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Abstract

We point out that the positivity of a Littlewood-Richardson coef-
ficient cγα,β for GLn can be decided in strongly polynomial time. This
means that the number of arithmetic operations is polynomial in n
and independent of the bit lengths of the specifications of the parti-
tions α, β and γ, and each operation involves numbers whose bitlength
is polynomial in n and the bit lengths α, β and γ.

Secondly, we observe that non-vanishing of a generalized Littlewood-
Richardson coefficient of any type can be decided in strongly polyno-
mial time assuming an analogue of the saturation conjecture for other
types, and that for weights α, β, γ the positivity of c2γ2α,2β can (uncon-
ditionally) be decided in strongly polynomial time.
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1 Introduction

The fundamental Littlewood-Richardson rule in the representation theory of
GLn(C) [3] states that the tensor product of two irreducible representations
(Weyl modules) Vα and Vβ of a semisimple Lie algebra G decomposes as
follows:

Vα ⊗ Vβ = ⊕γCγα,βVγ , (1)

where Cγα,β are generalized Littlewood-Richardson coefficients. Here α, β
and γ denote the highest weights of G. When G = sln(C) (type A), α and β
are partitions (Young diagrams) with at most n rows, and the sum is over
all Young diagrams γ of height at most n, and size equal to the sum of the
sizes of α and β.

We are interested in finding an efficient algorithm to decide if Cγα,β is
nonvanishing (positive). This problem arises naturally in the geometric
complexity theory approach [15, 14, 16] towards the P vs. NP and related
problems.

It has been observed in [12, 11, 17] independently that, when G is simple
of type A, nonvanishing of Cγα,β can be decided in polynomial time; i.e., in
time that is polynomial in the bitlengths of the specifications of the parti-
tions α, β and γ. Furthermore, the algorithm in [17] is strongly polynomial–
i.e., the number of arithmetic steps in the algorithm depends only on the
total number of parts of α, β and γ, but not their bitlengths. One crucial
ingredient in this algorithm is the saturation theorem in [10], which does
not hold for simple Lie algebras of type B,C or D [24]. The result in [17]
was extended to other types in [18] assuming a positivity conjecture in [12].
This article combines the results of [17] and [18].

We now state these results in more detail.

First, we consider type A; i.e., G = sln(C). Let λ = (λ1, · · · , λk), where
λ1 ≥ λ2 ≥ · · ·λk > 0, be a partition (Young diagram). By its bit length 〈λ〉,
we mean the bit length of its specification, which is

∑
i log2(λi). Observe

that the dimension of the Weyl module Vλ can be exponential in n, k and
the bit lengths of λi’s. Because the dimension of Vλ is the total number of
semistandard tableau of shape λ with entries in [1, n] [3].

Theorem 1.1 Given partitions α, β and γ, deciding if Vγ exists within Vα⊗
Vβ–i.e. if Cα,β,γ is positive–can be done in polynomial time; i.e., in time
that is polynomial in n and the bit lengths of α, β, and γ1 Furthermore, the

1If we assume that a partition λ is specified as (λ1, · · · , λn), with λ1 ≥ · · · ≥ λn, where
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algorithm is strongly polynomial in the sense of [13].

Strong polynomiality stated in the theorem means that [13]: (1) The
number of arithmetic steps in the algorithm is polynomial in n. It does not
depend on the bit lengths of αi, βj , and γk’s. (3) The bit length of every
intermediate operand that arises in the algorithm is polynomial in the total
bit length of α, β and γ.

For general types, we have:

Theorem 1.2 The positivity of a generalized Littlewood-Richardson coef-
ficient Cνλ,µ for any semi-simple Lie algebra G can be decided in strongly
polynomial time, assuming the following positivity conjecture made in [12].

Let C̃(n) = C̃µλ,µ(n) = Cnνnλ,nµ denote the stretching function associated

with Cνλ,µ. Assume that the type of G is B,C or D. Then C̃(n) is a quasi-
polynomial of period at most two [12]. That is, there exist polynomials
C̃1(n) and C̃2(n) such that

Cnνnλ,nµ =

{
C̃1(n), if n is odd;

C̃2(n), if n is even.

Conjecture 1.3 (Positivity conjecture) [12]

The quasi-polynomial C̃(n) = C̃νλ,µ(n) is positive–i.e., the coefficients of

C̃i(n), i = 1, 2, are nonnegative.

This is an extension of an analogous earlier conjecture in [9] for type A.
Considerable experimental evidence for these conjectures has been given in
these papers.

Here it is assumed that each highest weight is specified by giving its
coordinates in the basis of fundamental weights. The bitlength 〈λ〉 is defined
to the total bitlength of all coordinates. Strongly polynomial means the
number of arithmetic steps is polynomial in the rank of G, and the bit
length of every intermediate operand is polynomial in the bitlengths 〈λ〉, 〈µ〉
and 〈ν〉 of λ, µ and ν and the rank of G.

λi = 0 for i higher than the height of λ, then the term n can be subsumed in the bit
length of the input.
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Remark 1.4 For Theorem 1.2 to hold, we do not need the full statement of
the Positivity Conjecture, but only the following analogue of saturation for
Lie groups of types B, C, D:

Cνλµ = 0 =⇒ ∀ odd n,Cnνnλ,nµ = 0.

In fact the following weaker hypothesis suffices: A generalized Littlewood-
Richardson coefficient is non-zero if the affine span of the corresponding
BZ-polytope [1] contains an integer point.

Finally, we observe that the proof of Theorem 1.1 can be extended to
general types using the recent results in [2] and [20]:

Theorem 1.5 The positivity of a generalized Littlewood-Richardson coeffi-
cient C2ν

2λ,2µ for any semi-simple Lie algebra G can be decided in strongly
polynomial time.

Theorem 1.1 is proved in Section 2, Theorem 1.2 in Section 3 and The-
orem 1.5 in Section 4.

2 Littlewood-Richardson coefficient of type A

Here we prove Theorem 1.1. The proof follows easily from the following
three results:

1. Littlewood-Richardson rule: specifically, a polyhedral interpretation
of the Littlewood-Richardson coefficients. The polytope we use here is
more elementary than BZ-polytope [1] and the Hive polytope [10]–the
latter two have some stronger properties not used here.

2. Saturation Theorem [10].

3. Polynomial time algorithm for linear programming: e.g. the ellipsoid
or the interior point method, and the related strongly polynomial time
algorithm for combinatorial linear programming in [13].

Let us begin with a polyhedral interpretation; this should be well known.
Recall that the Littlewood-Richardson coefficient cγα,β has the following com-
binatorial interpretation [4] .

Let us say that a word w = w1 · · ·wr is a reverse lattice word if, when
read backwards from the end to any letter ws, s < r, the sequence wr · · ·ws
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contains at least as many 1’s as 2’s, at least as many 2’s as 3’s, and so on
for all positive integers. The row word w(T ) of a skew tableau T is defined
to be the word obtained by reading its entries from bottom to top, and left
to right. A skew-tableau T of shape γ/α is called a Littlewood-Richardson
skew tableau if its row word w(T ) is a reverse lattice word.

Then Cγα,β is the number of Littlewood-Richardson skew tableaux of
shape γ/α of content β.

Let rij(T ), i ≤ n, j ≤ n, denote the number of j’s in the i-th row of T .
These are integers satisfying the constraints:

1. Nonnegativity: rij ≥ 0.

2. Shape constraints: For i ≤ n,

αi +
∑
j

rij = γi.

3. Content constraints: For j ≤ n:∑
i

rij = βj .

4. Tableau constraints: No k ≤ j occurs in the row i+ 1 of T below a j
or a higher integer in the row i of T :

αi+1 +
∑
k≤j

ri+1
k ≤ αi +

∑
k′<j

rik′ .

5. Reverse lattice word constraints: rij = 0 for i < j, and for i ≤ n,
1 < j ≤ n: ∑

i′lei

ri
′
j ≤

∑
i′<i

ri
′
j−1.

Let r denote the vector with the entries rij(T ). These constraints can be
written in the form of a linear program:

Ar ≤ b, (2)

where the entries of A are 0, 1 or −1, and the entries of b are homogeneous,
integral, linear forms in αi, βj , and γk’s. Thus Cγα,β is the number of integer
points in the polytope P determined by these constraints.
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Claim 2.1 The polytope P contains an integer point iff it is nonempty.

Proof: One direction is trivial.

Suppose P is nonempty. Since b is homogeneous in α, β and γ, it follows
that, for any positive integer q, Cqγqα,qβ is the number of integer points in
the scaled polytope qP . All vertices of P have rational coefficients. Hence,
for some positive integer q, the scaled polytope qP has an integer point. It
follows that, for this q, Cqγqα,qβ is positive. Saturation Theorem [10] says that,

in this case, Cγα,β is positive. Hence, P contains an integer point. Q.E.D.

Whether P is nonempty can be determined in polynomial time using
either the ellipsoid or the interior point algorithm for linear programming.
Since the linear program (2) is combinatorial [13], this can also be done in
strongly polynomial time using the algorithm in [13]. This proves Theo-
rem 1.1.

3 Generalized Littlewood-Richardson Coefficients

In this section we prove Theorem 1.2.

Let P = P νλ,µ denote the BZ-polytope [1] whose Ehrhart quasi-polynomial

coincides with C̃νλ,µ(n).

Definition 3.1 For any subset B of Qn, its affine span over rationals,
Aff(B) is{

v
∣∣∃({vi} ∈ B, {αi} ∈ Q), such that

k∑
i=1

αi = 1 and v =
k∑
i=1

αivi

}
.

Let Z<2> denote the subring of Q obtained by localizing Z at 2–i.e.,
the subring of fractions with odd denominators. We will call a point in Rd
rational if all its co-ordinates are rational.

Lemma 3.2 Assume that G is simple of type B,C or D. If the positivity
conjecture is true, the following are equivalent:

(1) Cνλµ ≥ 1.

(2) There exists an odd integer n such that Cnνnλnµ ≥ 1.

(3) P contains a point in Zd<2>.
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(4) Aff(P ) contains a point in Zd<2>.

Proof: Clearly, the first three statements are equivalent, and (3) implies (4).
It remains to show that (4) implies (3). Let z ∈ Zd<2> ∩Aff(P ).
The 0−dimensional case is trivial since {z} = P . Suppose that the dimen-
sion of P is greater or equal to 1. Since z has rational coordinates and is
contained in Aff(P ), z = ax + (1 − a)y for some distinct rational points
x, y ∈ P , and a ∈ Q. Let q be a positive integer such that 2q(x−y) ∈ Zd<2>.

{z+λ2q(x−y)
∣∣λ ∈ Z<2>} is a dense subset of Aff({x, y}) in the topology

induced by the standard topology of Rn, and is therefore nonempty. Thus
P ∩ Zd<2> ⊇ {z + λ2q(x− y)

∣∣λ ∈ Z<2>} 6= ∅.
Q.E.D.

Now we turn to the proof of Theorem 1.2. First, let us assume that G is
simple of type B,C or D.

The specification of an explicit linear program of the form Ax ≤ b defin-
ing the BZ-polytope P = P νλ,µ can be computed in strongly polynomial time
using its description in [1]. It is also clear from [1] that the entries of A here
have constant bit lengths. In the terminology of [23], this linear program
is combinatorial. Hence, we can determine if P is nonempty in strongly
polynomial time by the combinatorial linear programming algorithm in [23].
If P is nonempty, this algorithm can also be extended to find an integral
matrix C and an integral vector D so that Aff(P ) is defined by the linear
system Cx = D. One way of achieving this is the following. Find, for ev-
ery constraint hyperplane h of P , a vertex vh of P that is the farthest to
h. The affine span is the intersection of all constraint hyperplanes h such
that vh ∈ h. Usual linear programming algorithms [7, 8] here, in place of
the algorithm in [23], will yield a polynomial time algorithm, instead of a
strongly polynomial time algorithm.

By Lemma 3.2 (4), it remains to check if Aff(P ) contains a point in Zd<2>.
This can be done as follows. By padding, if necessary, we can assume that C
is square. Using [5], we find the Smith normal form S of C and unimodular
matrices U and V such that C = USV ; here S is a diagonal integer matrix,
whose i-th diagonal entry divides the (i + 1)-st diagonal entry. Since the
entries of C have constant bit lengths, the algorithm in [5] works in strongly
polynomial time. The question now reduces to checking if USV x = D has a
solution x ∈ Zd<2>. This is so iff Sy = U−1D has a solution y ∈ Zd<2>. Since
S is diagonal, this can be verified in (strongly) polynomial time by checking
each coordinate.
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This proves Theorem 1.2 for types B,C,D.

Now let G be any semisimple algebra. A generalized Littlewood-Richardson
coefficient for G is the product of corresponding generalized Littlewood-
Richardson coefficients for each of its simple factors. Hence, without loss
of generality, we can assume that G is simple. If it is of type A, then
Theorem 1.2 holds unconditionally by Theorem 1.1. If it is an excep-
tional simple Lie algebra, then a Littlewood-Richardson coefficient can be
computed in O(1) arithmetic steps. This is because, when the rank of
G is constant, the chambers of quasi-polynomiality [22] of the generalized
Littlewood-Richardson coefficient, considered as a vector partition function,
are generated by O(1) constraints.

This proves Theorem 1.2.

4 Proof of Theorem 1.5

Suppose first that G is of type B,C, or D. By [2] and [20], it follows that if
there exists an integer n such that Cnνnλ,nµ ≥ 1, then, C2ν

2λ,2µ ≥ 1. A weaker
form of this result (with 4 in place of 2) was proven in [6]. By the argument
in subsection 3, C2ν

2λ,2µ ≥ 1 if and only if the BZ polytope P νλ,µ is nonempty,
which can be checked in strongly polynomial time. The argument towards
the end of subsection 3 allows the algorithm to be extended to arbitrary
semisimple groups. Q.E.D.

Acknowledgement: We are grateful to T. McAllister for bringing the posi-
tivity conjecture in [12] to our attention, and to Apoorva Khare for helpful
discussions.
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