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A Regularity conditions on p and S

We make the following assumptions about p:

1. p can be extended to a function p’ that is L—Lipshitz and which is bounded above by p,q.-
2. For 0 < t < to,

min(p(z), / Ki(z,y)p(y)dy) = pmin-
Note that this is a property of both of the boundary OM and p.
We note that since p’ is L—Lipshitz over R?, sois [,, K;(z, 2)p/(2)dz.

We assume that S has condition number 1/7. We also make the following assumption about S:-
The volume of the set of points whose distance to both S and OM is < R, is O(RQ) as R — 0. This is reasonable,
and is true if S N OM is a manifold of codimension 2.

B Proof of Theorem 1
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This follows from Theorem 4 (which is proved in a later section), by setting i to be equal to

C Proof of Theorem 2

In the proof we will use a generalization of McDiarmid’s inequality from [7, 8]. We start with the with the following

Definition 1 Let Q1,...,Q,, be probability spaces. Let Q = [[" Qy, and let Y be a random variable on Q. We
say that Y is strongly difference-bounded by (b, c, ) if the following holds: there is a “bad” subset B C (), where
§ = Pr(w € B). If w,w’ € Qdiffer only in the kth coordinate, and w ¢ B, then

Y(w) - VW) <



Furthermore, for any w and ' differing only in the kth coordinate,
¥ (w) = ()| <b.

Theorem 1 (/7, 8]) Let Q. .., Qy, be probability spaces. Let Q = [[]" Qy and let Y be a random variable on §
which is strongly difference-bounded by (b, ¢, §). Assume b > ¢ > 0. Let p = E(Y'). Then for any r > 0,
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Pr(lY —u|>r) <2 (exp (8m02> + >
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By Hoeffding’s inequality

Zzﬂ Ki(z,2) _ 2N B(Ky(x,2))° <]

P| =7 = B(Ky(2,2))| > e B(K(r,2))] < e 3
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We set €1 to be M;/N 5 Lete Mg be §/N. By the union bound, the probability that the above event
happens for some x € X is < §. The set of all w € €2 for which this occurs shall be denoted by B. Also, for any X,
the largest possible value that

l/N\/T/tZ Z Ki(x,y)

S5 A K2, 2)) (3., Ky, 2)) 1/

could take is \/7/t(N — 1). Then,

|EIf] —al < |1 — (1 —e) Ha+dy/7/t(N - 1). (1)

Let ¢ = (pmin/M;)?. 3 is strongly difference-bounded by (b, c,5) where ¢ = O((¢NVt)™1), b = O(N/\/t). We
now apply the generalization of McDiarmid’s inequality in Theorem 1. Using the notation of Theorem 1,

pils = 515l > 1) <2 (exp (i ) + 220) <2 exp (-OWNI0) + O (Wgexp (-OWaed))) . @)

C

Putting this together with the relation between E[(] and « in (1), the theorem is proved. We note that in (1), the rate
of convergence of E[f] to « is controlled by €1, which is M;/N 2* and in (2), the rate of convergence of 3 to E|f]

depends on r, which we set to be
MZ VNI~

We note that in (2), the dependence on r of the probability is exponential. Since we have assumed that u =
M2 /\/(tN'=1) = o(1), J\Jt/Nl_TH = O(t%u). Thus the result follows.

]
D Proof of Theorem 3
We shall prove theorem 3 through a sequence of lemmas.
Without a loss of generality we can assume that 7 = 1 by rescaling, if necessary.
Let R = \/2dtIn(1/t) and € = f”Z”>R K,(0, z)dz. Using the inequality
2d\ ~? g2
/ K(0,2)dx < (2> e~ s = (et In(1/t))%? (3)
I#11> R R



Figure 1: A sphere of radius 1 outside S; that is tangent to .S
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Figure 2: A sphere of radius 1 inside .S; that is tangent to .S

we know that ¢ < (et In(1/t))%2. For any positive real t,

=1

In(1/t) < t=

r< (=)

Therefore the assumption that

implies that R < v2dt!=1/e < 1.



Let the point y (represented as A in figures D and D) be at a distance » < R from M. Let us choose a coordinate
system where y = (r,0,...,0) and the point nearest to it on M is the origin. There is a unique such point since
r < R < 1. Let this point be C. Let D; lie on the segment AC, at a distance R?/2 from C. Let D lie on the
extended segment AC, at a distance R?/2 from C. Thus C is the midpoint of D; Ds.

Definition 2 1. Denote the ball of radius 1 tangent to OM at C that is outside M by B.
2. Denote the ball of radius 1 tangent to OM at C which is inside M by Bs.
3. Let Hy be the halfspace containing C' bounded by the hyperplane perpendicular to AC' and passing through
D;.

4. Let Hy be the halfspace not containing C' bounded by the hyperplane perpendicular to AC and passing
through Ds.

5. Let H3 be the halfspace not containing A, bounded by the hyperplane tangent to OM at C.
6. Let B be the ball with center y = A, whose boundary contains the intersection of Hy and B;.

7. Let Bl be the ball with center y = A, whose boundary contains the intersection of Hy and Bs.
Definition 3 1. h(r) = [y, Ki(z,y)da.

2. f(r):= meBé Ky(z,y)dx.

3 g(r):= leﬂBi Ki(z,y)dz.

It follows that

Ki(w,y)ds = h(r — R?/2)
H,
and
Ki(z,y)dz = h(r + R?/2).
H>

Observation 1 Although h(r) is defined by an d-dimensional integral, this can be simplified to
—(r—mz1)% /4t
e

h,(T') = - dfﬂl,
1 <0 \Y 47Tt

by integrating out the coordinates xs, . . ., x4.

Lemma 1 Ifr > R? the radius of B} is > R.

Proof: By the similarity of triangles C'F} D1 and C F4 Fy in figure D, it follows that ggi = g% |CE,| = 2 and

|CD;| = R?/2. Therefore CFy = R. Since C'D1 F} is right angled at Dy, and |C'D;| = R?/2, this proves the claim.
O

Lemma 2 The radius of B is > R.
Proof: By the similarity of triangles C F»E5 and C Do F; in figure D |CF5| = R. However, the distance of point
y := A from Fy is > |C'F5|. Therefore, the radius of Bj is > R. O

Definition 4 Let the set of points = such that B(x,10R) C M be denoted by M°. Let Sy N M° be S and Sy N M°
be SY. Let M — M° = M1, S; N M* be S and Sy N M be S3. We shall denote (1 + L/Pmin)R) by {.



Consider a point x € M°, Then,

Koy = [ Kiwwpwdy

M ly—z||<R
> (I-¢)(p(z) — LR)
> (1—¢€)p(x)(1 — LR/Pmin)
= p(x)(1-0())

On the other hand,
/ Ki(x,y)p(y)dy < / Ki(z,y)p(y)dy +/ Ki(z,y)p(y)dy
M ly—z||<2R ly—=z||>2R
< )(1+20) + K,(0,2R)

p(z
p(.l?)(l + O((l + L/pmin)R))

Therefore, ¢ (x) = \/p(z)(1 £ O((1 + ;2-)R)).

Lemma 3 B(z,5R) C M implies that - [ Ky(x,z)p(z)dy = O(L).
Proof: Consider the function p’, which is equal to p on M, but which has a larger support and is L—Lipshitz as a

function on R%. [ K,(z, z)p’(z)dy is L—Lipshitz and on points = where B(z, 5R) C M, the contribution of points z
outside M, is o(1). Therefore L [ K;(z, 2)p(z)dy = O(L). O

This implies that on the set of points = such that B(x,5R) C M, ¢(X) is O(L)—Lipshitz.

We now estimate [ K(y, 2)p(2)dz fory € S3.

Definition 5 For a point y € S, such that d(y, S1) < R < 7 = 1 let w(y) be the nearest point to y in S.

Note that by the assumption that the condition number of S is 1, since R is smaller than 1, there is a unique candidate
for m(y). Let y be as in Definition 5.

Lemma 4
h(r+ R%*/2) —e < f(r) < Ki(y,z)dz.
S1
Proof:
Ki(z,y)dz > / K (z,y)dz(since Hy N B C Sy)
S1 HQﬁBé
> / Ki(z,y)dx — Ki(x,y)dx
H> Ble

> h(r+ R%*/2) —¢

The last inequality follows from lemma 2. (]

Lemma 5 fSl Ki(z,y)i () (y)dx > p(r(y)) (1 — O0))(h(r + R%/2) — ¢).



Figure 3: The correspondence between points on 9,57 and 9[S1],

Proof:
Ki(z,y)ve(2)e(y)de > /H . Ki(x,y)e(x)y(y)dx(since Hy N By C S7)
2NBY

> p(a(y) (1= OO)(h(r + R*/2) —e).

S

U
Lemma 6 Let r > R2. Then,
g K (x,y)e(2)¢e (y)dz < (1+ O(0))(h(r — R?*/2)p(n(y)) + ePmaz)-
Proof:
Ko@) < [ Ky
Sy Rd—B;
< /Hlu]Rd—B; Ki(x, y) ()Y (y)dz
< / Ki(z, y)e(x)de (y)da + Ki(z,y)e(x)d(y)da
HiNB, Ble

< h(r— R*/2)p(x(y))(1 + O()) + epmax (1 + O(¢))

< (14 0@)(h(r — R*/2)p(7(y)) + €Pmaz)
The last inequality follows from lemma 1. ]

Definition 6 Let [S1], denote the set of points at a distance of < r to [S1]. Let 7, be map from 0[S1], to 0[S1] that
takes a point P on 0[S, to the foot of the perpendicular from P to 0S1. (This map is well-defined since r < 7 = 1.)

Lemma 7 Lety € 0[S1),. Let the Jacobian of a map f be denoted by D f.
(L=t < |Dm(y)] < (L 4+r) "



Proof: Let 166\2 be a geodesic arc of infinitesimal length ds on 9S; joining P and Q. Let . (P) = P’ and
7 1(Q) = Q' (see Figure D.) The radius of curvature of PQ) is > 1. Therefore the distance between P’ and Q' is in

r

the interval [ds(1 — r),ds(1 4 r)]. This implies that the Jacobian of the map =, has a magnitude that is always in the
interval [(1 +r)1=9, (1 — r)1=4]. O

Lemma 8

/Rd o Ki(z, y)e () (y)dedy < evol S1pmax(1+ O(K)).

Proof:
/ K ylendsdy = [ [ Koo )dyds
RI—[S1]r /51 S1 JRI—[S1]R
< / / K (0, 2)pmaz(1 + O(f))dzdz
S1 HZH>R
< vol S1Pmaz (1 + O(F)).
< in line 2 holds because the distance between = and y in the double integral is always > R. (|
Lemma 9

—’a/4tﬁ</ (r)dr < \/7/t.

e~ (z1— y1)? /4t
/ dr—/ / ——————dx1dy;.

Setting y; — x1 := r, this becomes

77’2/415 77’2/415
/ / dyldr = / (r —a)dr.

Making the substitution 7 — « := 2, we have

Proof: Using observation 1,

oo ef(z+a)2/4t g - / 7a2/4t —z /4tzdz
———2dz
0 VAart o
— [ —a?/4t
Equality holds in the above calculation if and only if o = 0. Hence the proof is complete. ]

Definition 7 Let [S2]° N 9[S1], be OM,.. Let [Sa]' N O[S1], be DM} and [Ss)' N [S1], be M}

We assume that vol(M}, — S1) < C'R? for some absolute constant C”. Since the thickness of (M}, — S1) is O(R) in
two dimensions, this is a reasonable assumption to make. The assumption that M has a d — 1—dimensional volume
implies that volS3 = O(R).

Putting these together to prove Theorem 3:



/ Koz, y)e @) (y)dedy /"/ K,y ()b () dadydr
s1Js, o JoamrJs,

IN

O(pfnax/pmin)/ / Kt(x,y)dxdydr
0 oM} J Sy

R
O@mem</t/ IMLMM@W+M$%
o Jomr Js,

O(pgnax/pmln) (VOI (Mllg - Sl) + GVOIS%) .
O P/ Pmin) (C'H7H + O(t'~Hvol OM))

IN

IN A

/ Ko (z, y) e (@) e(y)dedy =
59 Js,

S—

oo
/ Ki(z,y)(x) (y)dedydr
oM, J s,

R
/ Ki(x, y) ()Y (y)dedydr)
oM, J s,

+ / / Ki(z,y)(x) ) (y)dzdydr)
R Jom, Js,

< %u@h&m@mw@m@mwm
+  evol S1Pmaz (1 +O(F)).

E

Il
—

(from lemma 8)
R2
< (/’ ]/ Pnaa(1 -+ O())dydr
0o JoM.
(1+0(

R
=l
R2 JOM,

T_R2/2) ( ( )+6pma:1:))+E

The last line follows from Lemma 6.

IA

E + R*(1 4+ R*)*  ppaz (1 + O(£))vol (OMy)dr(from lemma 7)

R
d—1
L (1+R) <1+omx/‘hvmféM¢@My+quR»

< (1+0( \/75/7/ Y)Y + Pmaz((R? + eR)vol (OMy) + evol Sy)).
< 00N Py + (1) + prsevol 1)

0 min

Similarly, we see that

/ K, (2, y) )by (y) dady
59 Js,

8



= /OOC/BMT/Sthx Y)W () (y)dadydr
> /OR/(BM,/Sthxy¢t (&) (y)ddydr)

R
> /0 /SM’ YL+ O))f(r)dxdr

R
> / 1 - 0@) /a P+ B 2) = ar

R
> (1= RYL(1 = O((1 = L/pmin) R))( / p()dy) ( / (h(r)dr) — €R — B?/2)
OMy 0

> (1-0(0)( /a pdn((1 = )i — R = R2)
> (1- 0<z>></aM p()dy) (/17 — o(t1H)).

Noting only the dependence of the rate on ¢, and introducing the condition number 7,

\E /S | il @i (y)dady = (1+0((t/7) ) /S p(s)ds.

O

Proof of Theorem 4: This follows directly from Theorem 2 and Theorem 3. The only change made was that the 5
term was eliminated since it is dominated by ¢° when ¢ is small. ]

References
[1] M. Belkin and P. Niyogi (2004).“Semi-supervised Learning on Riemannian Manifolds.” In Machine Learning
56, Special Issue on Clustering, 209-239.
[2] M. Belkin and P. Niyogi. “Toward a theoretical foundation for Laplacian-based manifold methods.” COLT 2005.
[3] A.Blum and S. Chawla, “Learning from labeled and unlabeled data using graph mincuts®, ICML 2001.
[4] O.Chapelle, J. Weston, B. Scholkopf, “Cluster kernels for semi-supervised learning”, NIPS 2002.
[5] O. Chapelle and A. Zien, “Semi-supervised Classification by Low Density Separation”, AISTATS 2005.
[6] Chris Ding, Spectral Clustering, ICML 2004 Tutorial.

[7] Samuel Kutin, Partha Niyogi, “Almost-everywhere Algorithmic Stability and Generalization Error.”, UAI 2002,
275-282

[8] S. Kutin, TR-2002-04, “Extensions to McDiarmid’s inequality when differences are bounded with high proba-
bility.” Technical report TR-2002-04 at the Department of Computer Science, University of Chicago.

[9] S. Lafon, Diffusion Maps and Geodesic Harmonics, Ph. D. Thesis, Yale University, 2004.

[10] M. Hein, J.-Y. Audibert, U. von Luxburg, From Graphs to Manifolds — Weak and Strong Pointwise Consistency
of Graph Laplacians, COLT 2005.

[11] J. Shi and J. Malik. “Normalized cuts and image segmentation.”

[12] U. von Luxburg, M. Belkin, O. Bousquet, Consistency of Spectral Clustering, Max Planck Institute for Biological
Cybernetics Technical Report TR 134, 2004.

[13] X. Zhu, J. Lafferty and Z. Ghahramani, Semi-supervised learning using Gaussian fields and harmonic functions,
ICML 2003.



