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Abstract. Kostka numbers and Littlewood-Richardson coefficients appear in combina-
torics and representation theory. Interest in their computation stems from the fact that
they are present in quantum mechanical computations since Wigner ([17]). In recent times,
there have been a number of algorithms proposed to perform this task ([1], [13], [14], [2],
[3]). The issue of their computational complexity was explicitly asked by E. Rassart ([13]).
We prove that the computation of either quantity is #P -complete. This, implies that unless
P = NP , which is widely disbelieved, there do not exist efficient algorithms that compute
these numbers.

Résumé. Les nombres de Kostka et les coefficients de Littlewood-Richardson apparaissent
en combinatoire et en théorie de la représentation. Il est intéressant de les calculer car ils ap-
paraissent dans certains calculs en mécanique quantique depuis Wigner ([17]). Récemment,
plusieurs algorithmes ont été proposés pour les calculer ([1], [13], [14], [2], [3]). Le problème
de la complexité de ce calcul a été posé par E. Rassart ([13]). Nous démontrons que le calcul
des nombres de Kotska et des coefficients de Littlewood-Richardson est #P-complet. Cela
implique que, à moins que P=NP, il n’existe pas d’algorithme efficace pour calculer ces
nombres.

1. Introduction

Let N = {1, 2, . . .} be the set of positive integers and Z≥0 = N∪ {0}. Let λ = (λ1, . . . , λs) ∈
N

s, λ1 ≥ λ2 ≥ · · · ≥ λs ≥ 1, µ = (µ1, . . . , µt) ∈ Z
t
≥0, ν = (ν1, . . . , νu) ∈ Z

u
≥0 and

α = (α1, . . . , αv) ∈ N
v, α1 ≥ · · · ≥ αv ≥ 1. The Kostka number Kλµ and the Littlewood-

Richardson coefficient cν
λα play an essential role in the representation theory of the symmetric

groups and the special linear groups. Their combinatorial definitions can be found in Sec-
tion 2. These have been present in quantum mechanical computations since the time of
Wigner ([17]). Recently, in [13], E. Rassart asked whether there exist fast (polynomial
time) algorithms to compute Kostka numbers and Littlewood Richardson coefficients (Ques-
tion 1, page 99). We prove that the two quantities are #P -complete (see Theorems 1, 2). It
is known that if a #P -complete quantity were computable in polynomial time, P = NP . An
explanation of this fact is sketched in Section 2. Thus, under the widely believed hypothesis
that P 6= NP , there do not exist efficient (polynomial time) algorithms to compute Kostka
numbers and Littlewood-Richardson coefficients.

In [1], Barvinok and Fomin show how the set of all non-zero Kλµ for a given µ can be
produced in time that is polynomial in the total size of the input and output. They also
give a probabilistic algorithm running in time, polynomial in the total size of input and
output, that computes the set of all non-zero Littlewood-Richardson coefficients cν

λµ given λ
and µ. In [3], methods for the explicit computation of the Kostka numbers and Littlewood-
Richardson coefficients using vector partition functions are discussed. Practical implemen-
tations of Littlewood-Richardson calculators have been developed by Anders Buch and J.
Stembridge.
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Whether Kλµ > 0 can be answered in polynomial time (see Proposition 1), and so can
the question of whether cν

λα > 0, though the latter is a non-trivial fact established by K.
Mulmuley and M. Sohoni [10], and uses the proof of the Saturation Conjecture by Knutson
and Tao [9]. This fact plays an important role in the approach to the P vs NP question
[11] due to K. Mulmuley and M. Sohoni.

We reduce the #P -complete problem of finding the number |I(a,b)| of 2 × k contingency
tables to that of finding some Kostka number Kλµ. Kostka numbers are known to be also
Littlewood-Richardson (LR) coefficients. Thus, their computation reduces to computing
some LR coefficient cν

λα, where λ, µ, α and ν can be computed in time polynomial in the
size of (a,b). The main tool used in the reduction to finding Kostka numbers is the R-S-K
correspondence ([6] pages 40-41) between the set I(a,b) of contingency tables and pairs of
tableaux having contents a and b respectively.

2. Preliminaries and Notation

NP is the class of decision problems, e : ∪n∈N{0, 1}
n → {0, 1}, for which there exists a poly-

nomial time Turing machine M and a polynomial p such that (∀n ∈ N), (∀x ∈ {0, 1}n), e(x) =
1 if and only if ∃y, y ∈ {0, 1}p(n) such that M accepts (x, y)}.

The class #P is the class of functions f : ∪n∈N{0, 1}
n → Z≥0, for which there exists a polyno-

mial time Turing machine M and a polynomial p such that (∀n ∈ N), (∀x ∈ {0, 1}n), f(x) =
|{y ∈ {0, 1}p(n) such that M accepts (x, y)}|. Valiant defined the counting class #P in his
seminal paper [15]. Many counting problems are naturally in #P . For example, counting
the number of integer points in a polytope, membership queries to which can be answered
in polynomial time is a problem in #P .

A problem W ∈ NP is NP -complete, if given a black box that solves instances of W in
polynomial time, any problem in NP can be solved in polynomial time. Similarly, a counting
problem X ∈ #P is #P -complete if given a black box that provides solutions to instances
of X in polynomial time, any problem in the class #P can be solved in polynomial time.
Note that by definition, counting the number of solutions to any problem in NP is in #P .
Thus if a #P -complete counting problem could be solved in polynomial time, we could find
the number of solutions to any problem in NP efficiently (in polynomial time.) and thereby
solve it, by checking if the number of solutions is ≥ 1.

The following problem of computing the number of 2 × k contingency tables is known to
be #P -complete. Let a = (a1, a2) ∈ Z

2
≥0, a1 ≥ a2 and b = (b1, . . . bk) ∈ Z

k
≥0. We denote

by I(a, b) the set of 2 × k arrays of nonnegative integers whose row sums are a1 and a2

respectively and whose column sums are b1, . . . , bk. Geometrically, I(a, b) can be viewed as
the set of integer points in the intersection of the multidimensional rectangular block defined
by the column sums, and the diagonal hyperplane given by the first row sum. Counting
I(a, b) was proved to be #P -complete by R. Kannan, M. Dyer and J. Mount in [5].

A Young diagram ([6], page 1) is a collection of boxes, arranged in left justified rows, such
that from top to bottom, the number of boxes in a row is monotonically (weakly) decreasing.
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Figure 1. Left to right, the shapes λ, α and the skew shape λ ∗ α.

The first two shapes in Figure 1 are Young diagrams. A filling is a numbering of the boxes of
a Young diagram with positive integers, that are not necessarily distinct. A Young tableau

or simply tableau is a filling such that the entries are

(1) weakly increasing from left to right across each row, and
(2) strictly increasing from top to bottom, down each column.

P and Q, in Figure 2, are Young tableaux. A skew diagram is the diagram obtained from
removing a smaller Young diagram out of a larger one. The third shape in Figure 1 is a skew
shape. A skew tableau is a filling of the boxes of a skew diagram with positive integers, non-
decreasing in rows, and strictly increasing in columns (see Figure 5). Let λ := (λ1, . . . , λs).
If the number of boxes in the ith row of a tableau, for 1 ≤ i ≤ s is λi, the tableau is said to
have shape λ. If the tableau houses µj copies of j for j ≤ t and µ := (µ1, . . . , µt), it is said
to have content µ. Thus, in Figure 2, P and Q have the same shape (5, 2), but contents
(3, 2, 2) and (4, 3) respectively.

Given two shapes λ and α, λ ∗ α is defined to be the skew-shape obtained by attaching
the lower left corner of α to the upper right corner of λ as in Figure 1 (see [6], page 60).
size(λ, µ) denotes the number of bits used in the description of this tuple of vectors. For
λ := (λ1, . . . , λs), let |λ| =

∑s
i=1 λi. For vectors λ, µ, we say that λ D µ if |λ| = |µ| and

∀i,
∑

j≤i λj ≥
∑

j≤i µj. In addition, if λ 6= µ, we say λ B µ. This ordering is called the
dominance ordering.

We call a tableau Littlewood-Richardson or LR, if, when its entries are read right to
left, top to bottom, at any moment, the number of copies of i encountered is greater than
or equal to the number of copies of i+1 encountered ([6], page 63). We denote the set of all
(possibly skew) tableaux of shape λ and content µ by T(λ, µ), and its subset consisting of
all LR (possibly skew) tableaux by LRT(λ, µ). The Kostka number Kλµ is the number of
tableaux of shape λ and content µ, i.e |T(λ, µ)| ([6], page 25). The Littlewood-Richardson

coefficient cν
λα is the number of LR skew tableaux of shape λ ∗α of content ν, i.e |LRT(λ ∗

α, ν)| (this follows from Corollary 2, (v), page 62 and Lemma 1, page 65 of [6]).

3. The problems are in #P

The particular representation of partitions used above seems to be the most reasonable in the
context of computing Kostka numbers and Littlewood-Richardson coefficients. The answer
to whether or not a problem is in #P depends on the format in which the input is specified.
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If for example, we store partitions by their transposes, then these problems are no longer in
the class #P . This can be seen by considering the Kostka number equal to the number of
standard tableaux on a n × 2 rectangular array. By the hook length formula, the number
of such tableaux is the Catalan number

(

2n
n

)

/(n + 1) which is exponential in n. However if
the shape and content were represented as the transposes of the corresponding partitions,
they occupy only O(log n) space. And so the Kostka number is doubly exponential in the
size of the input. It is not hard to see that this is impossible for counting problems in the
class #P . On the other hand, if the partitions were represented in unary, it is not clear
what the complexity of computing Kostka numbers and LR coefficients is. In unary, the
partition (3, 2, 1) would be represented as (111, 11, 1). Thus unlike in the binary case, one
cannot represent partitions with very large parts efficiently. It is clear that the problems are
in #P for the unary case, but it is not clear whether they are #P -complete.

The tableau shapes λ, α and contents µ, ν are described by vectors with integer coefficients.
The Littlewood-Richardson coefficient number cν

λα counts the number of integer points of a
polytope of dimension O(size(λ, µ)2), given by the intersection of O(size(λ, µ)2) halfspaces.
The defining coefficients of these halfspaces have size O(size(λ, µ)). This follows from the
encoding of relevant skew tableaux in the form of Littlewood-Richardson triangles (see [12].)
Therefore the computation of Littlewood-Richardson coefficients is in #P . The Kostka num-
ber Kλµ is known to correspond to Littlewood-Richardson coefficients in parameters whose
sizes are polynomial in size(λ, µ). For the sake of completeness, an explicit correspondence
has been established in Lemma 2. It follows that the problem of computing the Kostka
number Kλµ is in #P .

Proposition 1. Given λ and µ, whether or not Kλµ > 0 can be answered in polynomial

time.

Proof:

Let λ, µ be defined as in section 1. For any permutation σ of the set {1, . . . , t}, let σ(µ) be
the vector (µσ(1), . . . , µσ(t)). It is a known fact that Kλµ = Kλσ(µ) (see [6], page 26). Let σ
be a permutation such that ∀i ≤ t − 1, µσ(i) ≥ µσ(i+1). For any µ̌, whose components are
arranged in non-increasing order, it is known that Kλµ̌ > 0 if and only if λD µ̌ (see [6], page
26). Whether λ D σ(µ) can be checked in time that is O(size(λ, µ)). Thus, whether or not
Kλµ > 0 can be answered in time O(size(λ, µ) ln(size(λ, µ)), which is the time it takes to
find a permutation σ that arranges the components of µ in non-increasing order.
¤

4. Hardness Results

Lemma 1. Given a = (a1, a2) ∈ Z
2
≥0, a1 ≥ a2, and b = (b1, . . . , bk) ∈ Z

k
≥0, let λ = (a1+a2, a2)

and µ = (b1, . . . , bk, a2). Then, |I(a,b)| = Kλµ.

Proof:
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Figure 2. An instance of the correspondence between I(a,b) and ∪λ̌T(λ̌, a)×
T(λ̌,b) for a = (4, 3), b = (3, 2, 2).
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Figure 3. An instance of the correspondence between ∪λ̌T(λ̌, a) × T(λ̌,b)
and ∪λ̌Da

T(λ̌,b) for a = (4, 3) and b = (3, 2, 2).

The R-S-K (Robinson-Schensted-Knuth) correspondence ([6] pages 40-41) gives a bijection
between I(a,b), the set of 2 × k contingency tables with row sums a and column sums b,
and pairs of tableaux (T1, T2) having a common shape but contents a and b respectively.
In other words, we have a bijection between I(a,b) and ∪λ̌T(λ̌, a) × T(λ̌,b). A sample
correspondence is shown in Figure 2.

Claim 1. For every shape λ̌ = (λ̌1, λ̌2), such that that λ̌ D a, there is exactly one tableau

having shape λ̌ and content a. For any other shape λ̌ there is no tableau having shape λ̌ and

content a.

It follows from the proof of Proposition 1 that the existence of a tableau with shape λ̌ and
content a is equivalent to the condition λ̌ D a. Any tableau with content a = (a1, a2) can
have at most two rows, since the entries in a single column are all distinct. The filling in
which the first a1 boxes of the top row contain 1 and all others contain 2 is a tableau (see Q
in Figure 3). Since all the copies of 1 must be in the first row and must be in a contiguous
stretch including the leftmost box, this is the only tableau in T(λ, a). Hence the claim is
proved.

Thus there is a bijection between ∪λ̌T(λ̌, a) × T(λ̌,b) and the set of tableaux of content b

having some shape λ̌Da. i.e, there is a bijection between ∪λ̌T(λ̌, a)×T(λ̌,b) and ∪λ̌Da
T(λ̌,b).

An example of this is provided in Figure 3. Let us now consider the set ∪λ̌Da
T(λ̌,b).

Claim 2. Any tableau in ∪λ̌Da
T(λ̌,b) can be extended to a tableau of the shape λ = (a1 +

a2, a2) by filling the boxes that are in λ but not λ̌, with k + 1. This extension is a bijection

between ∪λ̌Da
T(λ̌,b) and T(λ, µ).

If there is a tableau of shape λ̌ and content a, λ̌1 ≤ a1 + a2, and λ̌2 ≤ a2. λ̌ D a =⇒
λ̌1 ≥ a2 = λ2. Therefore no two of the boxes in λ which are not in λ̌ belong to the same
column. Those of these boxes, that are present in a given row, occupy a contiguous stretch
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Figure 4. An instance of the correspondence between ∪λ̌Da
T(λ̌,b) and

T(λ, µ), where a = (4, 3), b = (3, 2, 2), λ = (7, 3) and µ = (3, 2, 2, 3).
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Figure 5. An instance of the correspondence between T(λ, µ) and LRT(λ ∗
α, ν) for λ = (7, 3) and µ = (3, 2, 2, 3), α = (7, 5, 3) and ν = (10, 7, 5, 3).

that includes the rightmost box. Therefore by filling them with k + 1 we get a tableau in
T(λ, µ). Conversely, given a tableau T in T(λ, µ), deleting all boxes of T filled with k + 1
gives a tableau in ∪λ̌Da

T (λ̌,b). These two maps are inverses of each other and hence provide

a bijection between ∪λ̌Da
T (λ̌,b) and T(λ, µ). Hence the claim is proved.

An example of this correspondence has been illustrated in Figure 4. Therefore, |I(a,b)| =
| ∪λ̌ T(λ̌, a) × T(λ̌,b)| = | ∪λ̌Da

T(λ̌,b)| = |T(λ, µ)| = Kλµ.
¤

Theorem 1. The problem of computing Kλµ, even when λ has only 2 rows, is #P -complete.

Proof:

Computing Kλµ is in #P as shown in Section 3. Now the result follows from Lemma 1
because the computation of |I(a,b)| is known to be #P -complete ([5]).
¤

Lemma 2. Given λ = (λ1, λ2) ∈ Z
2
≥0, λ1 ≥ λ2, and µ = (µ1, . . . , µ`) ∈ Z

`
≥0, let α =

(α1, . . . , α`−1) where (∀i)αi =
∑

j>i µi, and ν = (ν1, . . . , ν`), where ∀i ≤ ` − 1, νi = αi + µi,

and ν` = µ`. Then Kλµ = cν
λα.

Proof:

cν
λα is, by definition, |LRT(λ∗α, ν)|, which is the number of LR tableaux on the skew shape

λ ∗ α that have content ν. The skew shape λ ∗ α consists of a copy of λ and a copy of α,
as in Figures 1 and 5. For any skew tableau S of shape λ ∗ α, we shall denote by S|α, the
restriction of S to the copy of α and by S|λ, the restriction of S to the copy of λ. Thus, S|α
is a tableau of shape α and S|λ is a tableau of shape λ.

6



Let S ∈ LRT(λ ∗ α, ν). For i ≤ ` − 1, it follows from the LR and tableau constraints that
the ith row of S|α must consist entirely of copies of i.

Consequently, S|λ must have content ν − α = µ. In other words, S|λ ∈ T(λ, µ). Conversely,
given any tableau T ∈ T(λ, µ), let S(T ) be the skew tableau of shape λ ∗ α in which
S(T )|λ = T and the ith row of S(T )|α consists entirely of copies of i. It is not difficult to see
that S(T ) ∈ LRT(λ ∗ α, ν). S(T )|λ = T , thus we have a bijection between LRT(λ ∗ α, ν),
the set of LR skew tableaux of shape λ ∗α having content ν and T(λ, µ), the set of tableaux
of shape λ having content µ. Hence Kλµ = |T(λ, µ)| = |LRT(λ ∗ α, ν)| = cν

λα as claimed.
¤

Theorem 2. The problem of computing cν
λα, even when λ has only 2 rows is #P -complete.

Proof:

By the explanation in Section 3, computing cν
λα is in #P . We have already proved in

Theorem 1, that the computation of Kλµ is #P -complete. The result now follows from
Lemma 2.
¤

5. Conclusion

We proved that the computation of Kostka numbers and Littlewood-Richardson coefficients
is #P -complete. The reduction to computing Kostka numbers was from the #P -complete
problem [5] of computing the number of contingency tables having given row and column
sums. The problem of computing Kostka numbers was then reduced to that of computing
Littlewood-Richardson coefficients. FPRAS (Fully Polynomial Randomized Approximation
Schemes) are known to exist for contingency tables with two rows. Thus we obtain FPRAS
for a restricted class of Kostka numbers from the correspondence in Lemma 1. It would
be of interest to know if such schemes exist for Kostka numbers and Littlewood-Richardson
coefficients with general parameters.
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