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Abstract

Heavy-tailed data, e.g., graphs in which the de-
gree sequence decays according to a power law,
are ubiquitous in applications. In many of those
applications, spectral kernels, e.g., Laplacian Eigen-
maps and Diffusion Maps, are commonly-used an-
alytic tools. We establish learnability results appli-
cable in both settings. Our first result is an exact
learning bound for learning a classification hyper-
plane when the components of the feature vector
decay according to a power law. Thus, although
the distribution of data is infinite dimensional and
unbounded, a nearly optimal linear classification
hyperplane is learnable due to the polynomial de-
cay in the probability that the ith feature of a ran-
dom data point is non-zero. Our second result is a
“gap-tolerant” learning bound for learning a nearly-
optimal ∆-margin classification hyperplane when
the kernel is constructed according to the Diffu-
sion Maps procedure. Each proof bounds the an-
nealed entropy and thus makes important use of
distribution-dependent information. The proof of
our first result is direct, while the proof of our sec-
ond result uses as an intermediate step a commonly-
accepted but not yet rigorously-proved bound for
the VC dimension of gap-tolerant classifiers. We
offer a rigorous proof of this result for the usual
case where the margin is measured in the `2 norm,
and we prove a generalization of this result to the
case where the data need not have compact sup-
port and where the margin may be measured with
respect to the more general `p norm.

1 Introduction
In this paper, we prove bounds on the sample complexity
of classification algorithms in two situations—when spectral
kernels are used to describe the data and when the data have
heavy-tail properties—where distribution-independent tech-
niques based on the Vapnik-Chervonenkis (VC) dimension
fail to provide nontrivial bounds. In each case, we bound
the annealed entropy of the classifier, making important use

of distribution-dependent information, thereby providing di-
mension independent sample complexity bounds.

Heavy-tailed distributions are probability distributions whose
tails are not exponentially bounded [14]. Such distributions
can arise via several mechanisms, and they are ubiquitous
in applications. Recall that graphs in which the degree se-
quence decays according to a power law have received a
great deal of attention recently. Recall also that such di-
verse phenomenon as the degree distribution of “protein net-
works,” the distribution of packet transmission rates over the
internet, and the frequency of word use in common text have
heavy-tailed behavior. See, e.g., [5] and references therein
for more details. When calculating the sample complexity
of a classification task for data from such sources, bounds
that do not take into account the distribution are likely to be
very weak. In this paper, we develop distribution-dependent
bounds to classify data whose magnitude decays in a heavy-
tailed manner. In particular, in Theorem 4 in Section 3 be-
low, we show that if the probability of the ith coordinate
of random data point being non-zero is less than Ci−α for
some C > 0, α > 1, then the sample complexity for finding
a nearly optimal linear hyperplane classifier via Empirical
Risk Minimization is independent of the number of features.
We prove this result by providing a dimension-independent
upper bound on the annealed entropy of the class of linear
classifiers in Rd.

The distribution-dependent ideas we develop are applica-
ble more generally. In particular, they can be used to bound
the sample complexity of a classification task under the as-
sumption that the expected value of a norm of the data is
bounded, i.e., when the magnitude of the feature vector of the
data in some norm has a finite moment. As an application of
this idea, we present distribution-dependent bounds to clas-
sify data using spectral kernels that have received attention
recently. Spectral kernels such as Laplacian Eigenmaps [2]
and Diffusion Maps [13], have received a great deal of atten-
tion recently for dimensionality reduction and related learn-
ing tasks [15]. Let f0, f1, . . . , fn be the eigenfunctions of
the normalized Laplacian on a graph G and let λ0, λ1, . . . be
the corresponding eigenvalues. The Diffusion Map is the fol-
lowing feature map Φ : v 7→ (λk

0f0(v), . . . , λk
nfn(v)), and

Laplacian Eigenmaps is the special case when k = 0. In this
case, the support of the data distribution is unbounded as the
size of the graph increases and, although the norm of the Dif-
fusion Map feature vector is bounded, individual elements
of the feature vector may fluctuate wildly. Thus, existing



results do not give dimension-independent sample complex-
ity bounds for classification via Empirical Risk Minimiza-
tion. In Theorem 6 in Section 4 below, we give dimension-
independent upper bounds on the sample complexity of learn-
ing a gap-tolerant classifier, using crucially the fact that
Ev‖Φ(v)‖2 = 1 even if supv ‖Φ(v)‖ is unbounded as n →
∞ . As with the proof of our main heavy-tailed learning re-
sult, the proof of our main spectral learning result bounds an
annealed entropy.

The bound we provide on the annealed entropy of gap-
tolerant classifiers in our second learning result is of more
general interest. Thus, in Theorem 7 in Section 5, we prove
an upper bound on the annealed entropy of gap-tolerant clas-
sifiers in `2, and more generally in a Banach space of type
p ∈ (1, 2], under the assumption that the expectation of some
moment of the norm of the feature vector is bounded. To
establish this result, we show that the VC dimension of gap-
tolerant classifiers in a Hilbert space when the margin is ∆
over a bounded domain such as a ball of radius R is bounded
above by bR2/∆2c+1. Such bounds have been stated previ-
ously by Vapnik [16]. Recall, however, that in the course of
his proof bounding the VC dimension of a gap-tolerant clas-
sifier whose margin is ∆ over a ball of radius R (See [16],
page 353.), Vapnik states, without further justification, that
due to symmetry the set of points in a ball that is extremal
in the sense of being the hardest to shatter with gap-tolerant
classifiers is the regular simplex. Attention has been drawn
to this fact by Burges ([4], footnote 20), who mentions that
a rigorous proof of this fact seems to be absent. Thus, we
provide a new proof of the upper bound on the VC dimen-
sion of such classifiers without making this assumption. (See
Lemma 8 and its proof.) Moreover, the idea underlying our
new proof of Lemma 8 generalizes to the case when the the
data may be unbounded and when the gap is measured with
respect to more general Banach space norms. In particular,
we show that the VC dimension of gap-tolerant classifiers
with margin ∆ in a ball of radius R in a Banach space of
Rademacher type p ∈ (1, 2] and type constant T (See Defini-
tion 3 below.) is bounded below by (R/∆)

p
p−1 and above by

∼ (3TR/∆)
p

p−1 . (See Lemma 9 and Lemma 11 below.) Af-
ter this paper was written, the authors learnt that Rademacher
complexities have been used by L. Gurvits in [8] to prove up-
per bounds for the sample complexity of learning bounded
linear functionals on `p balls.

2 Background and Preliminaries

In this paper, we consider the supervised learning problem
of binary classification, i.e., we consider an input space X
(e.g., a Euclidean space, or Hilbert space, or Banach space—
see below) and an output space Y , where Y = {−1,+1},
and where the data consist of pairs (X,Y ) ∈ X × Y that
are random variables distributed according to an unknown
distribution. We shall assume that for any X , there is at most
one pair (X, Y ) that is observed.

We observe ` i.i.d. pairs (Xi, Yi), i = 1, . . . , ` sampled
according to this unknown distribution, and the goal is to
construct a classification function α : X → Y which predicts
Y from X with low probability of error.

We will be interested in the following two classification

concepts. First, an ordinary linear hyperplane classifier con-
sists of an oriented hyperplane, and points are labeled ±1,
depending on which side of the hyperplane they lie. Second,
a gap-tolerant classifier consists of an oriented hyperplane
and a margin of thickness ∆ in some norm. Any point out-
side the margin is labeled ±1, depending on which side of
the hyperplane it falls on, and all points within the margin are
declared “correct,” without receiving a ±1 label. This latter
setting has been considered in [16, 4] (as a way of imple-
menting structural risk minimization—apply empirical risk
minimization to a succession of problems, and choose where
the gap ∆ that gives the minimum risk bound).

The risk R(α) of a linear hyperplane classifier α is the
probability that α misclassifies a random data point (x, y)
drawn from P; more formally, R(α) := EP [α(x) 6= y].
Given a set of ` labeled data points (x1, y1), . . . , (x`, y`), the
empirical risk Remp(α, `) of a linear hyperplane classifier α
is the frequency of misclassification on the empirical data;
more formally, Remp(α, `) := 1

`

∑`
i=1 I[xi 6= yi], where

I[·] denotes the indicator of the respective event. The risk
and empirical risk for gap-tolerant classifiers are defined in
the same manner. Note, in particular, that data points labeled
as “correct” do not contribute to the risk for a gap-tolerant
classifier, i.e., data points that are on the “wrong” side of the
hyperplane but that are within the ∆ margin are not consid-
ered as incorrect and do not contribute to the risk.

In problems of classification, the ultimate goal is to find a
classifier that minimizes the true risk, i.e., arg minα∈Λ R(α).
Since the true risk of a classifier α, R(α), is unknown, an em-
pirical surrogate is often used. In particular, Empirical Risk
Minimization (ERM) is the procedure of choosing a classi-
fier α from a set of classifiers Λ by minimizing the empirical
risk arg minα∈Λ Remp(α, `). The consistency and rate of
convergence of ERM—see [16] for precise definitions—can
be related to uniform bounds on the difference between the
empirical risk and the true risk over all α ∈ Λ. There is a
large body of literature on sufficient conditions for this kind
of uniform convergence. In this paper, our main emphasis is
on the annealed entropy:

Definition 1 (Annealed Entropy) LetP be a probability mea-
sure supported on a vector space H. Given a set Λ of de-
cision rules and a set of points Z = {z1, . . . , z`} ⊂ H, let
NΛ(z1, . . . , z`) be the number of ways of labeling {z1, . . . , z`}
into positive and negative samples such that there exists a
gap-tolerant classifier that predicts incorrectly the label of
each zi. Given the above notation,

HΛ
ann(k) := lnEP×kNΛ(z1, . . . , zk)

is the annealed entropy of the classifier Λ with respect to P .

Note that the annealed entropy is a distribution-specific
measure, i.e., the same family of classifiers can have different
annealed entropies when measured with respect to different
distributions. This definition of annealed entropy for gap-
tolerant classifiers also holds for ordinary linear hyperplane
classifiers. Moreover, for ordinary linear hyperplane classi-
fiers, this definition is identical to the definition obtained by
replacing the word “incorrectly” above “correctly,” whereas
for gap-tolerant classifiers, this is not true. For a more de-
tailed exposition of this issue, we refer the reader to ([4],
Appendix A.2).



As the following theorem states, the annealed entropy of
a classifier can be used to get an upper bound on the gener-
alization error.

Theorem 2 (Vapnik, [16]) Given the above notation, the in-
equality

P

[
sup
α∈Λ

R(α)−Remp(α, `)√
R(α)

> ε

]

< 4 exp
((

HΛ
ann(2`)

`
− ε2

4

)
`

)

holds true, for any number of samples ` and for any error
parameter ε.

Normed vector spaces (such as Hilbert spaces and Ba-
nach spaces) are relevant to learning theory for the following
reason. Data are often accompanied with an underlying met-
ric which carries information about how likely it is that two
data points have the same label. This makes concrete the
intuition that points with the same class label are clustered
together. Many algorithms cannot be implemented over an
arbitrary metric space, but require a linear structure. If the
original metric space does not have such a structure, as is the
case when classifying for example, biological data or deci-
sion trees, it is customary to construct a feature space repre-
sentation, which embeds data into a vector space. We will
be interested in the commonly-used Hilbert spaces, in which
distances in the feature space are measure with respect to the
`2 distance, as well as more general Banach spaces:

Definition 3 (Banach space, type, and type constant) A Ba-
nach space is a complete normed vector space. A Banach
space B is said to have (Rademacher) type p if there exists
T < ∞ such that for all n and x1, . . . , xn ∈ B

Eε[‖
n∑

i=1

εixi‖p
B] ≤ T p

n∑

i=1

‖xi‖p
B.

The smallest T for which the above holds with p equal to the
type, is called the type constant of B.

Our results, where the margin is measured in `2 can be
transferred to a setting with kernels. Given a kernel k(·, ·), it
is well known that linear classification using a kernel k(·, ·)
is equivalent to mapping x onto the functional k(x, ·) and
then finding a separating halfspace in the Reproducing Ker-
nel Hilbert Space (RKHS) which is the Hilbert Space gen-
erated by the functionals of the form k(x, ·). Since the span
of any finite set of points in a Hilbert Space can be isometri-
cally embedded in `2, our results hold in the setting of kernel-
based learning as well, when one first uses the feature map
x 7→ k(x, ·) and works in the RKHS.

3 Learning with heavy-tailed data
In this section, we state and prove Theorem 4, our main result
for dimension-independent learning from data in which the
feature map exhibits a heavy-tailed decay.

Consider the following toy model for classifying web
pages using keywords. One approach to this problem could

be to associate with each web page the indicator vector cor-
responding to all keywords that it contains. The dimension
of this feature space is the number of possible keywords,
which is typically very large, and empirical evidence indi-
cates that the frequency of words decays in a heavy-tailed
manner. Thus the VC dimension of the feature space is very
large, and in a distribution-free setting it is not possible to
classify data in such a feature space unless the number of
samples is of the order of the VC dimension. We show that
if the probability that the ith keyword is present is heavy-
tailed as a function of i, then the sample complexity of the
binary classification problem is dimension-independent.

More precisely, the following theorem provides a dimension-
independent upper bound on the number of samples needed
to learn by ERM, with a given accuracy and confidence, a lin-
ear hyperplane that classifies heavy-tailed data into positive
and negative labels, under the assumption that the probabil-
ity of the ith coordinate of a random data point being non-
zero is less than Ci−α for some C > 0, α > 1. The proof
of this result proceeds by providing providing a dimension-
independent upper bound on the annealed entropy of the class
of linear classifiers in Rd, and then appealing to Theorem 2
relating the annealed entropy to the generalization error.

Theorem 4 (Bounds for Heavy-Tailed Data) LetP be a prob-
ability distribution in Rd. Suppose P[xi 6= 0] ≤ Ci−α for
some absolute constant C > 0, with α > 1. Then, the an-
nealed entropy of ordinary linear hyperplane classifiers is

HΛ
ann(`) ≤

(
C

α− 1
`

1
α + 1

)
ln ` (1)

Consequently, the minimum number of random samples ` =
`(ε, δ) needed to learn, by ERM, a classifier whose risk dif-
fers from the minimum risk R(α) by < ε

√
R(α) with proba-

bility > 1− δ is less than or equal to

2

(
4
ε2

(
C2

1
α

α− 1
+ ln

4
δ

)) α
α−1

ln




(
4
ε2

(
C2

1
α

α− 1
+ ln

4
δ

)) α
α−1


 .

Proof: Let the event that a sample zi = (zi1, zi2, . . . ) has a
non-zero coordinate zik′ for some k′ > `1/α be denoted Ei.
The probability of this event can be bounded as follows. If
α 6= 1, and k = `1/α

P[Ei] = P[∃k′ > `1/α, such that zik′ 6= 0]

≤ C

∞∑

i=k+1

i−α

≤ Ck−α+1

α− 1
We partition the zi into two classes :

X = {x1, . . . , x`−m} := {zi such that Ei holds }
and

Y = {y1, . . . , ym} := {zi such that Ei does not hold }.
NΛ is sub-multiplicative by Lemma 5. Taking an expecta-
tion over ` i.i.d samples from P ,

E[NΛ(z1, . . . , z`)] ≤ E[NΛ(x1, . . . , x`−m)NΛ(y1, . . . , ym)]



The dimension of the span of {y1, . . . , ym} is at most k, and
by a result from VC theory ([16], page 159) we have

NΛ(y1, . . . , ym) ≤ exp(k ln(
m

k
) + 1).

Then,

E[NΛ(z1, . . . , z`)] ≤ E[NΛ(x1, . . . , x`−m)emk].

Moving emk outside this expression,

E[NΛ(z1, . . . , z`)] ≤
E[NΛ(x1, . . . , x`−k)]emk.

Note that NΛ(x1, . . . , x`−k) is always bounded above by
2`−k. The events E1, E2, . . . are independent and identically
distributed. Let P[Ei] = p. `−k is the sum of ` independent
p-Bernoulli variables.

E[NΛ(x1, . . . , x`−k)] ≤ E[2`−k].

E[2`−k] can be written as

∏̀

i=1

(1 + P[Ei]) = (1 + p)` (2)

≤ ep` (3)

= e` ( C k−α+1
α−1 ). (4)

Putting everything together, we see that

E[NΛ(z1, . . . , z`)] ≤

e(`)ke
C` k−a+1

α−1 .

Since k = `
1
α , we see that

HΛ
ann(`) = lnE[NΛ(z1, . . . , z`)] (5)

≤
(

C

α− 1
`

1
α + 1

)
ln(`). (6)

In order to obtain sample complexity bounds, we need to
apply Theorem 2 and substitute the above expression for an-
nealed entropy. For the probability that the error of ERM
exceeds ε

√
R(α) to be less than δ (where α is the optimal

classifier), it is sufficient that ` satisfy

4 exp
(

C21/α

α− 1
`

1−α
α ln(2`)− ε2/4

)
` ≤ δ.

For this to be true, it is enough that

ε2`1−
1
α

4
≥ C2

1
α ln(2`)
α− 1

+ ln(4/δ).

A calculation shows that

2α

(
4
ε2

(
C2

1
α

α−1 + ln 4
δ

)) α
α−1

ln
(

4
ε2

(
C2

1
α

α−1 + ln 4
δ

))

α− 1

is a value of ` that satisfies the previous expression.

For ease of reference, we note the following easily es-
tablished fact about NΛ. This lemma is used in the proof of
Theorem 4 above and Theorem 6 below.

Lemma 5 Let {x1, . . . , x`} ∪ {y1, . . . , yk} be a partition of
the data Z into two parts. Then, NΛ is submultiplicative in
the following sense:

NΛ(x1, . . . , x`, y1, . . . yk) ≤ NΛ(x1, . . . , x`)NΛ(y1, . . . , yk).

Proof: This holds because any partition of
Z := {x1, . . . , x`, y1, . . . , yk} into two parts by an element
I ∈ Λ induces such a partition for the sets {x1, . . . , x`} and
{y1, . . . , y`}, and for any pair of partitions of {x1, . . . , x`}
and {y1, . . . , yk}, there is at most one partition of Z that
induces them.

4 Learning with spectral kernels
In this section, we state and prove Theorem 6, our main result
for dimension-independent learning from data in which the
feature map is constructed from a spectral kernel.

Spectral kernels have received a great deal of attention
recently for data classification, regression, and dimensional-
ity reduction [15]. Consider, for example, Laplacian Eigen-
maps [2] and Diffusion Maps [13]. Given a neighborhood
graph G = (V,E) constructed from the data, let f1, f2, . . . , fn

be the eigenfunctions of the normalized Laplacian of G and
let λ1, λ2, . . . be the corresponding eigenvalues. The Diffu-
sion Map is the following feature map

Φ : v 7→ (λk
1f1(v), . . . , λk

nfn(v)),

and Laplacian Eigenmaps is the special case when k = 0. In
this case, the support of the data distribution is unbounded as
the size of the graph increases, the VC dimension is O(n),
and the existing results do not give dimension-independent
sample complexity bounds for classification by ERM. Even
for gap-tolerant classifiers, which are easier to learn than or-
dinary linear hyperplane classifiers, the existing bounds of
Vapnik are not independent of the number n of nodes. It is
possible that on some vertices v the eigenfunctions fluctuate
wildly. Moreover, even on special classes of graphs, such as
random graphs G(n, p), a non-trivial uniform upper bound
stronger than O(n) on ‖Φ(v)‖ over all vertices v does not
appear to be known. Thus, VC theory provides an upper
bound of O

(
(n/∆)2

)
on the VC dimension of gap-tolerant

classifiers applied to the Diffusion feature space correspond-
ing to a graph with n nodes. (Recall that by Lemma 8 below,
the VC dimension of the space of “gap-tolerant” classifiers
corresponding to a margin ∆, applied to a ball of radius R

is ∼ (R/∆)2.) Of course, although this bound is quadratic
in the number of nodes, VC theory for ordinary linear clas-
sifiers gives an O(n) bound.

Using the tools developed in this paper, we give dimension-
independent upper bounds on the sample complexity of learn-
ing a gap-tolerant classifier when vertices and their labels
are observed i.i.d form the uniform distribution, We crucially
use the fact that Ev‖Φ(v)‖2 = 1 even if supv ‖Φ(v)‖ is un-
bounded as n →∞ . More precisely, the following theorem
provides a dimension-independent (i.e., independent of the
size n of the graph and the dimension of the feature space)
upper bound on the number of samples needed to learn by
ERM, with a given accuracy and confidence, a gap-tolerant
hyperplane classifier, under the assumption that the Diffu-
sion Map of some scale is used as the feature map. The proof



of this result proceeds by providing providing a dimension-
independent upper bound on the annealed entropy of gap-
tolerant classifiers in the feature space of the Diffusion Maps,
and then appealing to Theorem 2 relating the annealed en-
tropy to the generalization error. The bound on the annealed
entropy follows from Theorem 7 in Section 5 below, by not-
ing that, although bounds on the individual entries of the fea-
ture map do not appear to be known, there exist nontrivial
bounds on the magnitude of the feature vectors.

Theorem 6 (Bounds for Spectral Kernels) Let the follow-
ing Diffusion map be given.

Φ : v 7→ (λk
1f1(v), . . . , λk

nfn(v)),

where fi are normalized eigenfunctions (whose `2(µ)) norm
is 1, µ being the uniform distribution), λi are the eigenvalues
of the corresponding Markov Chain and k ≥ 0. Then, the
annealed entropy of a gap-tolerant classifier in the feature
space of the Diffusion Maps is

HΛ
ann(`) ≤ (

`
1
2

∆
+ 1)(1 + ln(` + 1)). (7)

Consequently, the minimum number of random samples ` =
`(ε, δ) needed from the uniform distribution to learn, by ERM,
a gap-tolerant classifier for a labeled graph via a Diffu-
sion Map, whose risk differs from the minimum risk R(α)
by < ε

√
R(α) with probability > 1− δ is less or equal to

200
((

1
∆2ε4

+ ln(1/δ)
)

ln2

(
ln(1/δ)

∆ε

))
. (8)

Proof:A diffusion map for the graph (V, E) = G is the
feature map that associates with a vertex x, the feature vec-
tor x = (λα

1 f1(x), . . . , λα
mfm(x)), when the eigenfunctions

corresponding to the top m eigenvalues are chosen. Let µ be
the uniform distribution on V and |V | = n. We note that if
the fj are normalized eigenfunctions, i.e., ∀j, ∑x∈V fj(x)2 =
1,

E‖x‖2 =
∑n

i=1 λ2α
i

n
≤ 1. (9)

The above inequality holds because the eigenvalues have mag-
nitudes that are less or equal to 1:

1 = λ1 ≥ · · · ≥ λn ≥ −1.

An application of Theorem 7 tells us the following. The an-
nealed entropy of learning a gap-tolerant classifier in the fea-
ture space of the Diffusion Maps is

HΛ
ann(`) = (

`
1
2

∆
+ 1)(1 + ln(` + 1)).

For any ` the inequality

P

[
sup
α∈Λ

R(α)−Remp(α, `)√
R(α)

> ε

]
<

4 exp

((
(
√

2
∆ + 1)(ln(2` + 1) + 1)

`
1
2

− ε2

4

)
`

)

holds true. It follows that `(ε, δ) is bounded above by any `
that satisfies

4 exp

((
(
√

2
∆ + 1)(ln(2` + 1) + 1)

`
1
2

− ε2

4

)
`

)
< δ.

A tedious but elementary calculation shows that

`(ε, δ)
(ln(2`(ε, δ) + 1) + 1)2

≤

(
8
√

2
∆ + 4

)

ε2
+2 ln

4
δ
+

(
4
√

2
∆ + 2

)2

ε4
.

Therefore,

`(ε, δ) < 200
(

1
∆2ε4

+ ln(1/δ)
)

ln2

(
ln(1/δ)

∆ε

)
.

5 Gap-tolerant classifiers in Hilbert spaces
and in Banach spaces

In this section, we state and prove Theorem 7, our main re-
sult regarding an upper bound for the annealed entropy of
gap-tolerant classifiers in `2 and, more generally, in a Ba-
nach space of type p with type constant T . After stating and
proving Theorem 7 and stating several intermediate lemmas
in the next subsection, we devote the subsequent subsections
to proving the intermediate lemmas.

5.1 Summary of results for gap-tolerant classification
The following theorem is our main result regarding an upper
bound for the annealed entropy of gap-tolerant classifiers.
The `2 bound for this theorem will use Lemma 8, while the
Banach space bound will use Lemma 9, both of which are
stated and proved below. We state the `2 bound explicitly
since the bound provided by Lemma 8 is slightly better than
the corresponding bound for implied by the more general
Lemma 9. Note that it may seem counter-intuitive that in
the case of `2 (when we set γ = 2 below) the dependence of
∆ is ∆−1, which is weaker than in the VC bound where it is
∆−2. The explanation is that the bound on annealed entropy
here depends on the number of samples `, while the VC di-
mension does not. Therefore, the weaker dependence on ∆
is compensated for by a term that in fact tends to ∞ as the
number of samples ` →∞.

Theorem 7 (Annealed entropy) LetP be a probability mea-
sure on a Hilbert space H, let ∆ > 0, and let EP‖x‖2 =
r2 < ∞. Then the annealed entropy of gap-tolerant classi-
fiers in H, where the gap is ∆, is

HΛ
ann(`) ≤(

`
1
2

( r

∆

)
+ 1

)
(1 + ln(` + 1)).

More generally, let P be a probability measure on a Banach
space B of type p and type constant T . Let γ, ∆ > 0, and
let η = p

p+γ(p−1) . If EP‖x‖γ = rγ < ∞, then the annealed
entropy of gap-tolerant classifiers in B, where the gap is ∆,
is

HΛ
ann(`) ≤(

η−η(1− η)−1+η

(
`

ln(` + 1)

(
3Tr

∆

)γ)η

+ 64
)

ln(`+1).



Proof: We prove the Banach space result first. Let ` inde-
pendent, identically distributed (i.i.d) samples z1, . . . , z` be
chosen from P . We partition them into two classes :

X = {x1, . . . , x`−k} := {zi | ‖zi‖ > R},
and

Y = {y1, . . . , yk} := {zi | ‖zi‖ ≤ R}.
Our objective is to bound from above the annealed entropy
HΛ

ann(`) = lnE[NΛ(z1, . . . , z`)]. By Lemma 5 NΛ is sub-
multiplicative. Therefore,

NΛ(z1, . . . , z`) ≤ NΛ(x1, . . . , x`−k)NΛ(y1, . . . , yk).

Taking an expectation over ` i.i.d samples from P ,

E[NΛ(z1, . . . , z`)] ≤ E[NΛ(x1, . . . , x`−k)NΛ(y1, . . . , yk)].

Now applying Lemma 9, we see that

E[NΛ(z1, . . . , z`)] ≤

E[NΛ(x1, . . . , x`−k)(k + 1)(3TR/∆)
p

p−1 +64].

Moving (k + 1)((2+o(1)TR/∆)
p

p−1 ) outside this expression,

E[NΛ(z1, . . . , z`)] ≤

E[NΛ(x1, . . . , x`−k)](k + 1)(3TR/∆)
p

p−1 +64.

Note that NΛ(x1, . . . , x`−k) is always bounded above by
2`−k. The random variables I[Ei[‖xi‖ > R]] are i.i.d. Let
P[‖xi‖ > R] = ρ.
`− k is the sum of ` independent Bernoulli variables. More-
over, by Markov’s inequality,

P[‖xi‖ > R] ≤ E[‖xi‖γ ]
Rγ

,

and therefore ρ ≤ ( r
R )γ .

E[NΛ(x1, . . . , x`−k)] ≤ E[2`−k].
Let I[·] denote an indicator variable. E[2`−k] can be written
as

∏̀

i=1

E[2I[‖xi‖>R]] = (1 + ρ)` ≤ eρ`.

Putting everything together, we see that

E[NΛ(z1, . . . , z`)] ≤ (10)

exp

(
`
( r

R

)γ

+ ln(k + 1)
(

64 +
3TR

∆

) p
p−1

)
. (11)

By setting η := p
γ(p−1)+p , and adjusting R so that

`
( r

R

)γ

η−1 = (1− η)−1 ln(` + 1)
(

3TR

∆

) p
p−1

.

We see that

`
( r

R

)γ

+
(

3TR

∆

) p
p−1

=

(
`
( r

R

)γ

η−1
)η

(
(1− η)−1 ln(` + 1)

(
3TR

∆

) p
p−1

)1−η

=

η−η(1− η)−1+η

(
`

(
3Tr

∆

)γ)η

Thus, it follows that

HΛ
ann(`) = logE

[
NΛ(z1, . . . , z`)

]

≤
(

η−η(1− η)−1+η

(
`

ln(` + 1)

(
3Tr

∆

)γ)η

+ 64
)

ln(`+1).

We next prove the special case when the Banach space
is a Hilbert space. In this case, we have γ = 2. Then, us-
ing Lemma 8 instead of the VC bound for general Banach
spaces, the analogue of Equation 10 that we obtain is

E[NΛ(z1, . . . , z`)] ≤ (12)

exp
(

`
( r

R

)2

+ ln(` + 1)
(

R2

∆2
+ 1

))
. (13)

If we substitute R = (`r2∆2)
1
4 , it follows that

HΛ
ann(`) = logE

[
NΛ(z1, . . . , z`)

]

≤
(
`

1
2

( r

∆

)
+ 1

)
(1 + ln(` + 1)).

The proof of Theorem 7 Thus, as an intermediate step,
we will need a bound on the VC dimension of a gap-tolerant
classifier. The following lemma is due to Vapnik [16].

Lemma 8 (Upper bound; Hilbert Space) In a Hilbert-space,
the VC dimension of a gap-tolerant classifier whose margin
is ∆ over a ball of radius R is ≤ bR2

∆2 c+ 1.

Note that in the course of his proof (See [16], page 353.),
Vapnik states, without further justification, that due to sym-
metry the set of points that is extremal in the sense of being
the hardest to shatter with gap-tolerant classifiers is the reg-
ular simplex. Attention has also been drawn to this fact by
Burges ([4], footnote 20), who mentions that a rigorous proof
of this fact seems to be absent. Thus, we provide a new proof
of Lemma 8 in Section 5.2.

The idea underlying our new proof of Lemma 8 general-
izes to the case when the the gap is measured in more general
Banach spaces. We state the following lemma for a Banach
space of type p with type constant T . Recall, e.g., that `p for
p ≥ 1 is a Banach space of type min(2, p) and type constant
1.

Lemma 9 (Upper bound; Banach Space) In a Banach Space
of type p and type constant T the VC dimension n of gap-
tolerant classifiers can by bounded above by

(
3TR
∆

) p
p−1 +64

The proof of Lemma 9 may be found in Section 5.3.
It will employ the following form of the Chernoff bound,
which we state for ease of reference.

Lemma 10 (Chernoff Bound) Let X1, . . . , Xn be discrete
independent random variables such that E[Xi] = 0 for all i
and |Xi| ≤ 1 for all i. Let X =

∑n
i=1 Xi for all i and σ2 be

the variance of X . Then

P[|X| ≥ λσ] ≤ 2e−λ2/4

for any 0 ≤ λ ≤ 2σ.



Finally, for completness, we next state a lower bound for
VC dimension of gap-tolerant classifiers when the margin is
measured in a norm that is associated with a Banach space
of type p ∈ (1, 2]. Since we are interested only in a lower
bound, we consider the special case of `n

p . Note that this
argument does not immediately generalize to Banach spaces
of higher type because for p > 2, `p has type 2.

Lemma 11 (Lower Bound) For each p ∈ (1, 2], there ex-
ists a Banach space of type p such that the VC dimension of
gap-tolerant classifiers with gap ∆ over a ball of radius R is
greater or equal to

(
R

∆

) p
p−1

.

Further, this bound is achieved when the space is `p.

5.2 Proof of Lemma 8
Proof: Suppose the VC dimension is n. Then there exists
a set of n points X = {x1, . . . , xn} in B(R) that can be
completely shattered using gap-tolerant classifiers. We will
consider two cases, first that n is even, and then that n is odd.

First, assume that n is even, i.e., that n = 2k for some
positive integer k. We apply the probabilistic method to ob-
tain a upper bound on n. Note that for every set S ⊆ [n], the
set XS := {xi|i ∈ S} can be separated from X − XS us-
ing a gap-tolerant classifier. Therefore the distance between
the centroids (respective centers of mass) of these two sets
is greater or equal to 2∆. In particular, for each S having
k = n/2 elements,

‖
∑

i∈S xi

k
−

∑
i 6∈S xi

k
‖ ≥ 2∆.

Suppose now that S is chosen uniformly at random from the(
n
k

)
sets of size k. Then,

4∆2 ≤ E
[
‖
∑

i∈S xi

k
−

∑
i6∈S xi

k
‖2

]

= k−2

{
2k + 1

2k

n∑

i=1

‖xi‖2 − ‖∑n
1 xi‖2
2k

}

≤ 4(n + 1)
n2

R2

Therefore,

∆2 ≤ n + 1
n2

R2

<
R2

n− 1

and so

n <
R2

∆2
+ 1.

Next, assume that n is odd. We perform a similar calcu-
lation for n = 2k + 1. As before, we average over all sets S
of cardinality k the squared distance between the centroid of

XS and the centroid (center of mass) of X−XS . Proceeding
as before,

4∆2 ≤ E
[
‖
∑

i∈S xi

k
−

∑
i6∈S xi

k + 1
‖2

]

=

∑n
i=1 ‖xi‖2(1 + 1

2n )− 1
2n‖

∑
1≤i≤n xi‖2

k(k + 1)

≤
∑n

i=1 ‖xi‖2(1 + 1
2n )

k(k + 1)

=
4k + 3

2k(2k + 1)(k + 1)
{(2k + 1)R2}

<
4R2

n− 1

Therefore, n < R2

∆2 + 1.

5.3 Proof of Lemma 9

Proof: We use the inequality 15 determining the Rademacher
type of B. This, while permitting greater generality, provides
weaker bounds than previously obtained in the Euclidean
case. When necessary, we use Lemmas proved later. Note
that if µ :=

∑n
i=1 xi, then by repeated application of the

Triangle Inequality,

‖xi − µ‖ ≤ (1− 1
n

)‖xi‖+
∑

j 6=i

‖xj‖
n

< 2 sup
i
‖xi‖.

This shows that if we start with x1, . . . , xn having norm ≤
R, ‖xi − µ‖ ≤ 2R for all i. The property of being shattered
by gap-tolerant classifiers is translation invariant. Then, for
∅ ( S ( [n], it can be verified that

2∆ ≤
∑

i∈S(xi − µ)
|S| −

∑
i 6∈S(xi − µ)
n− |S|

=
n

2|S|(n− |S|)


∑

i∈S

(xi − µ)−
∑

i 6∈S

(xi − µ)


 .(14)

The Rademacher Inequality states that

Eε[‖
n∑

i=1

εixi‖p] ≤ T p
n∑

i=1

‖xi‖p. (15)

Using the version of Chernoff’s bound in Lemma 10

P[|
n∑

i=1

εi| ≤ λ
√

n] ≥ 1− 2e−λ2/4. (16)

We shall denote the above event by Eλ. Now, let x1, . . . , xn

be n points in B with a norm less or equal to R. Let µ =



Pn
i=1 xi

n as before.

2pT pnRp ≥ 2pT p
n∑

i=1

‖xi‖p

≥ T p
n∑

i=1

‖xi − µ‖p

≥ Eε[‖εi(xi − µ)‖p]
≥ Eε[‖εi(xi − µ)‖p|Eλ] P[Eλ]

≥ Eε[(n− λ2)p(2∆)p(1− 2e−λ2/4)]

The last inequality follows from 14 and 16). We infer from
the preceding sequence of inequalities that

np−1 ≤ 2pT p

(
R

∆

)p {
(1− λ2

n
)p(1− 2e−λ2/4)

}−1

.

The above is true for any λ ∈ (0, 2
√

n), by the conditions in
the Chernoff bound stated in Lemma 10. If n ≥ 64, choosing
λ equal to 8 gives us np−1 ≤ 3pT p

(
R
∆

)p
. Therefore, it is

always true that n ≤ (
3TR
∆

) p
p−1 + 64.

5.4 Proof of Lemma 11
Proof: We shall show that the first n unit norm basis vec-
tors in the canonical basis can be shattered using gap-tolerant
classifiers, where ∆ = n

1−p
p . Therefore in this case, the VC

dimension is ≥ ( R
∆ )

p
p−1 . Let ej be the jth basis vector. In

order to prove that the set {e1, . . . , en} is shattered, due to
symmetry under permutations, it suffices to prove that for
each k, {e1, . . . , ek} can be separated from {ek+1, . . . , en}
using a gap-tolerant classifier. Points in `p are infinite se-
quences (x1, . . . ) of finite `p norm. Consider the hyperplane
H defined by

∑k
i=1 xi −

∑n
i=k+1 xi = 0. Clearly, it sep-

arates the sets in question. We may assume ej to be e1, re-
placing if necessary, k by n− k. Let x = infy∈H ‖e1− y‖p.
Clearly, all coordinates xn+1, . . . of x are 0. In order to get
a lower bound on the `p distance, we use the power-mean
inequality:
If p ≥ 1, and x1, . . . , xn ∈ R,

(∑n
i=1 |xi|p

n

) 1
p

≥
∑n

i=1 |xi|
n

.

This implies that

‖e1 − x‖p ≥ n
1−p

p ‖e1 − x‖1

= n
1−p

p

(
|1− x1|+

n∑

i=2

|xi|
)

≥ n
1−p

p

(
1−

k∑

i=1

xi +
n∑

i=k+1

xi

)

= n
1−p

p .

For p > 2, the type of `p is 2 [12]. Since p
p−1 is a decreasing

function of p in this regime, we do not recover any useful
bounds.

6 Conclusion
The distribution-dependent bounds we have presented are re-
stricted to the classification problem, but we expect that a
similar analysis will yield corresponding results for other sta-
tistical learning problems such as regression and density es-
timation. More interesting for applications would be the fol-
lowing two extensions. First, due to the extreme sparsity of
typical heavy-tailed data, it would be of interest to establish
analogous results for Structural Risk Minimization, rather
than simply Empirical Risk Minimization. Second, rather
than define a “diffusion map” that depends on global eigen-
functions, it would be interesting to define and use one based
on recently-developed “local” spectral methods [17, 1].

More generally, however, one might view our results as
providing weak bounds when compared with traditional re-
sults in learning theory. Such a view is consistent with the
recent empirical results of Leskovec, Lang, Dasgupta, and
Mahoney (LLDM) [10, 11], who examined the clustering
and community structure in over 70 large social and infor-
mation networks taken from a wide range of application do-
mains. LLDM present empirical evidence that indicates that
commonly-studied heavy-tailed graphs such as large infor-
matics graphs are not consistent with the hypothesis that the
data are drawn from a low-dimensional structure such as a
low-dimensional manifold. Coupled with the empirical re-
sults of LLDM, our theoretical results presented in this pa-
per suggest that many of the existing spectral-based tech-
niques in machine learning will need to be modified to per-
form learning on “real world” heavy-tailed data.
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