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Damped random walks and the characteristic

polynomial of the weighted Laplacian on a graph
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Abstract

For λ > 0, we define a λ-damped random walk to be a random walk that is started
from a random vertex of a graph and stopped at each step with probability λ

1+λ
,

otherwise continued with probability 1
1+λ

. We use the Aldous-Broder algorithm ([1, 2])
of generating a random spanning tree and the Matrix-tree theorem to relate the values
of the characteristic polynomial of the Laplacian at ±λ and the stationary measures
of the sets of nodes visited by i independent λ-damped random walks for i ∈ N. As a
corollary, we obtain a new characterization of the non-zero eigenvalues of the Weighted
Graph Laplacian.

1 Introduction

Consider a weighted graph G in which vertices are labelled 1, . . . , n. Let the edge between
i and j have weight dij and

∑

j dij := di. The laplacian L is an operator from the space of
complex valued functions on the nodes of a graph to itself. For

f : [n] → C,

Lf is defined by

∀i ∈ [n],Lf(i) =

∑

j∈[n] dij(f(j) − f(i))

di

.

Thus, the following matrix equation holds:

Df = D′Lf,
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where D is










−d1 d12 · · · d1n

d21 −d2 · · · d2n
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dn1 dn2 · · · −dn











,

f = [f(1), . . . , f(n)]T , Lf = [Lf(1), . . . ,Lf(n)]T and D′ is the diagonal matrix whose entry
in the ith row and ith column is di.

We consider the transition matrix D′−1L + I, which is


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
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0 d12

d1
· · · d1n

d1
d21

d2
0 · · · d2n
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. . .
...

dn1

dn

dn2

dn
· · · 0











,

Whenever we consider random walks on G, the transition from i→j will have probability
equal to the ijth entry of the above matrix.

The eigenvalues of the Laplacian are the roots of the polynomial

C(λ) = det
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−d1(1 + λ) d12 · · · d1n

d21 −d2(1 + λ) · · · d2n

...
...

. . .
...

dn1 dn2 · · · −dn(1 + λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Note that λ is an eigenvalue of the laplacian if and only if 1 + λ is an eigenvalue of the
transition matrix D′−1L + I.

Now, let λ take a fixed positive real value. Consider the following procedure of gernerating
a random walk:

1. Choose a vertex i with probability

di
∑

j∈[n] dj

.

2. Toss a coin that comes up Heads with probability λ
1+λ

.
If the outcome is Heads STOP.
Else make a random transition to a neighbouring vertex with probability proportional
to the weight of the corresponding edge.

3. Goto 2.
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Definition 1 A random walk generated by the above procedure shall be called a “λ-damped
random walk”.

Definition 2 Let w1, . . . , wi, . . . be a sequence of independent λ-damped walks. We define
the weighted fraction of the nodes covered by the first i walks,

fi :=

∑

j∈
⋃i

k=1
wk

dj
∑

j∈[n] dj

.

Note that this is the measure of
⋃

i

wi under the stationary distribution of the natural random

walk on the graph.

Theorem 1 For c > 0, let k ≥ (c + 1)davgd
−1
minn lnn, where davg is the arithmetic mean and

dmin is the minimum of the di for i ∈ [n]. Then,

|E[

k−1
∏

j=1

(2fj − 1)] +
C(−λ)

C(λ)
| <

2

nc
.

Corollary 2 The non-zero eigenvalues −λi of the laplacian (which are all negative), are
characterized by E[

∏∞
j=1(2fj − 1)] = 0, where fj are as in definition 2 with λ set to λi.

2 Kirchhoff’s Matrix-tree theorem

Definition 3 Let T be the set of trees of G. For a tree t of G, let its weight |t| be the product
of the weights of its edges.

Theorem 3 The sum of the weights of spanning trees of a graph G is equal to any cofactor
of the degree matrix of G minus the adjacency matrix of G.

In particular, Kirchhoff’s matrix tree theorem implies that

∑

t∈T

w(t) = (−1)n−1 det

∣
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−d2 d23 · · · d2n

d31 −d3 · · · d3n

...
...

. . .
...
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∣
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Figure 1: Augmenting G

3 The Aldous-Broder algorithm

Definition 4 Given a weighted graph G, let PT be the probability distribution on the trees
of G, where the probability assigned to a tree t is |t|

∑

t∈T
|t|

.

The Aldous-Broder algorithm [1, 2] described below generates a random spanning tree, from
the distribution PT.

1. Simulate the random walk on the graph G starting at an arbitrary vertex s, until every
vertex is visited. For each i ∈ [n], i 6= s, collect the edge (j, i) corresponding to the
first transition to vertex i.

2. Output t.

Originally this algorithm was proved to give a random spanning tree of a simple graph.
However, it has been shown by Mosbah and Saheb [4], that the algorithm works even for a
weighted graph provided that the walk makes transitions according to the transition matrix
D′−1L + I.

4 Augmenting the graph

We now prove theorem 1.

Definition 5 Given a graph G as in the Introduction, and λ > 0, we manufacture an
augmented graph Gλ by adding an additional node ∞ and for each i ∈ [n], a branch joining
∞ and i that has weight diλ.

Figure 1 illustrates this.
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Definition 6 Let Tλ be the set of trees of Gλ, and PTλ
be the probability distribution that

assigns to a tree t ∈ Tλ, a probability proportional to the product of its edge weights.

The determinant of the laplacian of G is a determinant of a maximal cofacter of Gλ. Thus
by the Matrix-Tree theorem, we have

C(λ) = (−1)n
∑

t∈Tλ

∏

e∈t

|e|. (1)

In the above expression, by |e|, we mean the weight of e. For a tree t of Gλ, let us denote
by deg∞(t) the unweighted degree of ∞ in t. This is the number of branches of t that are
incident upon ∞. Then,

C(−λ)

C(λ)
=

∑

t∈Tλ

∏

e∈t(−1)deg∞(t)w(e)
∑

t∈Tλ

∏

e∈t w(e)
= E[(−1)deg∞(t)], (2)

where the expectation is taken over the distribution PTλ
on Tλ.

5 Proof of Theorem 1

We do an infinite random walk w on the graph Gλ, w := ∞→i1→i2→ . . . on Gλ start-
ing at vertex ∞, and generate a random tree t from w using the Aldous-Broder algo-
rithm. Note that no transition that occurs after every vertex has been visited will fig-
ure in the tree. We let the walk have infinite length just for notational benefits. Let us
partition w into visits to ∞ and the walks on intervals between these visits, which we
label w1, w2, . . . . Thus ∞→3→2→5→∞→4→1→∞→1→3→ . . . would be partitioned as
∞, 3→2→5,∞, 4→1,∞, 1→3 . . . , and w1 := 3→2→5, w2 := 4→1, w3 := 1→3 . . . .

Definition 7 Let xi be the random variable defined to be 0 if the first vertex of wi was
covered by one of the walks w1, . . . , wi−1, and 1 otherwise.

Note that if t is the tree obtained by applying the Aldous-Broder algorithm to walk w,

deg∞(t) =

∞
∑

i=1

xi. (3)

Also note that the wi are independent λ-damped walks on G. Let davg and dmin be the
arithmetic mean and the minimum of the weighted degrees di. Then, the probability that
the first k := (c + 1) davg

dmin
n ln n walks do not cover a given node j is less than the probability

that j is not the first vertex of one of the walks {wi|i ≤ k}, which is (1 −
dj

ndavg
)k < 1

nc+1 .
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Therefore by the union bound, the probability that every node is covered by some wi, i ≤ k

is > 1 − 1
nc . Thus

P [deg∞(t) =
k

∑

i=1

xi] > 1 −
1

nc
, (4)

where k := (c + 1) davg

dmin
n ln n.

E[(−1)deg∞(t)] = E[(−1)
∑

i≤k xi(−1)deg∞(t)−
∑

i≤k xi]

= E[(−1)
∑

i≤k xi] + E[(−1)
∑

i≤k xi(−1 + (−1)deg∞(t)−
∑

i≤k ni)]. (5)

However, from 5,

|E[(−1)
∑

i≤k xi(−1 + (−1)deg∞(t)−
∑

i≤k ni)]| =

P [deg∞(t) >
∑

i≤k

ni)]|E[(−1)
∑

i≤k xi(−1 + (−1)deg∞(t)−
∑

i≤k ni)|deg∞(t) >
∑

i≤k

ni]| <

2

nc
. (6)

It follows from 2, 4 and 6 that

|E[(−1)
∑

i≤k xi] +
C(−λ)

C(λ)
| <

2

nc
. (7)

xi is a function of w1, . . . , wi, and is independent of wi+1, wi+2, . . . . So,

Ew1,...,wi
[(−1)

∑

i≤k xi] = Ew1
[(−1)x1Ew2,...,wi

[(−1)
∑k

i=2 xi|w1]

= (−1)Ew1
[Ew2,...,wk

[(−1)
∑k

i=2 xi |w1]

= (−1)Ew1
[(2f1 − 1)Ew2

[(−1)x2Ew3,...,wk
[(−1)

∑k
i=3

xi |w1, w2]|w1]

= . . .

= (−1)Ew1,...,wk−1
[
k−1
∏

i=1

(2fi − 1)], (8)

where fi are as defined in Definition 2. From 2, 7 and 8 Theorem 1 now follows.

6 Conclusion

We used the Aldous-Broder algorithm ([1, 2]) of generating a random spanning tree and the
Matrix-tree theorem to relate the values of the characteristic polynomial of the Laplacian
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at ±λ and the stationary measures of the sets of nodes visited by i independent λ-damped
random walks for i ∈ N. As a corollary, we obtained a new characterization of the non-zero
eigenvalues of the Weighted Graph Laplacian. The authors are not aware of any analogue
of this result for compact Riemannian manifolds. To find such analogues, appears to be an
interesting line of research.
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