. Let ~fi be the optimal solution when the
i-th source has demand Di, other sources have zero de-
mands. By Fact 2.2, 〈~fi[e] : e ∈ E〉 can be interpreted
as currents that arise when a current of Di is injected
into i and a current of Di is drawn out if t. This cur-
rent satisfies Kirchhoff’s laws, In particular, there exist
potentials 〈ϕ[i] : i ∈ V 〉 such that for edge e ∈ E of the
form (v, w),

(2.3) re ·~fi[e] = ϕ[v]− ϕ[w].

Fact 2.3. (Superposition principle) The currents
〈 ~J [e] : e ∈ E〉 are given by ~J [e] =

∑
i
~fi[e].

It follows that the optimum cost for the problem is

Opt(G, R,D) =
∑

e

re ·

(∑
i

~fi[e]

)2

(2.4)

=
∑
ij

∑
e

re ·~fi[e] · ~fj [e] .

Oblivious algorithms: Note that the optimal solution
obtained by viewing G as an electrical network requires
knowledge of the entire demand vector. An oblivious
algorithm determines the flow from source i to t, based
only on Di. More precisely, an oblivious algorithm
specifies, for each source i (based on the input graph
G, and the resistances 〈re : e ∈ E〉), a flow ~f1

i from i
to t of unit value. Then given an arbitrary demand
vector D, the solution provided by the algorithm is
〈Di · ~f1

i : i ∈ V 〉, that is it scales ~f1
i by factor Di and

puts them all together. The goal of this paper is to
compare the costs of solutions provided by oblivious
algorithms and the optimum cost.

The näıve oblivious algorithm: Facts 2.2 and 2.3,
suggest the following simple oblivious algorithm. Let
~f1
i be the minimum-cost flow from i to t of unit value.

Thus for the demand vector D, the solution produced
by this algorithm is ~f = 〈Di · ~f1

i : i ∈ V 〉. Note that
Di · ~f1

i is the minimum cost flow from i to t of value Di.
Thus each source routes its demand optimally through
the network assuming näıvely that the other demands



don’t exist. The cost of this näıve algorithm is then

(2.5) Näıve(G, R,D) =
∑
ij

∑
e

re ·|~fi[e] · ~fj [e]|,

where ~fi = Di
~f1
i is the minimum cost flow in G from

i to t with value Di. The Main Theorem can now be
restated as follows:

Theorem 2.4. For all graphs G on n vertices and and
all demand vectors D, Näıve(G, R,D) = O(log n) ·
Opt(G, R,D).

This theorem is proven in Section 3. In Section 4 we
provide lower bounds. We first show that our analysis
of the näıve oblivious routing algorithm is tight by
presenting a network and a demand-distribution for
which this algorithm exhibits a cost that is an Ω(log n)-
factor larger than the optimum possible cost. Then, in
Section 5, we also provide a lower bound of Ω(

√
log n) on

the competitive ratio of any oblivious routing algorithm
in our cost model.

3 Näıve isn’t that bad

We want to show that the ratio between Näıve and
Opt is small. A natural way would be to use (2.5) and
(2.4) show that the ratios is small term-by-term, that is,
for all pairs (fi, fj), the ratio between

∑
e re ·~fi[e] · ~fj [e]

and
∑

e re ·|~fi[e] · ~fj [e]| is small, where ~fi is the optimum
routing for the i-th demand Di. This, unfortunately, is
not true. However, we will describe a slight modification
that we can prove, and which is sufficient to establish
Theorem 2.4. First, we need some notation. For a pair
of flows (~f,~g), let

E+
fg = {e : ~f [e] · ~g[e] ≥ 0};

E−
fg = {e : ~f [e] · ~g[e] < 0};

X+
fg =

∑
e∈E+

fg

re ·~f [e] · ~g[e];

X−
fg =

∑
e∈E−

fg

re ·|~f [e] · ~g[e]|.

When the pair of flows is (~fi, ~fj), we write E+
ij , E−

ij , X+
ij

and X−
ij instead of E+

fifj
, E−

fifj
, X+

fifj
and X−

fifj
. Let

X+ =
∑
ij

X+
ij and X− =

∑
ij

X−
ij .

Observe that Opt = X+ − X− while Näıve =
X+ + X−. Given this, ideally we would like to show
that X+

ij + X−
ij ≤ C · (X+

ij − X−
ij ), for some factor

C = O(log n), for then we would get our result by just

summing over all pairs i, j. This is equivalent to showing
that X−

ij ≤ (C−1
2 ) · (X+

ij − X−
ij ). We will instead show

the following slightly weaker bound, which will suffice
for our purposes.

Lemma 3.1. Let t be a “target” vertex in G, and suppose
~f and ~g are flows in G, each satisfying Kirchhoff’s laws,
and each having a unique sink at t. Then

X−
fg = O(log n)(X+

fg −X−
fg) +

1
n

(
cost(~f) + cost(~g)

)
.

Before proceeding to prove this lemma (which will take
a while), let use see how it implies the theorem. We have

Näıve ≤ X+ + X− ≤ (X+ −X−) + 2X−.

The first term on the RHS is Opt. We now use
Lemma 3.1 to bound the second term by O(log n) ·Opt.
Indeed, by invoking Lemma 3.1 with the pair of flows
(~fi, ~fj), we obtain

X−
ij = O(log n)(X+

ij −X−
ij ) +

1
n

(
cost(~fi) + cost(~fj)

)
.

By summing this over all pairs (i, j), we obtain

X− = O(log n)(X+ −X−)

+
1
n

∑
ij

(
cost(~fi) + cost(~fj)

)
= O(log n) ·Opt + 2

∑
i

cost(~fi).

Since ~fi is the optimum routing for the i-th demand, the
cost incurred for routing the i-th demand (ignoring the
rest), in the optimal solution the cost of routing the i-th
demand must be at least cost(~fi). Thus

∑
i cost(~fi) ≤

Opt. This completes the proof of Theorem 2.4 assuming
Lemma 3.1.

Proof of Lemma 3.1. For a pair of flows (~f,~g), and
for ` = 0,±1,±2, . . ., let

E−
fg(`) =

{
e ∈ E−

fg :
4`

2
≤ |~f [e]|

|~g[e]|
< 2 · 4`

}
;

X−
fg(`) =

∑
e∈E−

fg(`)

re ·|~f [e] · ~g[e]|.

Using this notation, we have

X−
fg =

dlog4 ne∑
`=−dlog4 ne

X−
fg(`) +

∑
|`|>dlog4 ne

X−
fg(`).



Lemma 3.1 will follow immediately if we show that for
all (f, g)

X−
fg(`) ≤ 2(X+

fg −X−
fg);(3.6) ∑

|`|>dlog4 ne

X−
fg(`) ≤ 1

n
(cost(f) + cost(g)) .(3.7)

The proof of (3.7) is simpler, so let us get it out of the
way.

Proof of (3.7). For e ∈ E−
fg(`) for |`| > dlog4 ne, we

have max{|~f [e]|, |~g[e]|} ≥ n · min{|~f [e]|, |~g[e]|}. Thus
|~f [e] · ~g[e]| ≤ 1

n · (~f2[e] + ~g2[e]). It follows that∑
|`|>dlog4 ne

X−
fg(`) =

∑
|`|>dlog4 ne

∑
e∈E−

fg(`)

re ·|~f [e] · ~g[e]|

≤
∑
e∈E

re ·
(f2[e] + g2[e])

n

=
1
n

(cost(f) + cost(g)).

Proof of (3.6). We need to show (3.6) only for ` = 0,
because the claim for other ` follows from this special
case by scaling f by a factor 4`. To see this, assume that
(3.6) holds when ` = 0, for all choices (f, g) satisfying
the assumption of Lemma 3.1. Then

X−
fg(`) = 4−` ·X−

4`f,g
(0)

≤ 4−` · 2(X+
4`f,g

−X−
4`f,g

)

≤ 2(X+
fg −X−

fg),

where to get the first inequality we applied the assump-
tion to the pair of flows (4`f, g).

To show (3.6) for the case ` = 0, we will exhibit a
payment scheme where each edge e ∈ E will make a real
valued payment p(e). If p(e) is negative for an edge e
then we say that it receives payment. We will ensure
our payment scheme satisfies the following.

Proposition 3.1.

(a) The total payment over all edges is zero:∑
e∈E p(e) = 0.

(b) Each edge e ∈ E+
fg, pays at most re ·~f [e] · ~g[e]; so

that the total payment from the edges of E+
fg is at

most X+.

(c) Each edge in e ∈ E−
fg receives payment (i.e. p(e) <

0); the magnitude of this payment is at least(
1 +

min{|~f [e]|, |~g[e]|}
max{|~f [e]|, |~g[e]}

)
· re |~f [e] · ~g[e]|.

Let us complete the proof assuming that we are able
to set up a payment scheme as claimed above. For edges
e ∈ E−

fg(0), we have

min{|~f [e]|, |~g[e]|}
max{|~f [e]|, |~g[e]}

≥ 1
2
.

Since the total payment is zero, we have

∑
e∈E−

fg

(
1 +

1
2

)
· re |~f [e] · ~g[e]| ≤ X+

fg.

It follows that

X−
fg(0) =

∑
e∈E−

fg(0)

re ·|~f [e] · ~g[e]| ≤ 2(X+
fg −X−

fg),

as claimed. This completes the proof of (3.6) assuming
we can establish Proposition 3.1.

We now describe the payment scheme and prove
Proposition 3.1. Consider the flow ~f + ~g. This flow can
be decomposed into two flows ~f∗ and ~g∗ such that1

• ~f∗ has the same source, target and value as ~f ;

• ~g∗ has the same source, target and value as ~g;

• ~f∗ + ~g∗ = ~f + ~g.

• ~f∗ and ~g∗ have the same orientation along each edge
e (i.e., ~f∗[e] · ~g∗[e] ≥ 0).

Let ~cf = f∗ − f and ~cg = g∗ − g; thus, ~cf and ~cg

are circulations, and ~cf = −~cg. The payment scheme
p : E → R is as follows.

p(e) = re ·~cf [e] · (~f [e]− ~g[e])

= re ·~cg[e] · (~g[e]− ~f [e]).

Proof of Proposition 3.1 To show part (a), observe
that the total payment is∑

e∈E

re ·~cf [e] · (~f [e]− ~g[e]).

1This can be done by standard flow decomposition into paths.
Let the source of ~f be sf and the value of ~f be Df ; similarly,
let sg be the source of ~g and let Dg be the value of ~g. Add a
super-source s, an edge (s, sf ) carrying a flow of Df , and an edge
(s, sg) carrying a flow of Dg. This creates a single flow from s
to t of value Df + Dg. Decomposing this flow into paths and

combining paths that use edges (s, sf ) and (s, sg) into ~f∗ and ~g∗,

respectively, gives the required flows. Note that ~f∗ and ~g∗ are not
necessarily unique.
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Figure 1: The circulation flows, current flows, and optimal flows for a simple network. The demands are
Di = Dj = 1 and all edges have resistance 1. Note that ~f∗ = ~f + ~cf and ~g∗ = ~g + ~cg.

The claim will follow if we show that∑
e∈E

re ·~cf [e] · ~f [e] = 0;(3.8) ∑
e∈E

re ·~cf [e] · ~g[e] = 0.(3.9)

We will only show (3.8); to derive (3.9), replace f by g
and use the fact that ~cf = −~cg.

Recall that f satisfies Kirchhoff’s laws. Thus there
exist potentials 〈ϕ[v] : v ∈ V 〉, such that for each edge
e of the form (v, w), we have re ·~f [e] = ϕ[v] − ϕ[w].
Substituting this in the LHS of (3.8), and collecting the
contributions for each vertex, we obtain

∑
v∈V

ϕ[v]

 ∑
e∈Out(v)

~cf [e]−
∑

e∈In(v)

~cf [e]

 .

Since ~cf is a circulation, this quantity is zero (see (2.2)).
To show part (b), let e ∈ E+

fg. We may assume
that |~f [e]| ≥ |~g[e]|, for otherwise we can argue by
interchanging ~f and ~g. Note that ~f [e], ~g[e], (~f + ~g)[e],
~f∗ and ~g∗ have the same direction. We have two
cases based on whether or not ~cf [e] also has the same
direction. If it has the same direction, then since
~g∗[e] = ~g[e] + ~cg[e] = ~g[e] − ~cf [e] and ~g∗[e] has the
same direction as ~g[e], we have |~cf [e]| ≤ |~g[e]|, and

p(e) ≤ re ·~g[e] · (~f [e]− ~g[e]) ≤ re ·|~f [e] · ~g[e]|.

If ~cf [e] is not in the same direction as the other currents
on e, then p(e) is negative (e receives payment!), and
our claim holds because re ·~f [e] · ~g[e] ≥ 0.

To show part (c), fix an edge e ∈ E−
fg. Again we

may assume |~f [e]| ≥ |~g[e]|. This time the flow f has
opposite direction to g, but the same as (~f + ~g) along
edge e. In particular, the direction of ~g∗[e] = ~g[e] +~cg[e]
is the same as ~f ’s, and hence opposite to ~g’s. Thus,
~cg[e] has the same direction as f , and |~cg[e]| ≥ |~g[e]|.
Since ~cf [e] = −~cg[e], ~cf and ~f have opposite directions
along e, and the payment p(e) is negative, with absolute
value at least re ·|~g[e]| · (|~f [e]|+ |~g[e]|), as required. This
completes the proof of Proposition 3.1

4 Näıve is no better

In this section, we show that the analysis in the previous
section, showing that the solution of the näıve oblivious
algorithm is always within a factor O(log n) of the
optimum, cannot be improved.

Theorem 4.1. For every n, there exists an input
instance (G, R,D), with |V (G)| = n, such that
Näıve(G, R,D) = Ω(log n) ·Opt(G, R,D).

Proof. We will show the claim only for n of the form
2d + 1. A routine padding argument (e.g. new vertices
with zero demands), will then establish the claim for
all n.

Our graph will consist of a hypercube connected
to a sink. More precisely, let H be the hypercube of
dimension d, that is,

V (H) = {S : S ⊆ [d]};
E(H) = {{S, T} : |S \ T ∪ T \ S| = 1}.



The undirected graph G is then defined by

V (G) = V (H) ∪ {t};
E(G) = E(H) ∪ {{S, t} : S ⊆ [d]}.

All resistances in G have value 1, and all vertices in
V (H) have unit demands. Theorem 4.1 will follow if we
show the following two inequalities.

Näıve(G, R,D) ≥ 2
9
d · 2d;(4.10)

Opt(G, R,D) ≤ 2d.(4.11)

To see (4.11), consider the solution that routes the
demand at vertex S through the edge (S, t). The cost
of this solution is 2d.

Proof of (4.10). We will show that the Näıve oblivious
algorithm imposes a load of at least 2

3 on each hypercube
edge. Then (4.10) follows immediately as there are d2d−1

edges. By symmetry, all edges of the hypercube have
the same load. So, it is enough to study any one edge,
say, {∅, {1}}, and show that it has a load of at least 2

3 .
Let H0 be the subcube induced by the vertices in

V (H0) = {S : S ⊆ [d] \ {1}} and H1 be the subcube
induced by the complement of V (H0). Consider the
demand vector D0 which assigns unit demands to vertices
of H0 and zero demand to all other vertices.

What does the optimal routing for demand D0 look
like? We view G as a resistive network and use Fact 2.2.
By symmetry, all vertices of H0 have the same potential,
and also all nodes in H1 have the same potential φ1.
Hence no current flows through the edges within the
subcubes H0 and H1. Thus, the triangle induced by
{∅, {1}, t}, for example, can be analyzed in isolation
using Ohm’s law. It is easy to verify that the current
through the edge e = (∅, {1}) is 1

3 . By Fact 2.3, this
current is precisely

∑
S∈V (H0)

~fS [e], where ~fS denotes
the optimal flow from S to t of unit value. Thus,∑

S∈V (H0)
|~fS [e]| ≥ 1

3 . By symmetry,

∑
S∈V (H1)

|~fS [e]| ≥ 1
3
, and, hence,

∑
S∈V (H)

|~fS [e]| ≥ 2
3
.

5 Oblivious isn’t much better either

In this section, we prove that no oblivious routing
algorithm can outperform the näıve oblivious algorithm
more than quadratically in terms of worst-case hardness.

Theorem 5.1. For every n, there is a graph G with
resistances R, such that for any oblivious algorithm,
there exists a demands set D such that the cost of the
algorithm is Ω(

√
log n) ·Opt(G, R,D).

Proof. Let G be the graph defined in the proof of
Theorem 4.1, consisting of the hypercube of dimension
d, plus a target vertex, t, incident to every other vertex.
All edge resistances are 1.

Fix an oblivious routing algorithm. We will
exhibit a distribution over demands D, such that,
with positive probability, the algorithm’s cost is
Ω(
√

log n)Opt(G, R,D).
To this end, let L + 1 denote an integer median for

the path lengths of the given algorithm. To be more
precise, let v be a uniformly randomly chosen vertex,
and choose a random path from v to t with probability
proportional to the flow sent by the oblivious routing
algorithm along that path. Let L be the least positive
integer such that with probability ≥ 1/2, this path has
length ≤ L + 1. Observe that, by the minimality of L,
the probability that the path has length ≥ L + 1 is also
at least 1/2. (Our definition has lengths of L + 1 rather
than L because the final edge of each path leaves the
hypercube to reach the sink t.)

Let d′ = d − bd/2Lc. Choose a uniformly random
subcube H of dimension d′, and let D assign unit
demands to every vertex of H.

Claim. The expected competitive ratio is Ω(d/L + L).

This expression is minimized when L = d1/2, which
completes the proof of the Theorem.

To see the Claim, first note that the optimal cost
for these demands is at most 2(d−d′)+1

(d−d′+1)2 |H|. This cost
bound can be achieved by splitting the demand from
each vertex v ∈ H equally along the (d − d′) paths of
length 2 through v’s neighbors in V \H, as well as the
direct edge from v to t.

Now consider the cost of the oblivious routing. The
key insight is that, by the choice of d′ and H, in
expectation, a constant fraction of the demand is not
routed outside of H except in the last step when it goes
to the target. More precisely, for each path of length
` + 1 ≤ L + 1, the probability that this path includes
any edge in one of the (d − d′) directions leaving H is
(by a union bound) at most

(d− d′)
`

d
≤ 1/2.

Hence the total expected flow along the |H| edges joining
H to t is at least |H|/4, which therefore contributes at
least |H|/16 to the expected cost.

Now let us consider the cost of the long paths, of
length ` ≥ L + 1. By the argument just given, with
probability at least 1/2, such a path does not leave H
within its first L steps. Hence such paths contribute an
expected load of at least |H|L/4 to the |H|d′ edges within



the subcube, which contributes at least |H|L2/16d′ to
the expected cost.

Thus the competitive ratio is at least

1
16

(d− d′ + 1)2

1 + 2(d− d′)
(
1 + L2

d′

)
≥ 1

32
(d− d′ + 1)

(
1 +

L2

d

)
≥ 1

32
d

2L
(1 + L2/d) by definition of d′

=
1
64

(
d

L
+ L

)
completing the proof. �

6 Conclusions

In this paper, we considered the problem of obliviously
routing on a network with quadratic latency cost func-
tions under the restriction that all routing requests are
directed to the same target node. We showed that the
näıve oblivious routing algorithm achieves a competitive
ratio of O(log n) on a network of n nodes. This result can
be strengthened to O(log k), whre k denotes the number
of different sources of the network. We then analyzed
the special case of routing on a hypercube and showed
that the näıve algorithm can perform no better (up to
constant factors). Furthermore, using the same hyper-
cube example, we showed that no oblivious algorithm
can achieve a competitive ratio better than Ω(

√
log n).

A challenging question for future research is whether
the näıve algorithm that we analyzed also obtains a poly-
logarithmic competitive ratio in the multi-commodity
case. We believe that this is indeed the case but re-
solving this question seems to require new techniques
as it is not possible to exploit the relationship between
quadratic cost networks and resistive networks.

Improving the upper bound for the single-commodity
case runs into the same obstacles. Therefore it might
be a more promising approach to try to improve the
lower bound. In particular, it would be interesting to
improve the lower bound in the multi-commodity case.
Currently, the best lower bound for the single-commodity
and multi-commodity case are identical and it seems not
clear how to use more commodities to strengthen the
lower bound.

Another interesting problem is to determine cost-
measures for which the näıve algorithm performs well. It
(trivially) works for the ‖ · ‖1-norm of the link loads and
it is conjectured to give a competitive ratio of O(log n)
for the ‖ · ‖∞-norm (congestion) in the single-target case.
Does an O(log n) bound hold for any `p-norm of link
loads?

References

[1] D. Applegate and E. Cohen, Making intra-domain
routing robust to changing and uncertain traffic de-
mands: Understanding fundamental tradeoffs, in Pro-
ceedings of the ACM Symposium on Communications
Architectures & Protocols (SIGCOMM), 2003, pp. 313–
324.

[2] B. Awerbuch, Y. Azar, E. F. Grove, M.-Y. Kao,
P. Krishnan, and J. S. Vitter, Load balancing in the
Lp norm., in Proceedings of the 36th IEEE Symposium
on Foundations of Computer Science (FOCS), 1995,
pp. 383–391.

[3] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and
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