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In recent times, there has been an increased interest in theories of
language evolution that have an applicability to the study of dialect
formation, linguistic change, creolization, the origin of language, and
animal and robot communication systems in general. One particular
question that has attracted some interest has the following gen-
eral form: how might a group of linguistic agents arrive at a shared
communication system purely through local patterns of interaction
and without any global agency enforcing uniformity? In this paper,
we consider a natural model of language evolution on a social net-
work, prove several theoretical properties, and establish connections
to related phenomena in biology, social sciences, and physics.
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Introduction
In recent times, there has been an increased interest in theories
of language evolution that have an applicability to the study
of dialect formation, linguistic change, creolization, the origin
of language, and animal and robot communication systems in
general. (see [14, 22, 11] and references therein). One particu-
lar question that has attracted some interest has the following
general form: how might a group of linguistic agents arrive at
a shared communication system purely through local patterns
of interaction and without any global agency enforcing unifor-
mity? The linguistic agents in question might be humans, an-
imals, or machines in a multi-agent society. For an example of
interesting simulations that suggest how a shared vocabulary
might emerge in a population , see Liberman (2005) (other
simulations are also provided by [27, 8, 2, 1, 28] among oth-
ers). In this paper, we consider a generalization of Liberman’s
model, prove several theoretical properties, and establish con-
nections to related phenomena in biology, social sciences, and
physics.

Our model is as follows. For simplicity, we consider how a
common word for a particular concept might emerge through
local interactions even though the agents had different initial
beliefs about the word for this concept. For example agents
might use the phonological forms “dog”,“kukur”, “farama”
etc. to describe the concept of a canine animal. Thus we
imagine a situation where every time an event in the world
occurs that requires the agents to use a word to describe this
event, they may start out by using different words based on
their initial belief about the word for this event or object.
By observing the linguistic behavior of their neighbors agents
might update their beliefs. The question is - will they even-
tually arrive at a common word and if so how fast.

Model.

1. Let W be a set of words (phonological forms, codes, sig-
nals, etc.) that may be used to denote a certain concept
(meaning or message).

2. Let each agent hold a belief that is a probability measure

on W. At time t, we denote the belief of agent i to be b
(t)
i .

3. Agents are on a communication network which we model
as a weighted directed graph where vertices correspond to
agents. We further assume that the weight of each directed

edge is positive and that there exists a directed path from
any node to any other. An agent (say i) can only ob-
serve the linguistic actions of its out-neighbors, i. e.nodes
to which a directed edge points from i. We denote weight
of the edge from i to j by Aij .

4. The update protocol for the b
(t)
i as a function of time is as

follows:

(a) At each time t, each agent i chooses a word w = w
(t)
i ∈

W (randomly from to its current belief b
(t)
i ) and pro-

duces it. Let X
(t)
i , denote the probability measure con-

centrated at w
(t)
i . Since w

(t)
i is a random word X

(t)
i is

correspondingly a random measure.

(b) At every point in time, each agent can observe the words
that their neighbors produce but they have no access to
the private beliefs of these same neighbors.

(c) Let P be the matrix whose ijth entry satisfies

Pij =
Aij

Pn

k=1 Aij

.

At every time step, every agent updates its belief by a
weighted combination of its current belief and the words
it has just heard, i.e.,

b
(t+1)
i = (1 − α)b

(t)
i + α

n
X

j=1

PijX
(t)
j ,

where α is a fixed real number in the interval (0, 1).

At a time t, let the beliefs of the agents be represented by
a vector

b(t) := (b
(t)
1 , . . . ,b(t)

n )T .

Similarly, let the point measures on words X
(t)
i be organized

into a vector
X(t) := (X

(t)
1 , . . . , X(t)

n )T .

Then the reassignment of beliefs can be expressed succinctly
in matrix form where the entries in the vectors involved are
measures rather than numbers as

b(t+1) = (1 − α)b(t) + αPX(t). [1]

Interpretation and Remarks.
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Interpreting W

To instantiate our model in different linguistic applications,
one must choose an interpretation of W. For the case of how
a common word for a particular concept emerges, W repre-
sents the set of candidate phonological forms for that concept
as our opening example suggests. These forms could be sim-
ply different pronunciations for the same word (as in the two
pronunciations for “either”) or they may have no such relation
(as in “lift” and “elevator” for the same object).

However, one could equally well choose W to be a set of
rules or grammars as follows. Let Σ be a primitive alpha-
bet and let g1, . . . , gM be a set of grammars (rule systems)
such that each gi defines a family of grammatical expres-
sions Li ⊂ Σ∗ in the usual way. For simplicity, assume that
Li∩Lj = φ. In this setting, the elements of W may be identi-
fied with the grammars. A belief b is a probability measure on
W where b(i) is simply the probability with which an agent
might choose to use the ith grammar to produce an expres-
sion (from Li). The listener hears the expression s ∈ Σ∗ pro-
duced by this speaker and the corresponding random measure
X (a function of the randomly produced expression s) is the
point measure supported on gi. Thus different speakers pro-
duce different grammatical expressions, listeners hear these
expressions and update their belief over the space of possible
grammars. This has immediate applicability to rule systems
in phonology, morphology, or syntax.

Finally, one could choose W to be a continuous acous-
tic space of sounds and each speaker maintains a belief, i.e.,
a probability distribution over the space of sounds that it
might produce. For example, W may be identified with the
space of formant frequencies and the model might then char-
acterize how a shared set of vowel formants emerge within a
population[8].

More generally, in contexts other than language, one might
identify W with a set of social or political opinions (views), a
set of strategies, or a set of genes. We point to such connec-
tions at a later point.

Belief Update

At any point in time, each agent has a belief which it updates
after observing the actions of its neighbors. The belief update
strategy may be interpreted as a version of a linear reward
scheme for online learning as articulated in [3]. A version of
this has been invoked in language acquisition [21] within a
framework of universal grammar. Some further remarks are
worthwhile.

1. If beliefs were directly observable and agents updated based
on a weighted combination of their beliefs and that of their
neighbors,

b(t+1) = (1 − α)b(t) + αPb(t), [2]

the system has a simple linear dynamics, where all beliefs
converge to a weighted average of the initial beliefs. Thus
eventually, everyone has the same belief (see [4] for pioneer-
ing work and [12] for a recent elaboration in an economic
context.)

2. Our focus in this paper is on the situation where the be-

liefs are not observable but only the linguistic actions X
(t)
i

are (and only to the immediate neighbors). Therefore, the
corresponding dynamics follows a Markov chain. The state
space of this chain (defined by Equation 1) is the set of all
n-tuples of belief vectors. Since this is continuous, the stan-
dard mixing results with finite state spaces do not apply
directly.

3. Note that in our setting we have assumed that the com-
munication matrix Aij does not change with time. If this
matrix changes with time the evolution is not Markovian
in the usual sense but the arguments in this paper when
combined with results in [5] would lead to a proof of con-
vergence under suitable conditions. We omit this analysis
for ease of exposition.

Results:. Our main results are summarized below.

1. With probability 1 (w.p.1), as time tends to infinity, the
belief of each agent converges in variation distance to one
supported on a single word, common to all agents.

2. With probability 1, , there is a finite time T such that for
all times t > T , all agents produce the same fixed word.

3. The rate at which beliefs converge depends upon the mix-
ing properties of the Markov chain whose transition matrix
is P .

4. The rate of convergence is independent of the size of W.
One might think that a population where every agent has
one of two words for the concept would arrive at a shared
word faster than one in which every agent had a differ-
ent word for the concept. This intuition turns out to be
incorrect.

5. The proof of these results exposes a natural connection
with coalescent processes and has a parallel in population
genetics.

6. Our analysis brings out two different interpretations of the
behavior of a linguistic agent. In the most direct inter-
pretation, the agent’s linguistic knowledge of the word is
internally encoded in terms of a belief vector. This belief
vector is updated with experience. In a second interpreta-
tion an agent’s representation of its linguistic knowledge is
in terms of a memory stack in which it literally stores every
single word it has heard weighted by how long ago it heard
it and the importance of the person it heard it from. Such
an interpretation is consistent with exemplar theory (see
[9]). An external observer looking at this agent’s linguistic
actions will not be able to distinguish between these two
different internal representations that the agent may have.

Connections to other fields. The general theme of predicting
the macroscopic behavior of a system from the local behavior
of its microscopic components arises in many different areas
of physics, biology, and the social sciences. It is also a funda-
mental issue in the analysis of distributed systems in computer
science.

In Spin systems, which originated as models for Ferro-
magnets, atoms are pictured to be in a 2-Dimensional square
array, each possessing a spin “up” or “down.” The effect that
an atom has on the spin of a neighbor is a function of temper-
ature. Typically, coherence is observed at low temperatures,
while at high temperatures atoms tend not to align, which
is in agreement with the demagnetization that ferromagnets
undergo at high temperatures. The model we consider, involv-
ing the convergence in beliefs has many high level similarities
though we do not address the question of what might be the
analog of temperature in our model, how to take the thermo-
dynamic limit, and if and how phase transitions may arise.

Another closely related model is the voter model studied
in probability theory with its origins in the social sciences.
Each agent lives on the vertex of the graph, has a belief which
is a discrete variable, and is observable to its neighbors. Each
agent changes its belief with a certain probability based on
the observed beliefs of its neighbors. Another kind of belief
propagation model is that described by Jackson (2007). In
both cases, the beliefs are observable in contrast to our set-
ting. Our communication graphs model the pattern of local
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interaction among agents and may arise through modes of so-
cial network formation studied in the field of social network
theory [26, 15].

Linear update rules are often used in distributed systems,
to achieve coherence among different agents or to share knowl-
edge gathered individually. In a model that has been inten-
sively studied, a number of sensors form a network, each of
which measures a quantity such as temperature [4]. Neighbors
communicate during each time step and make linear updates
in a synchronous or asynchronous manner. The rate at which
consensus is attained is studied. There is also a related body
of work on Coordination and Distributed Control. A model
of flocking has been considered in [6], where a group of birds,
have a certain initial velocity, and the evolution of their veloc-
ities is governed by a differential equation wherein each bird
modifies its velocity to bring it closer to that of its neighbors.
The update rule involves a graph Laplacian. Some results are
derived concerning the initial conditions that result in flocking
behavior.

There are two connections to evolutionary theory that are
worth mentioning. First, our proof of convergence exposes a
natural coalescent process over words. Coalescent processes
are, of course, widely used in modeling and making inferences
about genetic evolution [16, 17]. Second, researchers have
considered game-theoretic models of evolution [20] and more
recent research in this tradition has addressed evolutionary
games on graphs [24, 19, 25]. The question of how agents
may learn an appropriate strategy for a coordination game
on a graph has many high level similarities to the problem
studied in this paper.

Finally, there have been a large number of models on
achieving coherence in a linguistic population. Many of
these rely on simulations. Among mathematical studies, two
strands are worth noting. The model of language evolution
proposed in [7] has many similarities with languages of agents
evolving on a graph. But it is worth noting that in that model,
if at each time step, the number of linguistic examples (ob-
servations) collected by each agent is bounded from above
by a constant (independent of time), the community fails to
achieve a consensus language. A second strand is the collec-
tion of results obtained in [23, 14]. While there are many
synergies with that body of work, there is nothing that is
directly comparable.

Convergence to a Shared Belief: Quantitative results

Let P̃ be the transition matrix on the state space S̃ = S ∪ Ŝ,

where for i, j ∈ S := {1, . . . , n} and Ŝ = {1̂, . . . , n̂}.

P̃ (i → j) = P̃ (̂i → j) = αPij ,

P̃ (i → î) = P̃ (̂i → î) = 1 − α.

Def inition 1. Let Tmix(ǫ) denote the mixing time of P̃ , defined

as the smallest t for which, for each specific choice of v, w ∈ S̃,
X

u∈S̃

|P̃ (t)(v → u) − P̃ (t)(w → u)| < ǫ.

Here P̃ (t)(b → c) denotes the probability that a Markov Chain

governed by P̃ starting in b lands in c at the tth time step.
The following is the main result of this paper.

Theorem 1. 1. The probability that all agents produce the same
word at times T, T+1, . . . tends to 1 as T tends to ∞. More
precisely, if

τ = (4n/α2)Tmix(
α

4
) ln(4n/α2)

M = e,

then

φ[∀t≥T
u∈S

Xt
u = XT

1 ] > 1 −
MnTe−

T

τ

1 − e−
T

τ

. [3]

2. As time t → ∞ all produced words converge (almost surely)
to a word whose probability distribution is

n
X

i=1

πib
(0)
i ,

where (π1, . . . , πn) is the stationary distribution of the
Markov chain whose transition matrix is P .

A Model of Memory. The evolution of the B(t) is a Markov
chain. It can be seen that its only absorbing states are of the

form (b
(t)
1 , . . . ,b

(t)
n )T , where ∀i,b

(t)
i = δw, and δw is the point

measure concentrated on some word w ∈ X. Formally, δw is
the measure on W, which assigns to a measurable set A the
measure δw(A) according to the following rule.

δw(A) = 1 If w ∈ A

= 0 otherwise.

Therefore, if the Markov Chain were finite, a simple argu-
ment would suffice. In our case however, we have a Markov
Chain whose state space is uncountably infinite. Thus in prin-
ciple, its dynamics could be hard to analyze. Our proof is
based on coalescent processes, which have also been exten-
sively used to study biological evolution [16, 17]. In analyzing
the evolution of beliefs, we trace the origin of words back-
wards in time and find that all surviving words, are copies of
a single word produced at some point in time sufficiently far
in the past. Observe that if the process had begun at time 0,
the beliefs at time t + 1 would be

Observation 2.

B(t+1) =
t
X

i=0

α(1 − α)iPX(t−i) + (1 − α)t+1B(0). [4]

X(t) = (X
(t)
1 , . . . , X

(t)
n )T is a random vector whose entries are

point measures, where X
(t)
i = δ(w

(t)
i ) and w

(t)
i is chosen from

the measure b
(t)
i on X, independent of the choice of other co-

ordinates of the vector X(t). This observation, motivates a
model of memory that we define in the following paragraph.

Let each agent’s memory be modeled as a stack. At the
top level of the stack of agent i are all the words heard at
time t. Below this are all words heard at time t − 1 and so
on tracing backwards in time until the first words heard at an
initial time 1. At the lowest level, corresponding to time 0, is

the initial belief b
(0)
i which is a probability distribution on the

set of words. We may imagine this to be a form of vestigial
memory.

Let agent j be adjacent to agent i. We shall describe the
process by which agent j produces word Xj(t). Let Sj be the

stack held by agent j, and S
(t)
j , . . . , S

(0)
j be the levels in its

stack from top to bottom. After j produces Xj(t), i places
Xj(t), and all other Xj′(t) produced by neighbors of i at time
step t on the top of its stack. In order to describe the mecha-
nism by which Xj(t) is generated, let us introduce a binomial
random variable Y where

φ[Y = i] = α(1 − α)i.

Footline Author PNAS Issue Date Volume Issue Number 3



1 2 3 4

X
(2)
2X

(2)
1

X
(1)
1

X
(2)
3 X

(2)
4

X
(1)
3

X
(1)
4

X
(1)
2

t + 1

t + 2

t

a, b, c α, β, γ d, e, f δ, ǫ, ρ

a, b, c α, β, γ d, e, f δ, ǫ, ρ

a, b, c α, β, γ d, e, f δ, ǫ, ρ

α

α

b, f ρ, α f

b, f ρ, α f

f α, α f, f α

Fig. 1. A coalescent process obtained by tracing the origin of words backwards in

time, and the associated memory stacks of agents 1 to 4 for time steps t to t + 2.

Each agent produces α at time t+2 due to coalescence to a single word α produced

by agent 2 at time t.

If Y ≤ t − 1, Xj(t) is chosen to be the word produced by j′

at time t − 1 − Y (which is stored in St−1−Y ) with proba-
bility Pjj′ . If Y ≥ t, Xj(t) is chosen from the distribution

in b
(0)
j . This process has been illustrated in Figure 2. Note

that in this model words are formal objects. While any two

words present in the stack positions S
(t)
j for t = 1, 2, . . . are

considered distinct, there is a natural “parent-child” structure
existing on the set of words. Under this scheme, let the prob-

ability distribution of X
(t)
i be denoted b̃

(t)
i . Denoting by B̃(t)

the vector (b̃
(t)
1 ,b

(t)
2 , . . . ,b

(t)
n ).

Observation 3. A direct computation shows that in the model
just described

B̃(t+1) =
t
X

i=0

α(1 − α)iPX(t−i) + (1 − α)t+1B̃(0). [5]

This along with the fact that the randomness used in the

generation of X
(t)
j is independent of the randomness in the

generation of all other words, tells us that the model of mem-
ory just described results in a system with the same dynamics
as that introduced earlier. This particular model of memory
may be viewed as an implementation of the ideas implicit in
exemplar based accounts of linguistic behavior.

Proofs
By observations 2 and 3, in order to obtain an upper bound

on φ[X
(t1)
i 6= X

(t2)
j ], it is sufficient to trace the ancestry of

both words backwards in time and show that the probability

1 2 3 4

1̂ 2̂ 3̂ 4̂

1 2 3 4

1̂

1

1̂

1

2̂

2

2

2̂ 3̂

3

4̂

4

3

4̂

4

3̂

X
(3)
3

X
(2)
3

t

t + 1

t + 2

t + 3

Fig. 2. The ancestry of X
(t+3)
2 has been traced backwards in time to X

(t)
2 . On

the right,is an encoding of this path in terms of the transitions in a Markov Chain

with “auxiliary states” 1̂, . . . , n̂. 3̂ is occupied at time step t+1 because the agent

3 produced a word at a time t + 2 from past memory.

that they do not have a common ancestor is small. Our re-
sults are best stated in terms of the coalescence time of a set of
random walks. In Figure 2, we illustrate how the path tracing
the origin of a word backwards in time can be encoded as a

Markov chain on a state space S∪Ŝ = {1, . . . , n, 1̂, . . . , n̂}. We

use the states 1̂, . . . , n̂ as additional “memory” states. Since
the random variable Y introduced in section can be inter-
preted as the length of a run of heads in a biased coin (whose
probability of coming heads is 1−α), we can account Y using
additional memory states.

We define a variant of the meeting time between two

Markov Chains as follows. Let u, v ∈ S ∪ Ŝ.
Def inition 2. For t ≥ 0, let Yt and Zt be two independent ran-

dom walks on S ∪ Ŝ each of which has P̃ as its transition
matrix and have initial states Y0 = u, Z0 = v. For ∆ > 0, let
Muv(∆) be the smallest time t > 0 for which Yt+∆ = Zt ∈ S.
Theorem 1. 1. The probability that all agents produce the same

word at times T, T+1, . . . tends to 1 as T tends to ∞. More
precisely, if

τ = (4n/α2)Tmix(
α

4
) ln(4n/α2)

M = e,

then

φ[∀t≥T
u∈S

Xt
u = XT

1 ] > 1 −
MnTe−

T

τ

1 − e−
T

τ

. [6]

2. As time t → ∞, all produced words converge (almost
surely) to a random word chosen from the probability dis-
tribution

n
X

i=1

πib
(0)
i ,

where (π1, . . . , πn) is the stationary distribution of the
Markov chain whose transition matrix is P .

Proof:To prove the first part, we observe that

φ

»

¬

„

∀t≥T
u∈S

Xt
u = XT

1

«–

≤
∞
X

j=1

 

φ[XjT
1 6= X

(j+1)T
1 ] +

T−1
X

k=0

n
X

u=1

φ[XjT+k
u 6= XjT

1 ]

!

by the union bound. The following application of Lemmas 1
and 2 completes the proof.

φ

»

¬

„

∀t≥T
u∈S

Xt
u = XT

1

«–

≤
∞
X

j=1

 

φ[XjT
1 6= X

(j+1)T
1 ] +

T−1
X

k=0

n
X

u=1

φ[XjT+k
u 6= XjT

1 ]

!

≤
∞
X

j=1

 

φ[M11(T ) ≥ jT ] +

T−1
X

k=0

n
X

u=1

φ[Mu1(k) ≥ jT ]

!

≤
MnTe−

T

τ

1 − e−
T

τ

,

where M and τ are the constants that appear in Lemma 2.
To prove the second part, we use the linearity of expecta-

tion to show that the expected value of the beliefs follows a
simple rule. Namely

Eb(t+1) = (1 − α)Eb(t) + αPEX(t)

= ((1 − α)I + αP )Eb(t)

= . . .

= ((1 − α)I + αP )t+1
Eb(0).
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By well known results on Markov chains,

lim
t→∞

((1 − α)I + αP )t = (1, . . . , 1)T (π1, . . . , πn),

where πi is the stationary probability of the state i under the
chain P . Therefore, for each j,

lim
t→∞

Eb
(t)
j =

n
X

i=1

πib
(0)
i ,

By the first part of this theorem, as t → ∞, b(t) converges
almost surely to a measure that is concentrated on a single
common word w. Given a signed measure µ, let

|µ| = sup
‖f‖∞≤1

Z

fdµ.

Then,

˛

˛E[δw] − E[XT
i ]
˛

˛ ≤ φ

»

¬

„

∀t≥T
u∈S

Xt
u = XT

1

«–

≤
MnTe−

T

τ

1 − e−
T

τ

,

It follows that this common word w must have the distri-
bution

Pn

i=1 πib
(0)
i . �

Lemma 1. The probability that the word produced by agent u at
time step t1 is different from that produced by agent v at time
step t2 greater than t1 can be bounded from above as follows.

φ[X(t1)
u 6= X(t2)

v ] ≤ φ[Muv(t2 − t1) ≥ t1].

Proof:In the model of memory introduced in section we de-
scribed a parent-child relationship between words, where a
child word is identical to a parent word. The evolution of the
Markov chain defined in this section corresponds to the gene-

ology of a word. The event that the words X
(t1)
u and X

(t2)
v

have a common ancestor produced at some time ≥ 0 is the
event that Muv(t2−t1) ≤ t1. The lemma follows from the fact
that two words that have a common ancestor are the same.
�

Lemma 2. The random variable Muv(∆) has an exponential
tail bound uniform over u, v and ∆. More precisely, there
exist constants M, τ > 0 independent of u, v and ∆ such that

φ[Muv(∆) ≥ T ] < Me−
T

τ .

(In fact, this is satisfied for τ = 4n

α2 Tmix(α
4
) and M = e.)

Proof:The stationary measure µ̃ satisfies for each i, the iden-
tity αµ̃(̂i) = (1 − α)µ̃(i).

Let τ1 = Tmix(α
4
) ln( 4n

α2 ). Let us denote by qu(i) the prob-

ability φ[Zτ = i
˛

˛Z0 = u]. Then,

sup
u,v

φ[¬(Yτ+∆ = Zτ ∈ S)
˛

˛Y∆ = u, Z0 = v]

= 1 − inf
u,v

X

i∈S

qu(i)qv(i)

≤ 1 − inf
u,v

X

i∈S

min(qu(i), qv(i))2

≤ 1 − inf
u,v

(
P

i∈S
min(qu(i), qv(i)))2

n

≤ 1 −
α2

4n
.

Now, using the Markov property and conditioning repeat-
edly, we see that

φ[Muv(∆) ≥ T ] ≤ φ[¬(Y∆ = Z0 ∈ S)]×

⌊ T

τ1
⌋

Y

i=1

sup
u,v

φ[¬(Y∆+iτ1
= Ziτ1

∈ S)
˛

˛

(Y∆+(i−1)τ1
, Z(i−1)τ1

) = (u, v)]

≤ φ[¬(Y∆ = Z0 ∈ S)]

⌊ T

τ1
⌋

Y

i=1

(1 −
α2

4n
)

≤

„

1 −
α2

4n

«
T

τ1
−1

≤ e1− T

τ .

where

τ =
4n

α2
Tmix(

α

4
) ln

„

4n

α2

«

,

which proves the Lemma. �
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