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Abstract

We draw on the observation that the amount of heat
diffusing outside of a heated body in a short period of
time is proportional to its surface area, to design a sim-
ple algorithm for approximating the surface area of a
convex body given by a membership oracle. Our method
has a complexity of O*(n*), where n is the dimension,
compared to O*(n8-°) for the previous best algorithm.
We show that our complexity cannot be improved given
the current state-of-the-art in volume estimation.

1 Introduction

An important class of algorithmic questions centers
around estimating geometric invariants of convex bod-
ies. Arguably, the most basic invariant is the volume. It
can be shown ([5], [1]) that any deterministic algorithm
to approximate the volume of a convex body within a
constant factor in R™ needs time exponential in the di-
mension n. Remarkably, randomized algorithms turn
out to be more powerful. In their pathbreaking paper [3]
Dyer, Frieze and Kannan gave the first randomized poly-
nomial time algorithm to approximate the volume of a
convex body to arbitrary accuracy. Since then a consid-
erable body of work has been devoted to improving the
complexity of volume computation culminating with the
recent best of O*(n*) due to Lovész and Vempala [11].

Another fundamental geometric invariant associated
with a convex body is surface area. Estimating the

surface area was mentioned as an open problem by
Grotschel, Lovasz, and Schrijver in 1988 ([9]). Dyer,
Gritzmann and Hufnagel [4] showed in 1998 that it
could be solved in randomized polynomial time. The
primary focus of their paper was to establish that the
computation of surface area and certain other mixed vol-
umes was possible in randomized polynomial time, and
they assumed access to oracles for §-neighbourhoods of
the convex body. They did not discuss the complexity of
their algorithm given only a membership oracle for the
convex body. Below, we indicate an O*(n®%) analysis
of their algorithm in terms of the more restricted queries.

In this paper we develop a new technique for esti-
mating volumes of boundaries based on ideas from heat
propagation. The underlying intuition is that the amount
of heat escaping from a heated object in a small interval
of time is proportional to the surface area.

It turns out that this intuition lends itself to an effi-
cient randomized algorithm for computing surface areas
of convex bodies, given by a membership oracle. In this
paper we describe the algorithm and the analysis of the
algorithm, proving a complexity bound of O*(n*). The
O*(-) notation hides the polynomial dependence on the
relative error €, and poly-logarithmic factors in the pa-
rameters of the problem. Since, as will be shown below,
surface area estimation is at least as hard as volume ap-
proximation, this bound is the best possible, given the
current state-of-the-art in volume estimation.

We note that this bound cannot be obtained using
methods previously proposed in [4] due to a bottleneck
in their approach. The method in [4] exploited the fact
that vol(K + BJ) is a polynomial in &, where B¢ is a



ball of radius § and the Minkowski sum K + Bd corre-
sponds to the set of points within a distance ¢ of K. The
surface area is the coefficient of the linear term, which
they then estimate by interpolation. However, in a natu-
ral setting, we only have access to a membership oracle
for K, but not for K 4+ BJ. Therefore a membership ora-
cle for K + BJ has to be constructed, which as far as we
can see, requires solving a quadratic programming prob-
lem on a convex set. Given access only to a membership
oracle, the best known algorithm to handle this task is
due to Kalai and Vempala, and makes O*(n*%) oracle
calls ([7]), which gives a bound on the complexity of the
algorithm in [4] that is O* (n5-?).

Even with a stronger separation oracle the complex-
ity of the method in [4] is O*(n®), since the associated
quadratic programming problem requires O*(n) opera-
tions ([14], [2].) On the other hand, the complexity of
our method is O*(n*) using only a membership oracle,
matching the complexity of the volume computation of
Lovész and Vempala [11].

2 Overview of the algorithm

Notation. Throughout this paper, B will denote
the unit n-dimensional ball, K will denote an n-
dimensional convex body such that rB C K C RB.
S = vol(0K) will denote the surface area of K and
V = vol(K), its volume.

We first observe that problem of estimating the sur-
face area of a convex body is at least as hard as that of
estimating the volume. This observation can be stated as

Proposition 1 If the surface area of any n-
dimensional convex body K can be approximated
in O(nﬂpo/ylog(%)po/y(%)) time, the volume can
be approximated in O(nﬁpolylog(%)poly(%)) time,
where 0 is the probability that the relative error exceeds
€.

The proof of the proposition relies on the fact that
given a body K there is a simple relationship between
the volume of K and the surface area of the cylinder
K x [0, h]. More specifically (see Fig. 2)

2vol(K) = vol(d(K x [0, h])) — hvol(9K)

Thus an efficient algorithm for surface area estimation
would also lead to an almost equally efficient algorithm
for estimating the volume. The details can be found in
the Appendix.

Our approach provides an estimate for the isoperi-
metric ratio % Using the fastest existing algorithm for

volume approximation, we obtain a separate estimate for
V. Multiplying these two estimates yields the surface
area S.

The underlying intuition of our algorithm is that the
heat diffuses from a heated body through its boundary.
Therefore the amount of heat escaping in a short period
of time is proportional to the surface area of the object.

Recalling that a point source of heat diffuses at time ¢

_ =)

according to the Gaussian distribution It

1 o
(47rt)n/ 2
leads to the following informal description of the algo-
rithm (see details in Section 3):

Step 1. Take x4, . . ., xy to be samples from the uniform
distribution on K.

Step 2. For each z;, let y; = x; + v;, where v;

is sampled from the Gaussian distribution with density

2|2
W@f 5= for some appropriate value of £. Thus y;

is obtained from x; by taking a random Gaussian step.
Step 3. Let N be the number of y’s, which land outside
of K. & /7 is an estimate for 2.
Step 4. Using an existing algorithm, produce an esti-
mate V for the volume. Estimate the surface area as
VEVE.
We will show that that each of the Steps 1,3,4 can
be done using at most O*(n?) calls to the membership
oracle!. Step 2, of course, does not require any calls to
the oracle at all.
The main technical result of this paper is to show how
to choose values of ¢t and NV, such that

(1—¢) <§\/Z> <%<(1+e) (5 ;)

It is not known how to efficiently obtain indepen-
dent random samples from the uniform distribution on
K. We show how to relax this condition and use almost
independent samples from a nearly uniform distribution
instead, to derive these estimates.

We then apply certain results from [10] and [11], to
generate O (6%) such samples making at most O* (Z—j)
oracle calls.

Putting these and some additional observations to-
gether, we obtain the following theorem which is the

main result of this paper:

Theorem 2.1 The surface area of a convex body K,
given by a membership oracle, and parameters r, R such
that rB C K C RB can be approximated to within a

't is customary to count the number of oracle calls rather than the
number of arithmetic steps in the volume literature, while measuring
the complexity.



relative error of € with probability 1 — 6 using at most

1/1 R 1
0] <n4 log — (2 log” n +log®nlog = + —310g7 (n)))
€ € r o€

€

]

i.e. O*(n*) oracle calls.

The number of arithmetic operations is O* (n%), on num-
bers with a polylogarithmic number of digits. This is the
same as that for volume computation in [11].

3 Algorithm to compute the surface area
3.1 Notation and Preliminaries

A body K is said to be in t-isotropic position if, for
every unit vector u,

1
- < / (u'(z — z))%dx < t,
t K

where 7 is the center of mass of K. Let p be the uniform
distribution on convex body K. We call a random point
z e-uniform if

sup PlzxeAd)—plA) < E,
measurable A 2
Two random variables will be called p-independent if
for any two Borel sets A and B in their ranges,

|[P(X € A,Y e B)—P(X € A)P(Y € B)| < p.
A density p/ is said to have £? norm [ V? Cfi’; > dp with
respect to the uniform distribution on K.

A consequence of the results on page 4 of ([11]),
and Theorem 7.2, [15] that, given a starting point that
is e-uniform, and comes from a distribution that has
a bounded £2 norm it takes O(n?In” 2) oracle calls
per point, to generate [N points z1,...,xy that are e-
uniform and such that each pair is p-independent from
a convex body that is 2-isotropic. This fact plays a cru-
cial role in allowing the surface area algorithm to have a
complexity bounded by O*(n?).

3.2 Algorithm

We present an algorithm below that outputs an
e-approximation to the surface area of a convex body K
with probability > 3/4. Running it [361n (2)] times
and taking the median of the outputs gives the result
with a confidence > 1 — 4.

Input: Convex body K, given by a membership

oracle, and parameters r, R such that rB C K C RB
and an error parameter € < 1.
Output: An estimate S, that with probability > 3/4
has a relative error of less than e with respect to S.
Sete' :=§, p:= %, N = [261271
Step 1. Run the a volume algorithm to obtain
an estimate V of V that has a relative error ¢ with
probability > 12.
Step 2 Generate a linear transformation 7' given by
a symmetric positive-definite matrix such that TK is
2-isotropic with probability > }—g.
Step 3 Compute a lower bound 7’ to the smallest

. —1
eigenvalue 7y of TW’

that satisfies %rom < < Topt Set

Tin := max(r, ).

Step 4 Set \/t := %

Step 5 Generate N random points xo,...,zx from
K, such that with probability 15/16, they are %-
uniform and each pair {z;,z;} for1 <i < j < N is
p-independent.

Step 6 Generate N independent random samples
v1,...,vy from the spherically symmetric multivariate
Gaussian distribution with mean 0 and variance 2nt.
Step 7 Let N := |{i|z; + v; ¢ K}| be the number of
times x; + v; lands outside of K.

Step 8 Output & /Z V.

3.3 Analysis of the Run-time

Step 1 takes at most
4 R
0] (712 log? n + n*log® nlog >
€ € r

oracle calls, using the volume algorithm of Lovdsz and
Vempala ([11].) The number of steps in the computation
is O*(nf).

Step 2 Such a transformation is obtained during the ex-
ecution of the volume algorithm from [11] for no addi-
tional cost.

Step 3 takes O(n?) steps of computation ([12].)

Step 4 takes O(1) steps.

Step 5 takes
4
% oe” (P
O<e3 log (e))

steps of computation (including oracle calls) once a
point x; is obtained that is g%-uniform, and has an £2
norm that is bounded above by a constant. Such a point
can be obtained from the algorithm in step 1, for no
additional cost up to constants. The cost mentioned in



this step is incurred because we are required to generate
O(% ) random points given the initial random point z;
and the time per point is O(n> In” ). This last fact fol-
lows from the complexity per point mentioned on page
4 ([11]), and theorems 7.1 and 7.2 of ([15].)
Step 6 and Step 7 take O (Z—ipolylog%)
assuming that a sample from univariate Gaussian dis-
tribution can be obtained upto O(polylog( %)) digits in
O(polylog(Z)) steps.

Step 8 takes O(1) steps. Finally, to obtain the approxi-
mation with a confidence > 1 — 4, this algorithm must
be run O (log (5 )) times. Therefore the overall cost in
terms of oracle calls is

steps each,

1/1 R
O (n4 log 5 (2 log? n + log® nlog =
€ € r

i.e. O*(n*) oracle calls. The number of arithmetic op-
erations is O*(n®), on numbers with a polylogarithmic
number of digits. This is the same as that for volume
computation in [11].

4 Proving correctness of the algorithm

Definition 1 Let
e llz—yll®/4t

Gt (ZL’, y) = (47Tt)n/2

oy L

\/% L1 is the fraction of heat that would diffuse out of

and

(z,y)dydx.

i%
K in time t.

Our proof hinges on two main propositions. The first,
Proposition 2, states that F; is a good approximation for
the surface area S. As in the surface area algorithm, let
T be a linear transformation such that 7' K is 2-isotropic.
Compute a lower bound 7’ to the smallest eigenvalue

, that satisfies 270, < 7' < Top. Set

V5
Tin 1= max(r r’). Then, the following is true.

Topt Of

Proposition 2 Let \/t = ¢ = and ¢ < 1/2. Then,

(1-€)S<F<(1+¢€)8S.

Proposition 3 states that the empirical quantity S com-
puted by the surface area algorithm is likely to be an
e-approximation of F; with probability > 3/4. Let
T1,T2,...,xy from K, be €-uniform and each pair

- (7))

{zj,z;} for 1 < i < j < N be u-independent with
probability > 15/16. Let v, ..., vy be N independent
random samples from the spherically symmetric multi-
variate Gaussian distribution whose mean is 0 and vari-
ance is 2nt. Let N := |{i|z; +v; ¢ K}|. Then,

Proposition 3 Ler \/t = % and € < 1/2. Then, with
probability greater than %,

N N
(1—¢)(1—2€¢)F, < Nﬁv < (14€)(1+2)F,.

These two Propositions together imply that with
probability > 3/4,

1—GS<\/7V< 1+¢€)S

The argument for boosting the confidence from 3/4
to 1 — ¢ is along the lines of ([8],[6].) We devote the rest
of this paper to outlining the proofs of Proposition 2 and
Proposition 3.

5 Relating surface area S to normalized
heat flow F}

In this section, we prove Proposition 2.
5.1 Notation and Preliminaries

The set of points within a distance  of a convex body
K (including K itself) shall be denoted K. This is
called the outer parallel body of K and is convex.
The set of points at a distance > § to R” — K shall be
denoted K_;. This is called the inner parallel body of
K and again is convex. For any body K, we denote by
0K, its boundary.

Given x € K, let H, be a closest half-space to = not
intersecting K — 0K. For y ¢ K define H, to be the
half-space furthest from y containing K.

Observation 1 If x € 0K _; then the distance between
x and Hy is 0. If y € 0K then the distance between y
and H, is 0.

Definition 2 Let

1—Erf (2
e(t,0) = J
2
where Erf is the usual Gauss error function, defined by
Erf(z) : /
\f



Figure 1. Points = and y and correspond-
ing half-spaces H, and H,

Observation 2 Let x € 0K _5, and y € 0Kj. Then,
/ Gz y)dz = e(t,9)
H,

and

/ Gi(z,x)dz = e(t,9)
Hy

The volume of K is a polynomial in §, given by the
Steiner formula (see page 197, [13].)

vol(Ks) =ap+ -+ (ﬁ)aiéi + -+ ayo™.

i
The coefficients a; satisfy the Alexandrov-Fenchel in-
equalities (see page 334, [13],) which state that the co-
efficients a; are log-concave; i.e. af > a;—ja;y4 for
1<i1<n—1.

Definition 3 The surface area vol(OK) of an arbitrary
convex body K is defined as

. volKs — volK
lim ——M—.
5—0 )

It follows from the Steiner formula that this limit ex-
ists and is finite. It is a consequence of Lemma 2 that
the so defined surface area for an inner parallel body
vol(0K_;) is a continuous function of . For an outer
parallel body, the Steiner formula implies that vol(0Ky)
is a polynomial in 4.

5.2 Proof of Proposition 2

Lemma 1 is the first step towards proving upper and
lower bounds for the normalized heat flow F} in terms
of S. It bounds F}; above by a function of the vol(0Ks)
and below by a function of vol(OK _s).

1. \/?fézo vol(OK _s)e(t,0)dd < Fy

Lemma 1

2. F; < \/?fszo vol(0Ks)e(t, §)dd.
Proof

Note that for a fixed z € 0K _5
/ Gi(x,y)dy > / Gi(z,y)dy = e(t,9).
n_—K H,

Therefore integrating over shells 0K _;, F; =

\f// xydydm>\/>/>ovolaK Je(t, §)ds

By the same token for a fixed y € 0K
/ Gi(z,y)dzr < / Gy(z,y)dx = e(t, )
K H,

and proceeding as before, we have the upper bound

F, < \/;/ vol(OK5)e(t, 5)do
t Js>o0

The next step is to upper bound vol(K) and lower
bound vol(0Ks), which is done in Lemmas 2 and 3 re-
spectively.

O

Lemma 2

vol(OK _s) > <1 - nr(s) vol(OK)
Proof:
Let O be the centre of the sphere of radius r;;,, contained
inside K. We shall first prove that K_s contains (1 —
)K where this scaling is done from the origin O. Let
A be a point on 0K and let F' be the image of A under
this scaling. It suffices to prove that F' € K_5.
Consider Figure 5.2. We construct the smallest cone
from A containing the sphere. Let B be a point where
the cone touches the sphere. We have OB = r;,. Now
consider the inscribed sphere centered at F'. By similar-
ity of triangles, we have

CP _AF
OB A0

Noticing that AF = Ti OA, we obtain

AF
CF = OBA—O 4]

We thus see that the radius of the inscribed ball is § and
hence the d-ball centered in F' is contained in K. The
fact that F' € K _s follows from the definition.



Tin

Figure 2. K_; contains (1 — i) K

It is known that the surface area of a convex body is
less or equal than the surface area of any convex body
that contains it (page 284, [13]). Therefore

vol(9K_;) > vol <(1 _ 0y 8K>

Tin

Since the volumes of n — 1-dimensional objects scale
as n — 1* powers and observing that for z < 1,
max{0, (1 —x)""!} > 1 — nx, we obtain the final con-

clusion: vol ((1 -2 aK) = (1 - 22)" 1 vol(9K)

T

> (1 — 22)vol(9K) O

O

Lemma 3

vol(Ks) <V exp (55) .

Proof: The volume of K is a polynomial in §, given by
the Steiner formula (see page 197, [13].)

vol(Ks) =ap+ -+ <7?)ai5i B
)

From the Alexandrov-Fenchel inequalities (see page
334, [13].) the coefficients a; are log-concave; i. e.

2
a; 2 G;—10i41.

i
@ (o)
ago ag

ag is V', the volume of K while na; is the surface area

S of K. Putting these inequalities together with the fact
that (77) < ’;—,7, the lemma follows.

As aresult

Projecti oni

X

Figure 3. Projecting along a unit vector u
minimising |7 1u||

]
Although Lemma 3 is an upper bound on vol( K ) rather
than vol(0K(), it can be applied after transforming the
upper bound in Lemma 1 by integrating by parts. Lem-
mas 2, 3 and 1 together result in the following lemma,
which we prove in the Appendix.

Lemma4 Let o = (%)2 t. Then,

S (1 - m/ﬁ) <F <S8 (\/?eXp(a) -1
27in « 2

Finally, we prove the following bounds for the
isoperimetric constant % of K in terms of 7;,,.

+ exp(oz)) .

Lemma 5

Tin < |4 <4

— < 5 <Ariy

n — S
Proof: Tt follows from Lemma 3.4 in [11] that a ball of
radius % around the centroid of T'/K is entirely con-

tained in T'K . Therefore

Observation 3 K contains a ball of radius r;,.

Observation 4 For any unit vector u that minimises
%7 if X is chosen uniformly at random from K,
var(u-x) < 5r2 .
We are now in a position to present the proof of
Lemma 5. The firstinequality “i» < % is a consequence
of Lemma 8 (proved in the Appendix). The only condi-
tion on 74, there, is that r;,, B C K, a property that is
satisfied by r;,, by Observation 3.

Fix a unit vector u such that for x chosen uniformly at
random from K, var(u - x) < 5r2,. Observation 4 states

that such a vector exists.



Definition 4 Let m be an orthogonal projection of K

onto a hyperplane perpendicular to u. Further, for a

point y € w(K), let £, be the length of the preimage
-1

T (y).

var(u'x) < 52 .

The variance of u - x under the condition 7(z) = y, is
given by 62 /12, since this is the variance of a random
variable that takes a value from an interval of length ¢,
uniformly at random.

Sy var(u - xlm(x) = y)lydy

. >
var(u-x) > v

D

fﬂ(K) lydy

12V @)

3)

3
fﬂ(K) lydy S fﬂ'(K) tydy B 1% 8
vol(m(K)) = \ vol(m(K)) ]  \vol(n(K)))
since for any non-negative random variable X, E[X3] >
E[X]3. Therefore,

fﬂ—(K)Egdy> V2
12V~ \12vol(n(K))? )~

Further, vol(w(K)) < S/2. Putting these facts to-
gether,

9 V2 V2
578 > | —m—es | > [ —5
Tin = (12\/01(71'([())2) = (352>’

and so % < V157 < 41y,

(]
Lemmas 4 and 5 together give the result of Proposi-
tion 2, as we show below. The lower bound on F} is
immediate for /¢ = = using the lower bound in
Lemma 4. To prove the upper bound, we observe that

2
a = (%)2t < (%) t from Lemma 1, which equals

%. Since € < 0.5, < 1. Therefore e* < 1 + 2. It
follows that

2

S (\/ZGXP(O‘H —|—exp(oz)) < S(Wra+1+2a))

< S(1+4ya)
< (1+¢)S.

6 Proof of Proposition 3

The proof of Proposition 3 is complicated by the large
number of parameters involved. Therefore we shall only
mention the important steps, and leave the details to the
appendix. The result will follow from two lemmas that
are proved in the appendix.

Lemma 6 With probability greater than 7/8,

N [n
— v
Wi

and (1 — )V <V < (1+€)V.

(1 - El)Ft <K < (1 + €/)Ft,

Lemma 7 With probability greater than 15/16,
N [x €?F?
—/ =V t,
var ( A > < 16
Using Chebycheff’s inequality and Lemma 7,

N [x N [«
EAYR 7 o By K v
wWivE

Putting this together with Lemma 6, we arrive at the
desired result. |

P >dF| <

E.
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A Relative hardness of approximating sur-
face area and volume

We shall prove Proposition 1 here.
Proof: Given a convex body K, rB C K C RB let
C(K, h) denote the n + 1-dimensional cylinder having
base K and height h.

We shall show that for h = <¢

n°’

vol OC (K, h)

1 K <
Vo >

< (1+e¢)vol K.

It is true for any h > 0 that

vol 0C (K, h) — hvol 0K
5 .

vol K =

Together with Lemma 8, this completes the proof. [

B Proofs of lemmas and propositions

Lemma 8 Let K contain a ball of radius r;,,. Then,

Proof-

Observe that without a loss of generality we can as-
sume that the boundary of K is smooth. Indeed notice
that the boundary of K5 is smooth and from the Steiner’s
formula we have

lim vol(Ks) =V lim vol(9K;) = S



Figure 5. Using infinitesimal cones to
show iz < ¥

By passing to the limit we see that it suffices to prove
that for all 6 > 0,

T vol(Ky)

< T\
~ vol(0Ks)

n
and hence K can be replaced by K5 for some small §.

We will now show that the inequality holds for in-
finitesimal cones (see Figure 3). Let X € 0K and con-
sider an infinitesimal cone with vertex O and with the
base area dS The volume dV of such cone is equal to
hdS “where h is the distance from O to the tangent line
to 8K at X. By observing that h > r;,, we obtain

av =" as> " gs
n n

Since K is convex, integrating over d.S' yields

V:/@ds z/rﬂdsz”ls
n n n

d

Proof of Lemma 4
Lemma 2 can be restated in a slightly different form
using integration by parts. Let —%e(t,0) = N(t,0).

Then N(t,6) is the density of the normal distribution
with variance 2¢, evaluated at §. Let f be any continu-
ous function of § whose magnitude is bounded above by
a polynomial Then,

S @t 0)ds = [(fy £(6)d8") et,0)] 5 —
I (fo ")) N(t,8)d5 =
I (s £(8)as") N (2, 6)ds.

The first term disappears, since e(t,0) de-
cays exponentially. Applying this formula,

VT J5s0 vOl(OKs)e(t, 8)ds = /T [55o(vol(K;) —

vol(K))N(t,8)dd. An application of Lemma 3 now
yields that

e 2 [ (o (52) 1) e

Following the notation of Lemma 4, we let a =

(S/V)2t.
2 [ weow= [T

\/7/ Vexp < ) N(t,0)dd =
§>0
[
\/7 V exp <§ > N(t,d)ds,
t Js>o t
which is

S (20 v

Completing the square, this may be rewritten as

N(t,8)ds.

o[t )

Vimt

The above expression is

\/?Vea/ V N(t,6)ds < Se® + | =V e,
t §>—2Vfa 4t

“)
since we can bound the integral of N(¢,0) over
[—2V/ta, 0] by /2. The upper bound on F; now fol-
lows.
Lemmas 2 and 1 imply that

\/?/ S (1 - n(s) e(t,0)dd < F;.
t §>0 Tin

We transform this integral by parts and obtain

T 52
\/2/520 S (5 - n2rm> N{(t,6)dd.

Applying a change of variables u := §2, it is easy to
verify that

/ SN(t,6)ds = 1/ L.
>0

™



52N (t,0)dé =
§>0
since this is half the variance of the Normal disribution
N(t,-). The lower bound on F} now follows. O

The following lemma is a consequence of (Lemma
7.1, [15]) and summarizes some properties of pu-
independence that we shall need.

Lemma9 [. Let X andY be p-independent, and let
f, g be two measurable functions. Then f(X) and
9(Y) are also p-independent.

2. Let X, Y be p-independent random variables such
that 0 < X < aand0 <Y <b. Then,

[B(XY) = B(X)E(Y)| < pab.

3. Letxy,...,xN be a Markov chain and assume that
Vi > 0, x;41 is p-independent from x;. Then, Vi #
J,x; and x; are ji-independent.

Proof of Lemma 6: Let X; denote the indicator ran-
dom variable for the event =; + v; ¢ K. Suppose that
xz is sampled from the probability distribution p. x; is
-uniform, therefore 1t has a distribution p for which

and ¢’ = €q.

N
ar(21 Xl) 21 varX; —}—Z#J COV(XZ,X)
N N2

Since we are dealing with 0, 1 variables,

12

€
X; FlX;
var(X;) < E| }<q+64n

<q(l+€).

The last statement follows from Lemma 6, and the fact
that ==~ < ¢, which we show below.

64n
Ft SVt S\/f
Q\f V. A
as a consequence of Proposition 2. Using the values of
\/t and the inequality % < 4r;, from Lemma 5, this is

’
€
64n °

Continuing the proof, from Lemma 9 we have that,

> iy COV(X;, Xj)
N2

< .

6in Ziv(%\/%wLe”)wLN(Nfl),u
S Ip(z) —1/V|da < &1+ Therefore e <
\/%Ft 1 5/t
|—=> — E[Xi]| = / Gi(z,y)(p(x) — = )dzdy| vyx ¢ 29
TV ol 14 N +N+ﬂ<N+u.
_ _ G dudazWVe just showed that ¢ = < > 7. We are required to
|/K(p(x) V) / t(@,y)dy ‘show that
n— 2£ < 6/2(12
N THS e

- = |d:v

</|

64n

In the above calculations, the inequality is a conse-
quence of the fact that

/ Gi(z,y)dy < 1.
n_K

The calculations above hold for each i, and the
Lemma now follows from the linearity of expectation.
(]

Proof of Lemma 7 Let X; denote the indicator random
variable for the event ; + v; ¢ K as in the proof of
Lemma 6. Then, Let

_h& Jt
VvV

The ratio of the left hand side to the right,

32 164 2Mp 216,02
+ < +
Ne2q  €2¢g2 ~ Ne3 €t

=1/2<1.

This completes the proof. |



