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ABSTRACT

In this thesis, we investigate diffusion as an algorithmic and analytic tool in statistics and

computer science.

We address a question arising from computational linguistics, where we wish to under-

stand the behavior of a network of agents modeled as nodes of a graph that adaptively

modify their lexicon using data from their neighbors. By introducing a model of memory

and a family of coalescing random walks, we prove that they eventually reach a consensus

with probability 1.

We study distributed averaging on graphs and devise a distributed algorithm that is

based on a diffusion process having two time scales.

Addressing the question of routing in a network, we use steady-state diffusions corre-

sponding to electrical flow in a network of resistors for oblivious routing and prove that this

scheme performs well under a variety of performance measures.

Based on a microscopic view of diffusion as an ensemble of particles executing independent

Brownian motions, we develop the fastest currently known algorithm for computing the area

of the boundary of a convex set. A similar technique is used to produce samplers for the

boundaries of convex sets and smooth hypersurfaces that are the boundaries of open sets

in Rn, assuming access to samplers for the interior. These algorithms are motivated by

Goodness-of-Fit tests in statistics.

The halfplane capacity, a quantity often used to parameterize stochastic processes arising

in statistical physics, known as Schramm-Loewner evolutions, is shown to be comparable to

a more geometric notion.

We analyze a class of natural random walks on a Riemannian manifold, and give bounds

on the mixing times in terms of the Cheeger constant and a notion of smoothness that relates

the random walk to the metric underlying the manifold.

A Markov chain having a stationary distribution that is uniform on the interior of a

ix



polytope is developed. This is the first chain whose mixing time is strongly polynomial

when initiated in the vicinity of the center of mass. This Markov chain can be interpreted

as a random walk on a certain Riemannian manifold. The resulting algorithm for sampling

polytopes outperforms known algorithms when the number of constraints is of the same

order of magnitude as the dimension. We use a variant of this Markov chain to design a

randomized version of Dikin’s affine scaling algorithm for linear programming. We provide

polynomial-time guarantees which do not exist for Dikin’s algorithm.

Addressing a question from machine learning, under certain smoothness conditions, we

prove that a form of weighted surface area is the limit of the weight of graph cuts in a family

of random graphs arising in the context of clustering. This is done by relating both to the

amount of diffusion across the surface in question.

Addressing a related issue on manifolds, we obtain an upper bound on the annealed

entropy of the collection of open subsets of a manifold whose boundaries are well-conditioned.

This result leads to an upper bound on the number of random samples needed before it is

possible to accurately classify data lying on a manifold.
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CHAPTER 1

INTRODUCTION

In this thesis, we investigate the use of diffusion as an algorithmic and analytic tool in several

disciplines. The areas to which we apply the principle of diffusion include Statistics, Machine

Learning, Convex Optimization, Statistical Physics and Computational Geometry.

1.1 History

The botanist Robert Brown was perhaps the first to identify, in a manuscript published in

1828, random movement of particles of matter, and note that this movement exists not only

in particles from organic tissue but also from inorganic material. The latter issue had been

a source of confusion for his predecessors. While many contributed to the understanding

of random motion before 1900, it attracted widespread attention after a 1905 article of

Albert Einstein titled “On the Motion of Small Particles Suspended in Liquids at Rest,

Required by the Molecular-Kinetic Theory of Heat”. In this article, Einstein tried to establish

the existence and sizes of molecules and to compute Avogadro’s number using the mean

displacement of Brownian particles over a period of time. Louis Bachelier, who is credited

with the first mathematical study of the Brownian process in his 1900 thesis, “The theory of

speculation” did so in order to model stock options. In this work he introduced the model

of a random walker. Many other scientists made key contributions to the theory of diffusion

around this period, including Sutherland, Smoluchowski, Perrin and Langevin (see [24]).

Diffusion processes are intimately related to random walks, which in recent years have

found numerous applications in Computer Science and Statistics. In the rest of this sec-

tion, we will describe some basic random walks and delineate their relevance to the results

contained in this thesis.
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1.2 Random walks and diffusion

Consider the following random walk on Z. Let x0 := 0. Given xi, toss a fair coin. If

this lands Heads, set xi+1 to xi − 1; otherwise set xi+1 to xi + 1. This random process

is canonically associated with a partial difference equation satisfied by the distributions of

positions that the random walk occupies at successive time steps. Thus

P[xi = k]− P[xi−1 = k] =
P[xi−1 = k − 1] + P[xi−1 = k + 1]− 2P[xi−1 = k]

2
.

This is a discrete diffusion process. On the other hand, we have the heat equation or diffusion

equation which causes suitable functions from R to R to evolve as a function of time (see

Itô-McKean [35]).

∂pt(x)

∂t
=
∂2pt(x)

2(∂x)2 . (1.1)

The operator ∂2

2(∂x)2 is the infinitesimal generator of 1−dimensional Brownian motion Bt,

i. e. , for suitable functions f ,

lim
t↓0

Ex0 [f(Bt)]− f(x)

t
=

∂2f

2(∂x)2

∣∣∣
x=x0

.

Here the superscript x in Ex signifies that the Brownian motion was at x at time 0. If p0(x)

is a density function, the distribution pt(x) obtained by solving the heat equation is also

the probability density of Brownian motion witnessed at time t, if its position at time 0 was

chosen according to the density p0(x). Thus, Brownian motions are related to continuous

time diffusions.

2



1.3 Diffusion on graphs

Given an undirected graph (V,E), there is a natural random walk wherein the walker, when

at a vertex v, picks a vertex uniformly at random from the neighbors of v and moves there.

We will consider such random walks in Chapter 2, Chapter 3, and Chapter 4.

One particular question of interest has the following general form: how might a group

of linguistic agents arrive at a shared communication system purely through local patterns

of interaction and without any global agency enforcing uniformity? These agents could be

artificial, for example robots or sensors, or natural such as animals or humans. In Chapter 2,

we consider a model of the evolution of language among agents in a network and prove that

in it, agents eventually arrive at a common language. This model generalizes a model studied

by Liberman in [56] using simulations. Prior to our results, there was no theoretical analysis

of either of these models. We assume that there is one concept and that each agent starts out

with a probability distribution on words that may be used to describe the concept. At each

time step, each agent produces a word that is heard by its neighbors and each agent modifies

its probability distribution by taking a convex combination of the earlier distribution and

the one supported equally on all the words it hears. We show that after a certain time period

governed by the mixing time of a random walk on the network, with high probability, all

agents produce the same word. In the analysis of this process, we trace the origin of words

backwards in time. The trajectory of a word is a natural object to study since it leads us

back to the word’s source at the first time step, when the evolution was initiated. In our

model, this path turns out to be a random walk, and by tracing multiple random walks

backwards in time until they coalesce into a single source, we are able to give bounds on how

quickly, all agents adopt the same word for a particular concept.

In Chapter 3, we consider the question of averaging on a graph that has one sparse cut

separating two subgraphs that are internally well connected [70]. Such graphs could arise

naturally in the context of sensor networks on uneven terrain. Consider a graph G = (V,E),

3



where i.i.d Poisson clocks with rate 1 are associated with each edge. Our algorithm uses

non-convex combinations in an essential way. To the best of our knowledge, non-convex

combinations have not appeared in past literature, in the context of distributed algorithms

where each update is based only on current values.

We represent the “true” real valued time by T . Each node vi holds a value xi(T ) at time

T . Let the average value held by the nodes be xav. If the clock of an edge e = (vi, vj) ticks at

time T , it updates the values of vertices adjacent to it on the basis of xi(T ), xj(T ) according

to some algorithm A. While there has been a large body of work devoted to algorithms for

distributed averaging, nearly all algorithms involve only convex updates. In this chapter,

we suggest that non-convex updates can lead to significant improvements. We do so by

exhibiting a decentralized algorithm for graphs with one sparse cut that uses non-convex

averages and has an averaging time that can be significantly smaller than the averaging time

of known distributed algorithms, such as those of [8, 13]. Our algorithm makes non-convex

updates as well as convex updates. The non-convex updates typically increase the variance

of the values rather than decrease it, but in the process make a large transfer of mass across

the sparse cut in the graph, which would not otherwise be possible. In order to obtain

probabilistic bounds on the variance after t steps, we consider the logarithm of the variance

as a function of time, and show that it is stochastically dominated by a random walk on the

real line that possesses a negative drift.

In Chapter 4, we show that the asymptotic heat flow or the “electrical” flow is a good

way of routing to minimize the sum of the pth powers of edge loads in a graph [53]. We show

that in graphs where the asymptotic heat flow from one vertex to another has a small `1

norm, this method of routing performs well under the aforementioned class of performance

measures. We also show that this algorithm performs well on graphs on which a random

walk mixes fast, such as expanders, which are of practical interest.
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1.4 Diffusion and measures of sets

1.4.1 From random walks on Z to random walks on R

It is possible to obtain a random walk on R by taking a scaling limit of the walk on Z

mentioned in the beginning of Section 1.3. For any t > 0, j ∈ N, we can define a random

walk {zji (t)}i≥0 on
(

1
j

)
Z, by setting

z
j
i (t) :=

xb2t·i·jc√
j

.

As j →∞, for any fixed i, the distributions of {zj
i′(t)}1≤i′≤i converge in the Wasserstein

metric defined below to a random walk on R.

Definition 1.4.1. Given two probability distributions µ1, µ2 supported on Ri , we define the

Wasserstein distance W2(µ1, µ2) by

W2(µ1, µ2) := inf
γ∈Γ(µ1,µ2)

∫

Ri×Ri
‖w − z‖dγ(w, z), (1.2)

where Γ(µ1, µ2) is the collection of all measures on Ri×Ri whose marginals on the first and

second component are respectively µ1 and µ2.

This limit is, by the Central Limit Theorem [51], the same as the distribution of the first

i steps of the random walk on R constructed by the following procedure.

Let

Gt1(x, y) :=
1√
4πt

e−
‖x−y‖2

4t .

Random walk on R :

1. Let z0(t) = 0.
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2. Given zi(t), let zi+1(t) be chosen from the distribution Gt1(zi(t), ·) in a manner inde-

pendent of (z1(t), . . . , zi(t)).

By putting together n independent copies of {zi(t)}, we can construct a random walk on

Rn, whose transition kernel from a point x is an n−dimensional spherical Gaussian Gt(x, ·)

given by

Gt(x, y) := (4πt)−
n
2 e−

‖x−y‖2
4t . (1.3)

Given an initial probability distribution µ0 supported on Rn, the probability distribution

after one step can be expressed as a convolution of measures supported on Rn,

µ1 = µ0 ∗Gt(0, ·).

Moreover µ1 has a density ρ1 with respect to the Lebesgue measure, that satisfies

ρ1(x) :=

∫
Gt(y, x)dµ0(y). (1.4)

1.4.2 Measuring surface area

In Chapter 5, we consider a convex subset K of Rn respectively containing and contained

in Euclidean balls of radius r and R. The convex set is specified by an oracle, which when

presented with a point x in Rn, returns “Yes” if x ∈ K and “No” otherwise. We design a

randomized algorithm [5] that computes the surface area of a convex set within a relative

error ε, with a probability of failure less than δ, whose run-time, measured in terms of these

quantities is

O

(
n4 log

1

δ

(
1

ε2
log9 n

ε
+ log8 n log

R

r
+

1

ε3
log7

(n
ε

)))
.
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The task of developing a randomized algorithm for estimating the surface area of a convex

set was mentioned as an open problem in the book “Geometric Algorithms in Combinatorial

Optimization” by Grötschel, Lovász and Schrijver. Our algorithm is based on the fact that

the amount of heat diffusing in a short period of time out of a uniformly heated body placed

in a vacuum, is proportional to its surface area. If µ0 is the uniform probability measure on

K, the distribution of the point obtained by making one step from a random point in K is

given by (1.4) above. We show that if
√
t = O(εrinn ), where rin is the radius of the largest

Euclidean ball that can be placed in K, S is the surface area and V is the volume,

µ1(Rn \K) =

√
t

π

(
S

V

)
(1 +O(ε)) . (1.5)

The question of computing the volume of a convex body is a classical question in theoretical

computer science and algorithms are known that perform this task, therefore S can be

recovered from the ratio S
V above.

Suppressing a polynomial dependence on 1
ε , ln

(
1
δ

)
and ln

(
R
r

)
, this algorithm makes

O∗(n4) calls to a membership oracle compared to O∗(n8.5) for the best previously known

algorithm.

In Chapter 6, we use an extension of the above idea to develop an algorithm that samples

the surface of an n-dimensional convex body. The underlying intuition is that if the initial

distribution of particles is the uniform distribution on the interior of the set, then over a

short period of time, Brownian particles diffuse out of the surface of a convex set almost

uniformly. Therefore, if we approximately identify the points at which they exit the body,

we obtain an approximately uniform sampler for the surface of the body [72].

In the same chapter, we also use this idea to sample a smooth hypersurface that is the

boundary of a (not necessarily convex) subset of Rn, if this subset can be sampled uniformly.

These algorithms have applications to Goodness-of-Fit tests in statistics.
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1.4.3 From random walks on R to Brownian motion

It is possible to “paste together” in a consistent manner, copies of the random walk on

R mentioned above, corresponding to each t ∈ {2−i
∣∣i = 1, 2, . . .} and obtain standard

1−dimensional Brownian motion {Bt}t≥0 in the limit. This is the basis of Lévy’s construc-

tion of Brownian motion [91].

The standard 1−dimensional Brownian motion, {Bt}t≥0 is uniquely characterized by the

following.

1. B0 = 0.

2. For each 0 < s1 < t1 < . . . < sk < tk, Bt1 − Bs1 , . . . , Btk − Bsk are independent

Gaussians with mean 0 and respective variances t1 − s1, . . . , tk − sk.

3. As a function of t, Bt is continuous with probability 1.

1.4.4 Schramm-Loewner Evolution and halfplane capacity

In Chapter 7, we consider a connected set A whose complement in the (complex) upper

halfplane H is simply connected. We relate hsiz(A), which we define to be the 2-dimensional

area of the union of all balls tangent to the real line and centered at points in A to a quantity

known as halfplane capacity that is defined using diffusions.

Following Schramm’s seminal paper [92] “Scaling limits of loop-erased random walks and

uniform spanning trees,” important progress was made towards understanding the conformal

invariance of the scaling limits of several two dimensional lattice models in statistical physics

by several researchers including Lawler, Schramm, Werner [54] and Smirnov [88]. These

limits have been described using a new tool known as Schramm-Loewner Evolution (SLE).

The chordal Schramm-Loewner evolution with parameter κ ≥ 0 is the random collection
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of conformal maps satisfying the following stochastic differential equation:

ġt(z) =
2

gt(z)−√κBt
, g0(z) = z,

where z belongs to H and ġt represents the time derivative of gt. Denoting the domain of

gt by Ht, we obtain a random collection of continuously growing hulls Kt := H \ Ht. In

this parametrization, the halfplane capacity (defined in Chapter 7) of Kt is equal to 2t [51].

Thus, halfplane capacity is a quantity arising naturally in the context of SLE. Our main

theorem in Chapter 7 states that

1

66
<

hcap(A)

hsiz(A)
≤ 7

2π
.

1.5 Random walks on manifolds and polytopes

1.5.1 From random walks on Rn to a ball walk

Suppose tn := t
n . Then, as n tends to infinity, the Wasserstein distance between the

n−dimensional spherical Gaussian distribution whose density is Gtn(0, ·) and the uniform

distribution over the Euclidean ball of radius
√

2t centered at the origin tends to 0. The

latter distribution can be used to define a random walk on Rn in which a transition from

x involves moving to a point chosen uniformly at random in a ball of radius
√

2t centered

at x. This random walk has a natural extension to manifolds given by an atlas, if the atlas

possesses certain characteristics.

1.5.2 Random walks on manifolds

In statistics, one is interested in Goodness-of-Fit tests for a numerous of multivariate dis-

tributions. For example, testing for a Gamma distribution leads one to consider positive
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real valued random variables X1, . . . , Xn such that
∑
iXi = a and

∏
j Xj = b. The set of

all (X1, . . . , Xn) under these constraints is a manifold of codimension two. The question of

sampling this manifold has been raised by Diaconis et al (see [19]). We address this question

and others of its kind in Chapter 6.

We take an intrinsic view of the question of sampling manifolds in Chapter 8. LetM be

a manifold. Let M be specified by a family of smooth injective maps {Ux : B →M}x∈M
where B is the unit Euclidean ball centered at the origin and x = Ux(0). Let ρ(x) be a

probability density function on M, whose value at x is measured with respect to the push-

forward of the Lebesgue measure via Ux at the point x. This family of maps corresponds to

an atlas consisting of charts {U−1
x }x∈M. We consider the Markov chain in which, for any

x ∈M, the next point z is obtained as follows. Let Jac denote the Jacobian.

1. Toss a fair coin and if Heads, set z to x.

2. If Tails, do the following:

(a) Pick a random point w ∈ B from the uniform measure on the unit ball and let

z := Ux(w).

(b) If x ∈ Uz(B),

i. with probability min

(
1,
ρ(z) det Jac(U−1

z Ux)(0)
ρ(x)

)
let z remain unchanged.

ii. Else, set z to x.

(c) If x 6∈ Uz(B), set z to x.

3. Output z.

In Chapter 8, given a Riemannian metric, we relate the mixing time of this chain with

the Cheeger constant of the weighted manifold, under some additional assumptions relating

the family of maps {Ux}x∈M to the metric.
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1.5.3 Random walks on polytopes

In Chapter 9, we design a new Markov chain on the points of an n−dimensional polytope

that mixes rapidly and whose stationary distribution is the uniform distribution [40]. The

resulting algorithm for sampling polytopes outperforms existing algorithms when the number

of constraintsm isO(n1.62). This random walk can be viewed as a random walk on a manifold

in the framework of Chapter 8 with respect to a certain non-Euclidean metric. Algorithms for

sampling polytopes have numerous applications. We mention one such application here. It

was shown in [41] that if an n−dimensional polytope defined by m inequalities contains a ball

of radius Ω(n
√

logm), then it is possible to sample the lattice points inside it in polynomial

time by sampling the interior of the polytope and picking a nearby lattice point. Often,

objects of interest such as contingency tables can be encoded as lattice points in a polytope,

leading to algorithms for sampling them. Contingency tables are two-way tables that are

used by statisticians to represent bivariate data. A solution proposed in [20] to the frequently

encountered problem of testing the independence or dependence of two different attributes

of empirical data involves sampling uniformly from the set of two-way tables having fixed

row and column sums. It was shown in [67] that under some conditions, this can be achieved

in polynomial time by quantizing random points from an associated polytope. The results

of Chapter 9, together with the results of [67] lead to an algorithm that outperforms known

algorithms for sampling contingency tables when the row and column sums are sufficiently

large.

Let K be a polytope in Rn defined by m linear inequalities. The underlying Markov chain

is the first to have a mixing time that is strongly polynomial when started from a “central”

point x0. If s is the supremum over all chords pq passing through x0 of
|p−x0|
|q−x0| and ε is

an upper bound on the desired total variation distance from the uniform distribution, it is

sufficient to take O
(
mn

(
n log(sm) + log 1

ε

))
steps of the random walk. We use this result

to design an affine interior point algorithm that does a single random walk to solve linear
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programs approximately. More precisely, suppose Q = {z
∣∣Bz ≤ 1} contains a point z such

that cT z ≥ d and r := supz∈Q ‖Bz‖+ 1, where B is an m× n matrix, c is a n−dimensional

vector and d > 0. Then, after τ = O
(
mn

(
n ln

(mr
ε

)
+ ln 1

δ

))
steps, the random walk is

at a point xτ for which cTxτ ≥ d(1− ε) with probability greater than 1− δ. The fact that

this algorithm has a run-time that is provably polynomial is notable since the analogous

deterministic affine algorithm analyzed by Dikin has no known polynomial guarantees.

1.6 Learning Theory

A standard assumption in learning theory is that data is generated by sampling indepen-

dently at random from some unknown probability distribution. A class of algorithms termed

graph-based methods first construct a weighted graph, whose vertices are the data points and

whose edge weights are determined by the relative positions of the points and perform natu-

ral graph-theoretic operations on the resulting graph. Graph-based methods are extensively

used for clustering and other machine learning tasks and are known to work very well. The

reasons behind their excellent performance are not well understood. In Chapter 10, we prove

that the weights of certain graph cuts corresponding to well-conditioned hypersurfaces tend

to a weighted surface area of the associated hypersurfaces, thus proving that in the limit,

these graph cuts tend to meaningful quantities [71]. We use Gaussian weights on edges .

This was the first result of its kind, but subsequently, other schemes for producing graphs

from data, such as k-Nearest Neighbors have been analyzed. For example, it was shown in

[63] that as the number of data points tends to infinity, graph cuts corresponding to hyper-

planes can have different limits depending on the scheme used to construct the graphs. One

of the intuitions underlying many graph-based methods for clustering and semi-supervised

learning, is that class or cluster boundaries pass through areas of low probability density.

We provide formal analysis of this notion. We introduce a notion of weighted boundary area,

which measures the area of the boundary weighted by the density of the underlying prob-
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ability distribution. We show that the sizes of the cuts induced by a smooth hypersurface

on commonly used adjacency graphs converge to the volume of the boundary weighted by

the underlying density. The proof uses a relation between the amount of diffusion across a

hypersurface and the expected weight of a graph cut induced by the hypersurface. The proof

then relates the amount of diffusion across the hypersurface to the weighted surface area of

the hypersurface.

While modern data sets are typically high dimensional, they can often be successfully

modeled as lying on low dimensional manifolds embedded in high dimensional space because

they are generated by a dynamical system that has relatively few degrees of freedom. In

recent years, the hypothesis that data lie on a low dimensional manifold has gained accep-

tance, and the class of methods whose theoretical validity is contingent upon this hypothesis

has formed a subfield of its own called manifold learning. Some of these methods belong to

the family of graph-based methods discussed above. In Chapter 11, we study the following

question central to manifold learning:

How many random samples of data are needed to learn a smooth cut on a manifold? [73]

LetM be a manifold that is a submanifold of Rm. We consider smooth cuts where each

cut corresponds to a submanifold (say P ⊂ M) that divides M into two pieces. Since P

is a submanifold of M, and therefore Rm, one can associate to it a measure of complexity

given by its condition number 1/τ , where τ is the supremum over all r such that the tubular

neighborhood of radius r does not self-intersect (see Definition 6.3.1). Corresponding to

each cut whose condition number is ≤ 1
τ , we may associate two indicator functions, one

for either part. Let Cτ be the class of functions that can be obtained in this manner. By

letting τ vary, we obtain a structured family of classification functions. The number of

samples needed to learn the elements of Cτ is a natural quantity to study, and is a natural

generalization of halfspace learning on the surface of a sphere, to arbitrary manifolds. In

Chapter 11, we prove sample complexity bounds that depend on the maximum density ρmax
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of the distribution P from which samples are drawn, the curvatures of M and the class

boundary, and the dimension of M (but not the ambient dimension). This is achieved by

bounding the annealed entropy of Cτ with respect to P . We show that the dependence on

the maximum density ρmax of P is unavoidable by proving that for any fixed τ , there exist

manifolds for which the VC-dimension of Cτ is infinite.
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CHAPTER 2

LANGUAGE EVOLUTION, COALESCENT PROCESSES AND

THE CONSENSUS PROBLEM ON A SOCIAL NETWORK

In recent times, there has been an increased interest in theories of language evolution that

have an applicability to the study of dialect formation, linguistic change, creolization, the

origin of language, and animal and robot communication systems in general. (see [45, 76,

33] and references therein). One particular question of interest has the following general

form: how might a group of linguistic agents arrive at a shared communication system purely

through local patterns of interaction and without any global agency enforcing uniformity?

The linguistic agents in question might be humans, animals, or machines in a multi-agent

society. For an example of interesting simulations that suggest how a shared vocabulary

might emerge in a population, (see Liberman [56]) (other simulations are also provided

by [90, 10] among others). In this chapter, we consider a generalization of Liberman’s

model, prove several theoretical properties, and establish connections to related phenomena

in population genetics through coalescent processes.

Our model is as follows. For simplicity, we consider how a common word for a particular

concept might emerge through local interactions even though the agents had different initial

beliefs about the word for this concept. For example agents might use the phonological forms

“coconut”,“nariyal”, “thengai” etc. to describe the concept of the fruit. Thus we imagine

a situation where every time an event in the world occurs that requires the agents to use

a word to describe this event, they may start out by using different words based on their

initial belief about the word for this event or object. By observing the linguistic behavior

of their neighbors agents might update their beliefs. The question is - will they eventually

arrive at a common word and if so how fast.
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2.0.1 Model

1. Let W be a set of words (phonological forms, codes, signals, etc.) that may be used

to denote a certain concept (meaning or message).

2. Let each agent hold a belief that is a probability measure on W. At time t, we denote

the belief of agent i to be b
(t)
i .

3. Agents are on a communication network which we model as a directed weighted graph

where vertices correspond to agents. We further assume that the weight of each directed

edge is positive and that there exists a directed path from any node to any other. An

agent (say i) can only observe the linguistic actions of its out-neighbors, i. e. nodes to

which a directed edge points from i. We denote weight of the edge from i to j by Pij ,

where for any i,
∑
j Pij = 1.

4. The update protocol for the b
(t)
i as a function of time is as follows:

(a) At each time t, each agent i chooses a word w = w
(t)
i ∈ W (randomly from to

its current belief b
(t)
i ) and produces it. Let X

(t)
i , denote the probability measure

concentrated at w
(t)
i . Since w

(t)
i is a random word, X

(t)
i is correspondingly a

random measure.

(b) At every point in time, each agent can observe the words that their neighbors

produce but they have no access to the private beliefs of these same neighbors.

(c) Let P be the matrix whose ijth entry satisfies

Pij =
Aij∑n
k=1Aij

.

At every time step, every agent updates its belief by a weighted combination of
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its current belief and the words it has just heard, i.e.,

b
(t+1)
i = (1− α)b

(t)
i + α

n∑

j=1
PijX

(t)
j ,

where α is a fixed real number in the interval (0, 1) that is not time dependent.

At a time t, the beliefs of the agents are represented by the vector

b(t) := (b
(t)
1 , . . . ,b

(t)
n )T .

Similarly, let the point measures on words X
(t)
i be organized into a vector

X(t) := (X
(t)
1 , . . . , X

(t)
n )T .

Then the reassignment of beliefs can be expressed succinctly in matrix form where the entries

in the vectors involved are measures rather than numbers as

b(t+1) = (1− α)b(t) + αPX(t). (2.1)

2.0.2 Remarks:

1. If beliefs were directly observable and agents updated based on a weighted combination

of their beliefs and that of their neighbors,

b(t+1) = (1− α)b(t) + αPb(t), (2.2)

the system has a simple linear dynamics, where all beliefs converge to a weighted

average of the initial beliefs. Thus eventually, everyone has the same belief (see [8] for

pioneering work and [36] for a recent elaboration in an economic context.)
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2. Our focus in this chapter is on the situation where the beliefs are not observable but

only the linguistic actions X
(t)
i are (and only to the immediate neighbors). Therefore,

the corresponding dynamics follows a Markov chain. The state space of this chain

(defined by Equation 2.1) is the set of all n-tuples of belief vectors. Since this is

continuous, the standard mixing results with finite state spaces do not apply directly.

3. Note that in our setting we have assumed that the communication matrix Aij does not

change with time. If this matrix changes with time the evolution is not Markovian in

the usual sense but the arguments in this chapter when combined with results in [95]

would lead to a proof of convergence under suitable conditions. We omit this analysis

for ease of exposition.

2.0.3 Results:

Our main results are summarized below.

1. With probability 1 (w.p.1), as time tends to infinity, the belief of each agent converges

in variation distance to one supported on a single word, common to all agents.

2. W.p.1, there is a finite time T such that for all times t > T , all agents produce the

same fixed word.

3. The rate at which beliefs converge depends upon the mixing properties of the Markov

chain whose transition matrix is P .

4. The rate of convergence is independent of the size of W. One might think that a

population where every agent has one of two words for the concept would arrive at a

shared word faster than one in which every agent had a different word for the concept.

This intuition turns out to be incorrect.
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The proof of these results exposes a natural connection with coalescent processes and has

a parallel in population genetics. Our analysis brings out two different interpretations of

the behavior of a linguistic agent. In the most direct interpretation, the agent’s linguistic

knowledge of the word is internally encoded in terms of a belief vector. This belief vector is

updated with experience. In a second interpretation an agent’s representation of its linguistic

knowledge is in terms of a memory stack in which it literally stores every single word it has

heard weighted by how long ago it heard it and the importance of the person it heard it from.

Such an interpretation is consistent with exemplar theory (see [14]). An external observer

looking at this agent’s linguistic actions will not be able to distinguish between these two

different internal representations that the agent may have.

2.0.4 Connections to other fields

Linear update rules are often used in distributed systems, to achieve coherence among differ-

ent agents or to share knowledge gathered individually. In a model that has been intensively

studied, a number of sensors form a network, each of which measures a quantity such as

temperature [8]. Neighbors communicate during each time step and make linear updates in

a synchronous or asynchronous manner. The rate at which consensus is attained is studied.

There is also a related body of work on Coordination and Distributed Control. A model of

flocking has been considered in [17], where a group of birds, have a certain initial velocity,

and the evolution of their velocities is governed by a differential equation wherein each bird

modifies its velocity to bring it closer to that of its neighbors. The update rule involves a

graph Laplacian. Some results are derived concerning the initial conditions that result in

flocking behavior.

There are two connections to evolutionary theory that are worth mentioning. First, our

proof of convergence exposes a natural coalescent process over words. Coalescent processes

are, of course, widely used in modeling and making inferences about genetic evolution [34, 44].
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Second, researchers have considered game-theoretic models of evolution [89] and more recent

research in this tradition has addressed evolutionary games on graphs [79]. The question of

how agents may learn an appropriate strategy for a coordination game on a graph has many

high level similarities to the problem studied in this chapter.

Finally, there have been a large number of models on achieving coherence in a linguistic

population. Many of these rely on simulations. Among mathematical studies, two strands

are worth noting. The model of language evolution proposed in [18] has many similarities

with languages of agents evolving on a graph. But it is worth noting that in that model, if

at each time step, the number of linguistic examples (observations) collected by each agent

is bounded from above by a constant (independent of time), the community fails to achieve

a consensus language. A second strand is the collection of results obtained in [78, 45]. While

there are many synergies with that body of work, there is nothing that is directly comparable.

2.1 Convergence to a Shared Belief: Quantitative results

Let P̃ be the transition matrix on the augmented agent space S̃ = S ∪ Ŝ, where for i, j ∈

S := {1, . . . , n} and Ŝ = {1̂, . . . , n̂}.

P̃ (i→ j) = P̃ (̂i→ j) = αPij ,

P̃ (i→ î) = P̃ (̂i→ î) = 1− α.

Definition 2.1.1. Let Tmix(ε) denote the mixing time of P̃ , defined as the smallest t for

which, for each specific choice of v, w ∈ S̃,

∑

u∈S̃
|P̃ (t)(v → u)− P̃ (t)(w → u)| < ε.
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Here P̃ (t)(b → c) denotes the probability that a Markov Chain governed by P̃ starting in b

lands in c at the tth time step.

The following is the main result of this chapter.

Theorem 1:

1. The probability that all agents produce the same word at times T, T + 1, . . . tends to

1 as T tends to ∞. More precisely, if

τ = (4n/α2)Tmix(
α

4
) ln(4n/α2)

M = e,

then

P[∀t≥T
u∈S

Xt
u = XT

1 ] > 1− MnTe−
T
τ

1− e−Tτ
. (2.3)

2. As time t → ∞ all produced words converge (almost surely) to a word whose proba-

bility distribution is
n∑

i=1
πib

(0)
i ,

where (π1, . . . , πn) is the stationary distribution of the Markov chain whose transition

matrix is P .

2.1.1 A Model of Memory

The evolution of the B(t) is a Markov chain. It can be seen that its only absorbing states are

of the form (b
(t)
1 , . . . ,b

(t)
n )T , where ∀i,b(t)

i = δw, and δw is the point measure concentrated

on some word w ∈ W. Formally, δw is the measure on W, which assigns to a measurable

set A the measure δw(A) according to the following rule.
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δw(A) = 1 If w ∈ A

= 0 otherwise.

Therefore, if the Markov Chain were finite, a simple argument would suffice. However,

the state space of our Markov Chain is uncountably infinite. Thus in principle, its dynamics

could be hard to analyze. Our proof is based on coalescent processes, which have also been

extensively used to study biological evolution [34, 44]. In analyzing the evolution of beliefs,

we trace the origin of words backwards in time and find that all surviving words, are copies

of a single word produced at some point in time sufficiently far in the past. Observe that if

the process had begun at time 0, the beliefs at time t+ 1 would be

Observation 2.1.1.

B(t+1) =
t∑

i=0
α(1− α)iPX(t−i) + (1− α)t+1B(0). (2.4)

X(t) = (X
(t)
1 , . . . , X

(t)
n )T is a random vector whose entries are point measures, where

X
(t)
i = δ(w

(t)
i ) and w

(t)
i is chosen from the measure b

(t)
i on W, independent of the choice of

other coordinates of the vector X(t). This observation, motivates a model of memory that

we define next.

Let each agent’s memory be modeled as a stack. At the top level of the stack of agent

i are all the words heard at time t. Below this are all words heard at time t − 1 and so on

tracing backwards in time until the first words heard at an initial time 1. At the lowest level,

corresponding to time 0, is the initial belief b
(0)
i which is a probability distribution on the

set of words. We may imagine this to be a form of vestigial memory.

Let agent j be adjacent to agent i. We shall describe the process by which agent j
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produces word wj(t) and which induces Xj(t), the point measure supported on Xj(t). Let

Sj be the stack held by agent j, and S
(t)
j , . . . , S

(0)
j be the levels in its stack from top to

bottom. After j produces Xj(t), i places Xj(t), and all other Xj′(t) produced by neighbors

of i at time step t on the top of its stack. In order to describe the mechanism by which Xj(t)

is generated, let us introduce a geometric random variable Y where

P[Y = i] = α(1− α)i.

If Y ≤ t − 1, Xj(t) is chosen to be the word produced by j′ at time t − 1 − Y (which is

stored in St−1−Y ) with probability Pjj′ . If Y ≥ t, Xj(t) is chosen from the distribution in

b
(0)
j . This process has been illustrated in Figure 2.1.1. Note that in this model words are

formal objects. While any two words present in the stack positions S
(t)
j for t = 1, 2, . . . are

considered distinct, there is a natural “parent-child” structure existing on the set of words.

Under this scheme, let the probability distribution of X
(t)
i be denoted b̃

(t)
i . Denoting by B̃(t)

the vector (b̃
(t)
1 ,b

(t)
2 , . . . ,b

(t)
n ).

Observation 2.1.2. A direct computation shows that in the model just described

B̃(t+1) =
t∑

i=0
α(1− α)iPX(t−i) + (1− α)t+1B̃(0). (2.5)

This along with the fact that the randomness used in the generation ofX
(t)
j is independent

of the randomness in the generation of all other words, tells us that the model of memory

just described results in a system with the same dynamics as that introduced earlier. This

particular model of memory may be viewed as an implementation of the ideas implicit in

exemplar based accounts of linguistic behavior.
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1 2 3 4

X
(t+2)
2X

(t+2)
1

X
(t+1)
1

X
(t+2)
3

X
(t+2)
4

X
(t+1)
3 X

(t+1)
4X

(t+1)
2

t + 1

t + 2

t
a, b, c α, β, γ d, e, f δ, ε, ρ

a, b, c α, β, γ d, e, f δ, ε, ρ

a, b, c α, β, γ d, e, f δ, ε, ρ

α

α

b, f ρ, α f

b, f ρ, α f

f α, α f, f α

Figure 2.1: A coalescent process obtained by tracing the origin of words backwards in time,
and the associated memory stacks of agents 1 to 4 for time steps t to t + 2. Each agent
produces α at time t+ 2 due to coalescence to a single word α produced by agent 2 at time
t.

2.2 Proofs

By observations 2.1.1 and 2.1.2, in order to obtain an upper bound on P[X
(t1)
i 6= X

(t2)
j ],

it is sufficient to trace the ancestry of both words backwards in time and show that the

probability that they do not have a common ancestor is small. Our results are best stated in

terms of the coalescence time of a set of random walks. In Figure 2.2, we illustrate how the

path tracing the origin of a word backwards in time can be encoded as a Markov chain on a

state space S ∪ Ŝ = {1, . . . , n, 1̂, . . . , n̂}. We use the states 1̂, . . . , n̂ as additional “memory”

states. Since the random variable Y introduced in section 2.1.1 can be interpreted as the

length of a run of heads in a biased coin (whose probability of coming heads is 1 − α), we

can account Y using additional memory states.

We define a variant of the meeting time between two Markov Chains as follows. Let

u, v ∈ S ∪ Ŝ.
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1 2 3 4

1̂ 2̂ 3̂ 4̂

1 2 3 4

1̂

1

1̂

1

2̂

2

2

2̂ 3̂

3

4̂

4

3

4̂

4

3̂

X
(t+3)
2

X
(t+2)
3

t

t + 1

t + 2

t + 3

X
(t)
2

Figure 2.2: The ancestry of X
(t+3)
2 has been traced backwards in time to X

(t)
2 . On the right,is

an encoding of this path in terms of the transitions in a Markov Chain with “auxiliary states”
1̂, . . . , n̂. 3̂ is occupied at time step t + 1 because the agent 3 produced a word at a time
t+ 2 from past memory.

Definition 2.2.1. For t ≥ 0, let Yt and Zt be two independent random walks on S ∪ Ŝ each

of which has P̃ as its transition matrix and have initial states Y0 = u, Z0 = v. For ∆ > 0,

let Muv(∆) be the smallest time t > 0 for which Yt+∆ = Zt ∈ S.

Theorem 2.2.1. 1. The probability that all agents produce the same word at times T, T+

1, . . . tends to 1 as T tends to ∞. More precisely, if

τ = (4n/α2)Tmix(
α

4
) ln(4n/α2)

M = e,
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then

P[∀t≥T
u∈S

Xt
u = XT

1 ] > 1− MnTe−
T
τ

1− e−Tτ
. (2.6)

2. As time t→∞, all produced words converge (almost surely) to a random word chosen

from the probability distribution
n∑

i=1
πib

(0)
i ,

where (π1, . . . , πn) is the stationary distribution of the Markov chain whose transition

matrix is P .

Proof. To prove the first part, we observe that

P
[
¬
(
∀t≥T
u∈S

Xt
u = XT

1

)]

≤
∞∑

j=1


P[X

jT
1 6= X

(j+1)T
1 ] +

T−1∑

k=0

n∑

u=1
P[X

jT+k
u 6= X

jT
1 ]




by the union bound. The following application of Lemmas 2.2.1 and 2.2.2 completes the

proof.

P
[
¬
(
∀t≥T
u∈S

Xt
u = XT

1

)]

≤
∞∑

j=1


P[X

jT
1 6= X

(j+1)T
1 ] +

T−1∑

k=0

n∑

u=1
P[X

jT+k
u 6= X

jT
1 ]




≤
∞∑

j=1


P[M11(T ) ≥ jT ] +

T−1∑

k=0

n∑

u=1
P[Mu1(k) ≥ jT ]




≤ MnTe−
T
τ

1− e−Tτ
,
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where M and τ are the constants that appear in Lemma 2.2.2.

To prove the second part, we use the linearity of expectation to show that the expected

value of the beliefs follows a simple rule. Namely

Eb(t+1) = (1− α)Eb(t) + αPEX(t)

= ((1− α)I + αP )Eb(t)

= . . .

= ((1− α)I + αP )t+1Eb(0).

By well known results on Markov chains,

lim
t→∞

((1− α)I + αP )t = (1, . . . , 1)T (π1, . . . , πn),

where πi is the stationary probability of the state i under the chain P . Therefore, for each

j,

lim
t→∞

Eb
(t)
j =

n∑

i=1
πib

(0)
i ,

By the first part of this theorem, as t→∞, b(t) converges almost surely to a measure that

is concentrated on a single common word w. Given a signed measure µ, let

|µ| = sup
‖f‖∞≤1

∫
fdµ.

Then,
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∣∣E[δw]− E[XT
i ]
∣∣ ≤ P

[
¬
(
∀t≥T
u∈S

Xt
u = XT

1

)]

≤ MnTe−
T
τ

1− e−Tτ
,

It follows that this common word w must have the distribution
∑n
i=1 πib

(0)
i .

Lemma 2.2.1. The probability that the word produced by agent u at time step t1 is different

from that produced by agent v at time step t2 greater than t1 can be bounded from above as

follows.

P[X
(t1)
u 6= X

(t2)
v ] ≤ P[Muv(t2 − t1) ≥ t1].

Proof. In the model of memory introduced in section 2.1.1 we described a parent-child rela-

tionship between words, where a child word is identical to a parent word. The evolution of

the Markov chain defined in this section corresponds to the geneology of a word. The event

that the words X
(t1)
u and X

(t2)
v have a common ancestor produced at some time ≥ 0 is the

event that Muv(t2 − t1) ≤ t1. The lemma follows from the fact that two words that have a

common ancestor are the same.

Lemma 2.2.2. The random variable Muv(∆) has an exponential tail bound uniform over

u, v and ∆. More precisely, there exist constants M, τ > 0 independent of u, v and ∆ such

that

P[Muv(∆) ≥ T ] < Me−
T
τ .

(In fact, this is satisfied for τ = 4n
α2Tmix(α4 ) and M = e.)

Proof. The stationary measure µ̃ satisfies for each i, the identity αµ̃(̂i) = (1− α)µ̃(i).
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Let τ1 = Tmix(α4 ) ln(4n
α2 ). Let us denote by qu(i) the probability P[Zτ = i

∣∣Z0 = u]. Then,

sup
u,v

P[¬(Yτ+∆ = Zτ ∈ S)
∣∣Y∆ = u, Z0 = v]

= 1− inf
u,v

∑

i∈S
qu(i)qv(i)

≤ 1− inf
u,v

∑

i∈S
min(qu(i), qv(i))

2

≤ 1− inf
u,v

(
∑
i∈S min(qu(i), qv(i)))

2

n

≤ 1− α2

4n
.

Now, using the Markov property and conditioning repeatedly, we see that

P[Muv(∆) ≥ T ] ≤ P[¬(Y∆ = Z0 ∈ S)]×

b Tτ1 c∏

i=1
sup
u,v

P[¬(Y∆+iτ1 = Ziτ1 ∈ S)
∣∣

(Y∆+(i−1)τ1 , Z(i−1)τ1) = (u, v)]

≤ P[¬(Y∆ = Z0 ∈ S)]

b Tτ1 c∏

i=1
(1− α2

4n
)

≤
(

1− α2

4n

) T
τ1
−1
≤ e1−Tτ .

where

τ =
4n

α2Tmix(
α

4
) ln

(
4n

α2

)
,

which proves the Lemma.
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CHAPTER 3

DISTRIBUTED CONSENSUS ON A NETWORK HAVING A

SPARSE CUT

3.1 Introduction

We consider the question of averaging on a graph that has one sparse cut separating two sub-

graphs that are internally well connected. While there has been a large body of work devoted

to algorithms for distributed averaging, nearly all algorithms involve only convex updates.

In this chapter, we suggest that non-convex updates can lead to significant improvements.

We do so by exhibiting a decentralized algorithm for graphs with one sparse cut that uses

non-convex averages and has an averaging time that can be significantly smaller than the

averaging time of known distributed algorithms, such as those of [8, 13]. We use stochastic

dominance to prove this result in a way that may be of independent interest.

Consider a Graph G = (V,E), where i.i.d Poisson clocks with rate 1 are associated with

each edge. We represent the “true” real valued time by T . Each node vi holds a value xi(T )

at time T . Let the average value held by the nodes be xav. Every time an edge e = (v, w)

ticks, it updates the values of vertices adjacent to it on the basis of present and past values

of v, w and their immediate neighbors according to some algorithm A. There is an extensive

body of work surrounding the subject of gossip algorithms in various contexts. Non-convex

updates have been used in the context of a second order diffusion for load balancing [68] in

a slightly different setting. The idea there was to take into account the value of the nodes

during the previous two time steps rather than just the previous one, (in a synchronous

setting), and set the future value of a node to a non-convex linear combination of the past

values of some of its neighbors. There is also a line of research on averaging algorithms

having two time scales, [12, 48] which is closely related to the present chapter.

In [69], the use of non-convex combinations for gossip on a geographic random graph on
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n nodes was considered. It was shown that one can achieve averaging using n1+o(1) updates

if one is willing to allow a certain amount of centralized control.The main technical difficulty

in using non-convex updates is that they can skew the values held by nodes in the short

term. We show that nonetheless, in the long term this leads to faster averaging. Let the

values held by the nodes be X(T ) = (x1(T ), . . . , x|V |(T ))T . We study distributed averaging

algorithms A which result in

lim
T→∞

X(T ) = xav1,

where xav is invariant under the passage of time and show that in some cases there is an

exponential speed-up in n if one allows the use of non-convex updates, as opposed to only

convex ones.

Definition 3.1.1. Let

varX(t) :=

∑|V |
i=1(xi(t)− xav)2

|V | .

Let Tav be the supremum over all x ∈ R|V | of

inf
t

P
[
∃T > t,

varX(T )

varX(0)
>

1

e2

∣∣∣ X(0) = x

]
<

1

e
.

Notation 3.1.1. Let a connected graph G = (V,E) have a partition into connected graphs

G1 = (V1, E1), and G2 = (V2, E2). Specifically, every vertex in V is either in V1 or V2,

and every edge in E belongs to either E1 or to E2, or to the set of edges E12 that have one

endpoint in V1 and one in V2. Let |V1| = n1, |V2| = n2 where without loss of generality,

n1 ≤ n2 and |V | = n. Let Tvan(G1) and Tvan(G2) be the averaging times of the “vanilla”

algorithm that replaces at the clock tick of an edge e the values of the endpoints of e by the

arithmetic mean of the two, applied to G1 and G2 respectively.

Definition 3.1.2. Let C denote the set of algorithms that use only convex updates of the

form
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1. xi(t
+) = αxi(t

−) + βxj(t
−).

2. xj(t
+) = αxj(t

−) + βxi(t
−).

where α ∈ [0, 1] and α + β = 1.

These updates have been extensively studied, see for example [8, 13].

Theorem 3.1.1. The averaging time of any distributed algorithm in C is Ω(
min(|V1|,|V2|)
|E12| )

Theorem 3.1.2. The averaging time of A is O(log n(Tvan(G1) + Tvan(G2))).

Note that in the case where G1 and G2 are sufficiently well connected internally but

poorly connected to each other, A outperforms any algorithm in C. In fact for the graph

G′ obtained by joining two complete graphs G′1, G′2 each having n
2 vertices by a single edge,

Ω(
min(|V ′1|,|V ′2|)
|E′12|

) = Ω(n), while O(log n(Tav(G
′
1) + Tav(G

′
2))) = O(log n).

3.2 Limitations of convex combinations

Given a function a(t), let its right limit at t be denoted by a(t+) and its left limit at t by

a(t−). Consider an algorithm C ∈ C.

Proof of Theorem 3.1.1. Let us consider the initial condition where X(0) is the vector that

is 1 on vertices v1, . . . , vn1 of G1 and −n1
n2

on vertices vn1+1, . . . , vn of G2. Let us denote
∑n1
i=1 xi(t)
n1

by y(t) and

∑n
i=n1+1 xi(t)

n2
by z(t). In the model we have considered, with proba-

bility 1, at no time does more than one clock tick.

In the course of the execution any algorithm in C y(t) can change only during clock ticks of

ec and the same holds for z(t). This is because during a clock tick of any other edge, both

of whose end-vertices lie in G1 or in G2, y(t) and z(t) do not change. The vertices adjacent
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to ec can change by at most 2 across these instants. Further, the values xn(t) and xn+1(t)

are seen to lie in the interval

[ min
i∈|V |

xi(0), max
i∈|V |

xi(0)] ⊆ [−1, 1].

If the clock of ec ticks at time t, we therefore find that

|y(t+)− y(t−)| ≤ 2

n1
, (3.1)

The number of clocks ticks of ec until time t is a Poisson random variable whose mean is t.

A direct calculation tells us that

var(X(t)) ≥ n1y(t)2

n
. (3.2)

To obtain a lower bound for y(t)2, we note that the total number of times the clocks of

edges belonging to E12 tick is a Poisson random variable νt with mean t|E12|. It follows

from Inequality (3.1) that y(t) ≥ 1− 2νt
n1

.

|E12|Tav = E[νTav ]

≥ P
[
νTav ≥ (1− 1

e
)
n1
4

]
(1− 1

e
)
n1
4

However

P
[
νTav ≥ (1− 1

e
)
n1
4

]
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must be large, because otherwise y(Tav) would probably be large. More precisely,

P
[
νTav ≥ (1− 1

e
)
n1
4

]
≥ 1− P

[
∃T > Tav, varX(T ) >

1

e2

]

> 1− 1

e

Therefore,

Tav ≥ P
[
νTav ≥ (1− 1

e
)

n1
4|E12|

]
(1− 1

e
)
n1
4

≥ Ω(
n1
|E12|

)

3.3 Using non-convex combinations

3.3.1 Algorithm A

Let the vertices of G1 be labeled by [n1] and those of G2 by [n]\ [n1], where [n] := {1, . . . , n}.

Let ec = (vn1 , vn1+1 be a fixed edge belonging to E12. Let the time of the kth clock tick of

an edge e be t. Let C >> 1 be a sufficiently large absolute constant (independent of n.)

3.3.2 Analysis

Proof of Theorem 3.1.2. Since Tav is defined in terms of variance and algorithm A uses only

linear updates, we may subtract out the mean from each Xi(0) and it is sufficient to analyze

the case when xav = 0.

Let V1 = [n1] and V2 = [n] \ [n1]. Let µ1(t) =
∑n1
i=1 xi(t)
n1

and µ2 =

∑n
i=n1+1 xi(t)

n2
and
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• If the edge e is ec = (vn1 , vn1+1),

1. If k ≡ −1 mod (dC(Tvan(G1) + Tvan(G2)) lnne)
(a) xn1(t+) = xn1(t−) + n1

{
xn1+1(t−)− xn1(t−)

}

(b) xn1+1(t+) = xn1+1(t−)− n1
{
xn1+1(t−)− xn1(t−)

}

2. If k 6≡ −1 mod (dC(Tvan(G1) + Tvan(G2)) lnne) make no update.

• If the edge e is (vi, vj) 6∈ E12

1. xi(t
+) =

xi(t−)+xj(t−)
2 .

2. xj(t
+) =

xi(t−)+xj(t−)
2 .

• If e ∈ E12 \ {ec} make no update.

µ(t) = |µ1(t)|+ |µ2(t)|. Let σ(t) be

√∑n1
i=1(xi(t)− µ1(t))2 +

∑n
n1+1(xi(t)− µ2(t))2

n
.

We consider time instants T1, T2, . . . where Ti is the instant at which the clock of edge e

ticks for the diC(Tvan(G1) + Tvan(G2)) lnneth time. Observe that the value of µ(t) changes

only across time instants Tk, k = 1, 2, . . ..

The amount by which xn1(t) and xn1+1(t) deviate from µ1(t) and µ2(t) respectively, can be

seen to be bounded above by
√
nσ(t)

max
{
|xn1(t)− µ1(t)|, |xn1+1(t)− µ2(t)|

}
(3.3)

≤ √nσ(t).

We now examine the evolution of σ(T+
k ) and µ(T+

k ) as k → ∞. The statements below

are true if C is a sufficiently large universal constant (independent of n).

35



From T+
k to T−k+1, independent of x,

P

[
σ(T−k+1) ≥

σ(T+
k )

n6

∣∣∣X(T+
k ) = x

]
≤ 1

4n
(3.4)

µ(T−k+1) = µ(T+
k ) (3.5)

Because of inequality (3.3), from T+
k to T−k+1

σ(T+
k+1) ≤ n(σ(T−k+1) + |µ(T−k+1)|) (3.6)

|µ(T+
k+1)| ≤ n

3
2σ(T−k+1) (3.7)

var X(t) ≤ µ(t)2 + σ(t)2.

We deduce from the above that

P

[
var X(T+

k+1) ≥
var X(T+

k )

n4

]
≤ 1

4n
(3.8)

Let Ak be the (random) operator obtained by composing the linear updates from time

T+
k to T+

k+1. Let ‖A‖ denote the `n2 to `n2 norm of the linear map A.

‖A‖ = sup
x∈Rn

‖Ax‖2
‖x‖2

.

Lemma 3.3.1.

P
[
‖Ak‖2 ≥

1

n3

]
≤ 1

2
(3.9)
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To see this, let v1, . . . , vn be the canonical basis for Rn. For any unit vector

x =
n∑

i=1
λivi

Then,

‖Ak(x)‖ ≤
n∑

i=1
|λi| ‖Ak(vi)‖ (Triangle Ineq.)

≤

√√√√
n∑

i=1
‖Ak(vi)‖2 (Cauchy-Schwarz)

The Lemma now follows from Inequality (3.8) by an application of the Union Bound. �

Moreover, we observe by construction that the norm of Ak is less or equal to n,

‖Ak‖ ≤ n (3.10)

Note that log(varX(T+
k )) defines a random process (that is not Markov). The updates Ak

from time T+
k to T+

k+1 for successive k are i.i.d random operators acting on Rn. Note that

log(varX(T+
k ))− log(varX(0)) ≤

k∑

i=1
log ‖Ai‖

due to the presence of the supremum in the definition of operator norm.

Wk :=
k∑

i=1
log ‖Ai‖

is a random walk on the real line for k = 1, . . . ,∞.

The last and most important ingredient in this proof is stochastic dominance. It follows

from Lemma 3.3.1 and Equation 3.10 that the random walk {Wk} can be coupled with a
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random walk {W̃k} that is always to the right of it on the real line, i. e. for all k, Wk ≤ W̃k,

where the increments

W̃k+1 − W̃k = log n (with probability
1

2
)

= −3

2
log n (with probability

1

2
.)

By construction,

log(varX(T+
k ))− log(varX(0)) ≤ W̃k (3.11)

so it follows that Tav is upper bounded by any t0 which satisfies

P
[
∀T > t0, W̃T ≤ −2

]
> 1− 1

e
.

Note that E[W̃k] = −k log n
2 and E[varW̃k] = 9k

16 log2 n.

In order to proceed, we shall need the following inequality (Proposition 2.1.2, [52]) about

simple unbiased random walk {Sk}k≥0 on Z starting at 0.

Proposition 3.3.1 (Proposition 2.1.2, [52]). There exist constants c, β such that for any

n ∈ Z, s > 0

P[Sn ≥ s
√
n] ≤ ce−βs

2
.

Using this fact,

P[∀T > t0, W̃T ≤ −2]

= P[∀T > t0, (log n)(ST −
T

2
) ≤ −2]
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For large n, this is the same as

P[∀T > t0, ST <
T

2
] ≥ 1−

∑

T>t0

ce−βT/4.

Clearly, there is a constant t0 independent of n such that 1−∑T>t0
ce−βT/4 > 1− 1

e . This

completes the proof.
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CHAPTER 4

MIXING TIMES AND BOUNDS ON THE COMPETITIVE

RATIO FOR OBLIVIOUS ROUTING

4.1 Introduction

Over the past three decades, there has been significant interest in the design and analysis of

routing schemes in networks of various kinds. A network is typically modeled as a directed

or undirected graph G = (V,E), where E is a set of m edges representing links and V is a

set of n vertices representing locations or servers. Each link is associated with a cost which

is a function of the load that it carries. There is a set of demands, which has the form

{(i, j, dij)
∣∣(i, j) ∈ V × V, dij ≥ 0}.

A routing scheme that routes a commodity from its source to its target independent of

the demands at other source-target pairs is termed oblivious. The competitive ratio of an

oblivious routing scheme Obl is the maximum taken over all demands, of cost that Obl incurs

divided by the cost that the optimal adaptive scheme Opt incurs. Work in this area was

initiated by Valiant and Brebner [98] who developed an oblivious routing protocol for parallel

routing in the hypercube that routes any permutation in time that is only a logarithmic factor

away from optimal. For the cost-measure of congestion (the maximum load of a network link)

in a virtual circuit routing model, Räcke [81] proved the existence of an oblivious routing

scheme with polylogarithmic competitive ratio for any undirected network. This result was

subsequently made constructive by Harrelson, Hildrum and Rao [31] and improved to a

competitive ratio of O(log2 n log log n).

Oblivious routing has largely been studied in the context of minimizing the maximum

congestion. A series of papers [81, 31, 82] has culminated recently in the development of an
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oblivious algorithm due to Räecke [82] whose competitive ratio with respect to congestion

is O(log n). The algorithm Har that is studied in this chapter was introduced in [32] where

it was shown to have a competitive ratio of O(
√

log n) with respect to the `2 norm when

demands route to a single common target. We study the task of uniformly minimizing all the

`p norms of the vector of edge loads in an undirected graph while routing a multicommodity

flow oblivious of the set of demands. As a matter of fact our results hold under any norm

that transforms Rn into a Banach space symmetric and “unconditional” with respect to the

canonical basis. These terms have been defined in section 4.3.

4.2 Our results

Let G = (V,E) denote an undirected graph with a set V of n vertices and a set E of m

edges. For any oblivious algorithm A, let the competitive ratio of A in the norm ‖ · ‖p be

denoted κp(A). Let the performance index π(A) of A be defined to be their supremum as

‖ · ‖p ranges over the set of all `p norms.

π(A) := sup
p
κp(A).

Let Har be the oblivious algorithm (formally defined in the following section,) which routes

a flow from s to t in the (unique) way that minimizes the `2 norm of edge loads of that flow,

assuming all other demands to be 0. The competitive ratio of this algorithm with respect to

the `2 norm was shown in [32] to be O(
√

log n) over demands having single common target.

We show that Har has an index π(Har) that is equal to its competitive ratio in the `1 norm,

which is in turn bounded above by min(
√
m,O(Tmix)) where Tmix is the mixing time of the

canonical random walk, We obtain O(log n) upper bounds on π(Har) for expanders. The

constant in O(·) may depend on the family. Almost matching Ω( log n
log log n) lower bounds for

expanders [30] and matching Ω(log n) lower bounds for 2−dimensional discrete tori [3] are
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known for the competitive ratio of an oblivious algorithm with respect to congestion or `∞

norm. In particular, for cost functions that are convex combinations of bounded powers

of the various `p norms, such as
∑
e g(load(e)) where g is a polynomial with non-negative

coefficients, Har has on these graphs a polylogarithmic competitive ratio. We show that there

exist graphs for which no algorithm that is adaptive with respect to the demands but not

p can simultaneously have a cost that is less than Ω(
√
m) times the `p norm of the optimal

adaptive algorithm that is permitted to vary with p, even if p can only take the values 1

and ∞. Lastly, we can handle a larger class of norms than `p, namely those norms that

are invariant with respect to all permutations of the canonical basis vectors and reflections

about any of them.

Theorem 4.2.1. For any graph G, with n vertices, and m edges, on which the canonical

random walk has a mixing time Tmix, π(Har) ≤ min(
√
m,O(Tmix)).

Hajiaghayi et al have shown in [30] that if G belongs to a family of expanders and A is

any oblivious routing algorithm, the competitive ratio κ∞(A) with respect to congestion is

bounded from below by Ω( log n
log log n). Therefore Theorem 4.2.1 is tight up to an O(log log n)

factor for expanders.

Theorem 4.2.2. For every m, there exists a graph G with m edges, such that for any

oblivious algorithm A, π(A) ≥ b
√
m−1c
2 on G.

4.3 Definitions and Preliminaries

A network will be an undirected graph G = (V,E), where V denotes a set of n vertices (or

nodes) {1, . . . , n} and E a set of m edges. If a traffic vector t = (t1, . . . , tm) is transported

across edges e1, . . . , em, we shall consider costs that are `p norms ‖t‖p. In our setting, the

network is undirected and links are allowed to carry traffic in both directions simultaneously.

For book keeping, it will be convenient to give each edge an orientation. For an edge e of the
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form {v, w}, we will write e = (v, w) when we want to emphasize that the edge is oriented

from v to w. The traffic on edge e will be a real number. If this number is positive, it will

represent traffic along e from v to w; if it is negative, it will represent traffic along e from w

to v. Let In(v) be the edges of G that are oriented into v and Out(v) be the edges of G that

are oriented away from v. A potential φ on G is a function from V to R. The gradient ∇φ

of a potential φ is a function from E to R, whose value on an oriented edge e := (u, v) is

∇φ(e) := φ(u)− φ(v).

A flow f on G is a function from E to R. The divergence div f of a flow f is a function from

V to R whose value on a vertex v is given by

(div f)(v) :=
∑

e∈Out(v)

f(e)−
∑

e∈In(v)

f(e)

We shall denote by ∆ the Laplacian operator that maps the space of real valued functions

on V to itself as follows.

∆φ := −div (∇φ).

We call such f = 〈fij : i, j ∈ V (G)〉 a multi-flow. We say that a multi-flow f meets the

demand 〈dij : i, j ∈ V 〉, if for all i, j ∈ V ,

div fij = dijδi − dijδj ,

where δu(·) is the Kronecker Delta function that takes a value 1 on u and 0 on all other

vertices. If this is the case, we say “f routes D” and write f ↘ D. For a fixed i, j, we shall
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use ‖fij‖1 to denote
∑
e |fij(e)|. The traffic on the edge e under f is given by

tf (e) =
∑

i,j

|fij(e)|.

We shall call the vector tf := (tf (e1), . . . , tf (em)) the network traffic or network load, where

(e1, . . . , em) is a list of the edges of G. If for every edge e, the total traffic on e under f is

greater or equal to the total traffic on e under f ′, we shall say that f ′ C f . i. e.

(∀e)tf (e) ≥ tf ′(e)⇒ f ′ C f.

Definition 4.3.1. An oblivious algorithm (A), is a multi-flow {aij} indexed by pairs of

vertices i, j where each aij is a flow satisfying

div aij = δi − δj .

Given a demand D, A routes D using D · a := 〈dijaij : i, j ∈ V (G)〉.

Definition 4.3.2. For any oblivious algorithm A, for every p ∈ [1,∞], we define its com-

petitive ratio under the `p norm ‖ · ‖p

κp(A) := sup
D

sup
f↘D

‖tD·a‖p
‖tf‖p

.

Let the performance index π(A) of A be defined to be their supremum as ‖ · ‖p ranges over

all possible `p norms,

π(A) := sup
p∈[1,∞]

κp(A).

All results in this chapter hold without modification if the above definition of perfor-

mance index, is altered to be the supremum over all norms that satisfy the symmetry and

unconditionality conditions in Definition 4.3.6.
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Definition 4.3.3. We define Har to be the oblivious algorithm corresponding to the multi-

flow h = 〈hij : i, j ∈ V (G)〉, where hij is the unique flow such that

1. div hij = δi − δj , and

2. There exists a potential φij such that ∇φij = hij .

These conditions uniquely determine {hij} and determine the potential φij up to an

additive constant. The potential can be described in terms of random walk on the graph.

Suppose W0,W1, . . . denotes simple random walk on the graph, and let π̃(v) = deg(v)/[2|E|)]

denotes its stationary distribution.

Definition 4.3.4 (Hitting time). If S ⊆ V , let

HS = min{j ≥ 1 : Wj ∈ S}, HS = min{j ≥ 0 : Wj ∈ S}.

If S = {i, j}, we write Hij , Hij.

Note that HS , HS agree if W0 6∈ S. The potential φij with boundary condition φij(j) = 0

is given by

φij(v) = bij Pv{W (Hij) = i},

where we write Pv to denote probabilities assuming W0 = v and the constant bij is given by

b−1
ij = Pj{W (Hij) = i}.

Definition 4.3.5 (Mixing time). Let W0,W1, . . . be simple random walk on G. Let

ρ
(t)
v (u) = Pv{Wt = u}.
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The mixing time as a function of ε is

Tmix(ε) := sup
v∈V

inf
{
t : ‖π̃ − ρ(t)

v ‖1 ≤ 2ε
}
.

Definition 4.3.6. A Banach space X with a basis {e1, . . . , em} is said to be symmetric

and unconditional with respect to the basis if the following two conditions hold for any

x1, . . . , xm ∈ R .

S. For any permutation π, ‖∑m
i=1 xiei‖X = ‖∑m

i=1 xieπ(i)‖X .

U. For any ε1, . . . , εm ∈ {−1, 1}, ‖∑xiei‖X = ‖∑ εixiei‖X .

4.3.1 Interpolation Theorems

All `p norms satisfy the above conditions. Given a linear operator A : Rm 7→ Rm, we shall

define its `p → `p norm

‖A‖p→p = sup
‖x‖p=1

‖Ax‖p
‖x‖p

.

More generally if Rm is endowed with a norm transforming it into a Banach space X, we

shall denote its operator norm by ‖A‖X→X . We will need the following special cases of the

theorems of Riesz-Thorin [84, 94] and Mityagin [66].

Theorem 4.3.1 (Riesz-Thorin). For any 1 ≤ p ≤ r ≤ q ≤ ∞,

‖A‖r→r ≤ max(‖A‖p→p, ‖A‖q→q).

The following theorem is due to B. Mityagin.

Theorem 4.3.2 (Mityagin). Let Rm be endowed with a norm transforming it into a Banach
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space X that is symmetric and unconditional with respect to the standard basis. Then,

‖A‖X→X ≤ max(‖A‖1→1, ‖A‖∞→∞).

4.3.2 Some facts about harmonic functions and flows

hij = ∇φij , where φij is up to addition by a constant, the unique solution of the linear

equation

∆φij = −δi + δj .

Therefore for every u, v and w, the following linear relation is true.

Fact 4.3.1. huv + hvw = huw.

For e = (u, v), let he := huv and φe := φuv. More generally, we have the following.

Lemma 4.3.1. Let gij be a flow such that div gij = δi − δj. Then,

∑

e

gij(e)he = hij .

Proof. By linearity,

div
∑

e

gij(e)he =
∑

e

gij(e)div he

=
∑

e=(u,v)∈E
gij(e)(δu − δv),

which is
∑

v∈V


 ∑

e∈Out(v)

gij(e)−
∑

e∈In(v)

gij(e)


 δv = δi − δj .

Secondly,

∇(
∑

e

gij(e)φe) =
∑

e

gij(e)∇φe =
∑

e

gij(e)he.

47



According to the definition, hij is the unique flow that satisfies the above properties, so

we are done.

The following is a result from network theory [93].

Theorem 4.3.3 (Reciprocity Theorem). The flows comprising Har have the following sym-

metry property. For each i, j ∈ V , let φij be a potential such that ∇φij = hij . Then, for any

u, v ∈ V ,

φij(u)− φij(v) = φuv(i)− φuv(j). (4.1)

4.4 Using Interpolation to derive uniform bounds

Proof of Theorem 4.2.1. This Theorem follows from Proposition 4.4.3, Proposition 4.4.1 and

Proposition 4.4.2.

Proposition 4.4.1. For any graph G,

π(Har) = κ1(Har)

= max
e∈G
‖he‖1,

where the maximum is taken over all edges of G.

Proof of Proposition 4.4.1. Given a demandD, letDp be constructed as follows. Let Opt p(G,D)

be an optimal multi-flow routing D with respect to `p, and optp(G,D) be the corresponding

`p norm. For an edge e = (u,w), let (Dp)uw be the total amount of traffic from u to v in

Opt p(G,D) that routes D. For any pair of vertices (u,w) that are not adjacent, let (Dp)uw
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be defined to be 0. Let ‖D‖p be defined in the natural way to be

‖D‖p :=


∑

ij

d
p
ij




1
p

.

Lemma 4.4.1. optp(G,D) = optp(G,Dp) = ‖Dp‖p.

Proof of Lemma 4.4.1. Any multi-flow f that routesDp can be converted to a multi-flow that

routes D having the same total cost, since Dp was constructed from a multi-flow that routes

D. Therefore optp(G,D) ≤ optp(G,Dp). By the definition of Dp, there exists an optimal

solution to D that can be used to route Dp. This establishes that ‖Dp‖p = optp(G,D) ≥

optp(G,Dp), and proves the lemma.

Let D̄p represent the set of all demands of the form Dp arising from some demand D by

the above conversion procedure. By Lemma 4.4.1,

∀Dp∈D̄p sup
f↘D

1

‖tf‖p
=

1

‖Dp‖p
.

Using D · h to denote the multi-flow 〈dijhij : i, j ∈ V (G)〉, it is sufficient to prove that for

all p ∈ [1,∞].

sup
Dp∈D̄p

‖tDp·h‖p
‖Dp‖p

≤ sup
D1∈D̄1

‖tD1·h‖1
‖D1‖1

. (4.2)

Let e1, . . . , em be some enumeration of the edges ofG and letR be them×mmatrix whose

ijth entry, where ei = (u, v) is given by rij = |huv(ej)|. For Dp ∈ D̄p, the “traffic vector”

tDp·h can be obtained by applying the linear transformation R to dp, for each ei = (u, v),

(dp)i = (Dp)uv and dp = ((dp)1, . . . , (dp)m).
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


tDp·h(e1)

tDp·h(e2)

...

tDp·h(em)




=




r11 . . . r1m

r21 . . . r2m
...

. . .
...

rm1 . . . rmm







(dp)1

(dp)2
...

(dp)m



.

Given a linear operator A : Rm 7→ Rm, we define its `p → `p norm

‖A‖p→p = sup
‖x‖p=1

‖Ax‖p
‖x‖p

.

With this notation, for p ∈ (1,∞],

sup
Dp∈D̄p

‖tDp·h‖p
‖Dp‖p

≤ ‖R‖p→p (4.3)

while for p = 1, because D̄1 is equal to {R+}m, we can make the stronger assertion that

sup
D1∈D̄1

‖tD1·h‖1
‖D1‖1

= ‖R‖1→1. (4.4)

Lemma 4.4.2. ‖R‖1→1 = ‖R‖∞→∞.

Proof of Lemma 4.4.2. Recall that R is an m ×m matrix whose ijth entry is |hei(ej)|. By

the Reciprocity Theorem (Theorem 4.3.3), R is a symmetric matrix. Let x1 ∈ Rm be a unit

`1 normed vector that achieves the maximum dilation in the `1 norm when multiplied by

R, i. e. ‖x1‖1 = 1 and ‖Rx1‖1 = ‖R‖1→1. We may assume without loss of generality that

all coordinates of x1 are non-negative, because if we replace x1 by the vector x′1 obtained

by taking absolute values of the coordinates of x1, ‖Rx′1‖ ≥ ‖Rx1‖. Let u1, . . . , um be the
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standard basis. We note that

‖R‖1→1 =
m∑

i=1
‖hei‖1x1i

≤ max
i
‖hei‖1

= max
i
‖Rui‖1

≤ ‖R‖1→1.

Therefore ‖R‖1→1 = maxi ‖hei‖1. Since R is a symmetric matrix whose entries are non-

negative,

sup
‖x‖∞=1

‖Rx‖∞ = ‖R(u1 + . . .+ um)‖∞.

Therefore,

‖R‖∞→∞ = ‖R(u1 + . . .+ um)‖∞

= max
i
‖hei‖1

= ‖R‖1→1.

By Lemma 4.4.2 and the Riesz-Thorin theorem (Theorem 4.3.1), we conclude that

sup
Dp∈D̄p

‖tDp·h‖p
‖Dp‖p

≤ ‖R‖p→p

≤ max(‖R‖1→1, ‖R‖∞→∞)

= ‖R‖1→1(By Lemma 4.4.2)

= sup
D1∈D̄1

‖tD1·h‖1
‖D1‖1

which establishes Inequality 4.2 and thereby completes the proof.
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Remark 4.4.1. One can repeat the above argument using Mityagin’s theorem (Theorem 4.3.2)

instead of the Riesz-Thorin theorem, and prove the stronger statement that for any norm that

transforms Rm into a symmetric unconditional Banach space X with respect to the standard

basis,

κX(Har) ≤ κ1(Har),

where κX(Har) is the competitive ratio of Har with respect to the norm of X.

4.4.1 Bounding π(Har) by hitting and mixing times

Proposition 4.4.2. For any vertices i, j ∈ V ,

‖hij‖1 ≤ 8Tmix(
1

4
).

Proof of Proposition 4.4.2. It is always possible to find a potential φij such that ∆φij =

δj − δi, and

π̃({u|φij(u) ≤ 0}) ≥ 1

2

π̃({v|φij(v) ≥ 0}) ≥ 1

2
,

because adding an arbitrary constant does not change the gradient of a potential. Let φij

satisfy the above conditions.

Recall that HS be the (hitting) time taken for a random walk starting at v to hit the set

S (Definition 4.3.4). Let Ev[·] denote expectations assuming W0 = v.

Lemma 4.4.3. Suppose ∆φij = δj − δi. Then,

‖∇φij‖1 ≤
∑

v

deg(v)|φij(v)|
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Proof of Lemma 4.4.3.

‖∇φij‖1 =
∑

(u,v)∈E
|φij(u)− φij(v)|

≤
∑

(u,v)∈E
(|φij(u)|+ |φij(v)|)

=
∑

v

deg(v)|φij(v)|

Lemma 4.4.4. Let ∆φij = δj − δi, S≤ := {v|φij(v) ≤ 0} and S≥ := {v|φij(v) ≥ 0}. Then,

∑

v∈V
deg(v)|φij(v)| ≤ EHi

S≤
+ EHj

S≥
.

Proof of Lemma 4.4.4. Let W0,W1, . . . be a random walk on G starting at i and ending the

first time it hits S≤. Given v ∈ V and a subset S of V , let N i
S(v) be the number of times

the walk exits v until hitting S≤, and ψ(v) :=
EN i

S≤
(v)

deg(v) . Note that ψ(u) = 0 for all u ∈ S≤.

We make the following claim.

Claim 4.4.1.

∆ψ(i) = −1

∆ψ(u) = 0 if u ∈ V \ {S≤ ∪ {i}}.

Proof of Claim 4.4.1. To see why this is true, let E(t, v) be the event that Wt = v. For any

vertex u, let ?(u) denote the set of vertices adjacent to u. We see that for 1 ≤ t ≤ Ht
S≤

and

u ∈ V \ {S≤ ∪ {i}},

P[E(t, v)] =
∑

u∈?(v)

P[E(t− 1, u)]

deg(u)
.
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Summing up over time, this implies E[N i
S≤

(v)] =
∑
u∈?(v)

E[N i
S≤

(u)]

deg(u) . This translates to

ψ(v) =
∑
u∈?(v)

ψ(u)
deg(v) . When v = i, a similar computation yields

ψ(i) = 1 +
∑

u∈?(i)

ψ(u)

deg(i)
,

proving the claim.

It follows that ∆(ψ− φ) is 0 on all of V \ S≤. This implies that the maximum of φ− ψ

cannot be achieved on V \ S≤ (Maximum principle for Harmonic functions). φ − ψ is ≤ 0

on S≤, therefore ψ − φ is a non-negative function. It follows that

∑

v∈S≥
deg(v)φij(v) ≤ Ei

[
HS≤

]
.

An identical argument applied to −φij instead of φij gives us the following.

∑

v∈S≤
deg(v)(−φij(v)) ≤ Ej

[
HS≥

]
.

Together, the last two inequalities complete the proof.

Lemma 4.4.5. Let S be a subset of V whose stationary measure is greater or equal to 1
2 .

Let v ∈ V \ S. Then

Ev[HS ] ≤ 4Tmix(1/4).

Proof of Lemma 4.4.5. Let W0,W1, . . . be a random walk on G starting at v. Recall that

from Definition 4.3.5,

Tmix(ε) = sup
v∈V

inf
{
T
∣∣∀t≥T ‖π̃ − ρ

(t)
v ‖1 < ε

}
.
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Let τ := Tmix(1/4) and P = Pv.

P[HS ≤ τ ] ≥ P[Wτ ∈ S]

= π̃(S)− (π̃(S)−
∑

u∈S
P[Wτ = u])

≥ 1

2
− |π̃(S)−

∑

u∈S
P[Wτ = u]|

≥ 1

2
− |
∑

u∈S
(π̃(u)− P[Wτ = u])| ≥ 1

4
.

In order to get a bound on the expected hitting time from this bound on the hitting

probability, we observe that the distribution of hitting times has an exponential tail. More

precisely, using the Markovian property of the random walk,

P[HS > kτ ] is less or equal to

P [Xτ 6∈ S]
k−1∏

i=1
sup
u6∈S

P
[
X(i+1)τ 6∈ S

∣∣Xiτ = u
]
≤ 3k

4k
.

Finally,

Ev[HS ] ≤ τ

( ∞∑

i=0
P
[
Hv
S > iτ

]
)
≤ 4τ.

Proposition 4.4.3. For any edge e, ‖he‖1 ≤
√
m.

Proof of Proposition 4.4.3. If e = (u, v), he is by Thompson’s principle ([23]) the minimizer

of ‖f‖2 among all flows f for which div f = δu − δv. Since u and v are adjacent, ‖f‖2 = 1

if f is the “shortest-path” flow defined by
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1

2

b√m− 1c

b√m− 1c

e1

3

Figure 4.1: A graph on which the performance index π(A) of any oblivious algorithm A is

≥ b
√
m−1c
2

f(e′) =





1 if e′ = e

0 otherwise.

Therefore ‖he‖2 ≤ 1. This implies that ‖he‖1 ≤
√
m, since for any vector x ∈ Rm, ‖x‖1 ≤

√
m‖x‖2.

Proof of Theorem 4.2.2. Let G be a graph with n = m−b
√
m− 1c+1 vertices and m edges

constructed as follows (see Figure 1). Let vertices labeled 1 and 2 be joined by an edge e1,

and also be connected by r := b
√
m− 1c vertex disjoint paths of length h. We make the

remaining vertices and edges belong to a path from vertex 3 to 2, such that there is no path

from any of these vertices to 1 which does not contain 2. We will fix a specific set of demands

D = {dij}; namely a unit demand from 1 to 2, and 0 otherwise. Suppose that an algorithm

A uses a flow denoted a12 to achieve this, where a12(e1) = α ∈ [0, 1]. Then,

‖aij‖1 ≥ α + (1− α)r,
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and

‖aij‖∞ ≥ α.

On the other hand a flow Opt 1 that uses only e1 incurs an `1 norm of 1. A flow Opt ∞ that

uses all the r + 1 edge disjoint paths from 1 to 2 equally incurs an `∞ cost of 1
r+1 .

‖a12‖1
‖Opt 1‖1

≥ (1− α)r + α,

and

‖a12‖∞
‖Opt ∞‖∞

≥ α(r + 1).

Therefore,

max(κ1(A), κ∞(A)) ≥ κ1(A) + κ∞(A)

2
≥ b
√
m− 1c

2
.

4.5 Random walks and π(Har)

4.5.1 A Bound on the Spectral Gap using flows of Har

A well known method due to Diaconis-Stroock [21] and Sinclair [87], of bounding the spectral

gap of a reversible Markov chain involves the construction of canonical paths from each node

to every other. One may use flows instead of paths, and derive better mixing bounds, as

was the case in the work of Morris-Sinclair [67] on sampling knapsack solutions. Sinclair

suggested a natural way of constructing canonical flows using random walks in [87]. This

scheme gives a bound of O(τ2), if τ is the true mixing time. In this section, we observe

that for a random walk on a graph, the flows of Har provide a certificate for rapid mixing as

well, and give the same O(τ2) bound on the mixing time. Let the stationary distribution be

denoted π̃. ˜π(i) =
deg(i)

2m . Let the capacity of an edge e = (u, v), denoted Q(e) be defined to

57



be π̃(u)puv, where puv = 1
deg(u) is the transition probability from u to v. Let the transition

matrix be denoted P . In our setting of (unweighted) random walks, ˜π(i) =
deg(i)

2m and for

each edge e, Q(e) is 1
2m .

Definition 4.5.1. Let D be the demand 〈dij : i, j ∈ V 〉, where dij = π̃(i)π̃(j). Given a

multi-flow f , where f ↘ D, let ρ(f) denote the maximum load on any edge divided by its

capacity i. e. ρ(f) =
‖tf‖∞
Q(e) .

Theorem 4.5.1 (Sinclair). Let f ↘ D as described above. Then, the second eigenvalue λ1

of the transition matrix P satisfies

λ1 ≤ 1− 1

8ρ2 .

Let us denote Tmix(1/4) by τ . Let h · D be the multi-flow obtained by re-scaling h so

that it meets D. Then, we have the following proposition.

Proposition 4.5.1.

1

2
√

2(1− λ1)
≤ ρ(h ·D) ≤ 16τ.

Proof of Proposition 4.5.1. The lower bound on ρ(h · D) follows from Theorem 4.5.1. We

proceed to show the upper bound. In the case of a random walk on a graph with m edges,

for every edge e, Q(e) = 1
2m . Therefore

ρ(D · h) =
‖tD·h‖∞
Q(e)

= 2m‖tD·h‖∞.

Given an edge e = (u,w), let φe = φuw be a potential such that huw = ∇φuw. For

convenience, for any i, let hii be defined to be the flow that is zero on all edges. Let
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e = (u,w) be the edge that carries the maximum load. Then,

ρ(D · h) =
∑

i,j

| deg(i) deg(j)hij(e)|
2m

=
∑

i,j

deg(i) deg(j)

2m
|φij(u)− φij(w)|

=
∑

i,j

deg(i) deg(j)

2m
|φe(i)− φe(j)| (Thm 4.3.3)

≤
∑

i,j

deg(i) deg(j)

2m
(|φe(i)|+ |φe(j)|)

= 2
∑

i

deg(i)|φe(i)|.

Adding an appropriate constant to φe is necessary, we may assume that

π̃({u|φij(u) ≤ 0}) ≥ 1

2

π̃({v|φij(v) ≥ 0}) ≥ 1

2
.

Then, Lemma 4.4.4 and Lemma 4.4.5 together imply that

2
∑

i

deg(i)|φe(i)| ≤ 16τ,

completing the proof.
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CHAPTER 5

COMPUTING THE SURFACE AREA OF A CONVEX SET

5.1 Introduction

An important class of algorithmic questions centers around estimating geometric invariants

of convex bodies. Arguably, the most basic invariant is the volume. It can be shown [27],

[2] that any deterministic algorithm to approximate the volume of a convex body within a

constant factor in Rn needs time exponential in the dimension n. Remarkably, randomized

algorithms turn out to be more powerful. In their pathbreaking paper [25] Dyer, Frieze and

Kannan gave the first randomized polynomial time algorithm to approximate the volume

of a convex body to arbitrary accuracy. Since then a considerable body of work has been

devoted to improving the complexity of volume computation culminating with the recent

best of O∗(n4) due to Lovász and Vempala [61].

Another fundamental geometric invariant associated with a convex body is surface area.

Estimating the surface area was mentioned as an open problem by Grötschel, Lovász, and

Schrijver in 1988 [29]. Dyer, Gritzmann and Hufnagel [26] showed in 1998 that it could be

solved in randomized polynomial time. The primary focus of their paper was to establish that

the computation of surface area and certain other mixed volumes was possible in randomized

polynomial time, and they assumed access to oracles for δ-neighbourhoods of the convex

body. They did not discuss the complexity of their algorithm given only a membership

oracle for the convex body. Below, we indicate an O∗(n8.5) analysis of their algorithm in

terms of the more restricted queries.

In this chapter we develop a new technique for estimating volumes of boundaries based on

ideas from heat propagation. The underlying intuition is that the amount of heat escaping

from a heated object in a small interval of time is proportional to the surface area.

It turns out that this intuition lends itself to an efficient randomized algorithm for com-
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puting surface areas of convex bodies, given by a membership oracle. In this chapter we

describe the algorithm and the analysis of the algorithm, proving a complexity bound of

O∗(n4). The O∗(·) notation hides the polynomial dependence on the relative error ε, and

poly-logarithmic factors in the parameters of the problem. Since, as will be shown below,

surface area estimation is at least as hard as volume approximation, this bound is the best

possible, given the current state-of-the-art in volume estimation.

We note that this bound cannot be obtained using methods previously proposed in [26]

due to a bottleneck in their approach. The method in [26] exploited the fact that vol(K+Bδ)

is a polynomial in δ, where Bδ is a ball of radius δ and the Minkowski sumK+Bδ corresponds

to the set of points within a distance δ of K. The surface area is the coefficient of the linear

term, which they then estimate by interpolation. However, in a natural setting, we only have

access to a membership oracle for K, but not for K + Bδ. Therefore a membership oracle

for K + Bδ has to be constructed, which as far as we can see, requires solving a quadratic

programming problem on a convex set. Given access only to a membership oracle, the best

known algorithm to handle this task is due to Kalai and Vempala, and makes O∗(n4.5) oracle

calls ([38]), which gives a bound on the complexity of the algorithm in [26] that is O∗(n8.5).

Even with a stronger separation oracle the complexity of the method in [26] is O∗(n5),

since the associated quadratic programming problem requires O∗(n) operations ([96], [9].)

On the other hand, the complexity of our method is O∗(n4) using only a membership oracle,

matching the complexity of the volume computation of Lovász and Vempala [61].

5.2 Overview of the algorithm

Notation. Throughout this chapter, B will denote the unit n-dimensional ball, K will

denote an n-dimensional convex body such that rB ⊆ K ⊆ RB. S = vol(∂K) will denote

the surface area of K and V = vol(K), its volume.

We first observe that problem of estimating the surface area of a convex body is at least

61



as hard as that of estimating the volume. This observation can be stated as

Proposition 5.2.1. If the surface area of any n-dimensional convex body K can be approxi-

mated in O(nβpolylog(nRδr )poly(1
ε )) time, the volume can be approximated in O(nβpolylog(nRδr )poly(1

ε ))

time, where δ is the probability that the relative error exceeds ε.

The proof of the proposition relies on the fact that given a body K there is a simple

relationship between the volume of K and the surface area of the cylinder K × [0, h]. More

specifically (see Fig. 2)

2 vol(K) = vol(∂(K × [0, h]))− h vol(∂K)

Thus an efficient algorithm for surface area estimation would also lead to an almost equally

efficient algorithm for estimating the volume.

Our approach provides an estimate for the isoperimetric ratio S
V . Using the fastest exist-

ing algorithm for volume approximation, we obtain a separate estimate for V . Multiplying

these two estimates yields the surface area S.

The underlying intuition of our algorithm is that the heat diffuses from a heated body

through its boundary. Therefore the amount of heat escaping in a short period of time is

proportional to the surface area of the object. Recalling that a point source of heat diffuses at

time t according to the Gaussian distribution 1
(4πt)n/2

e−
‖x‖2
4t leads to the following informal

description of the algorithm (see details in Section 3):

Step 1. Take x1, . . . , xN to be samples from the uniform distribution on K.

Step 2. For each xi, let yi = xi + vi, where vi is sampled from the Gaussian distribution

with density 1
(4πt)n/2

e−
‖x‖2
4t for some appropriate value of t. Thus yi is obtained from xi by

taking a random Gaussian step.

Step 3. Let N̂ be the number of y’s, which land outside of K. N̂
N

√π
t is an estimate for S

V .

Step 4. Using an existing algorithm, produce an estimate V̂ for the volume. Estimate the
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surface area as V̂ N̂
N

√π
t .

We will show that that each of the Steps 1,3,4 can be done using at most O∗(n4) calls to

the membership oracle. It is customary to count the number of oracle calls rather than the

number of arithmetic steps in the volume literature, while measuring the complexity. Step

2, of course, does not require any calls to the oracle at all.

The main technical result of this chapter is to show how to choose values of t and N ,

such that

(1− ε)
(
S

V

√
t

π

)
<
N̂

N
< (1 + ε)

(
S

V

√
t

π

)

It is not known how to efficiently obtain independent random samples from the uniform

distribution on K. We show how to relax this condition and use almost independent samples

from a nearly uniform distribution instead, to derive these estimates.

We then apply certain results from [60] and [61], to generate O
(
n
ε3

)
such samples making

at most O∗
(
n4

ε3

)
oracle calls.

Putting these and some additional observations together, we obtain the following theorem

which is the main result of this chapter:

Theorem 5.2.1. The surface area of a convex body K, given by a membership oracle, and

parameters r, R such that rB ⊆ K ⊆ RB can be approximated to within a relative error of ε

with probability 1− δ using at most

O

(
n4 log

1

δ

(
1

ε2
log9 n

ε
+ log8 n log

R

r
+

1

ε3
log7

(n
ε

)))

i. e. O∗(n4) oracle calls.

The number of arithmetic operations is O∗(n6), on numbers with a polylogarithmic

number of digits. This is the same as that for volume computation in [61].
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5.3 Algorithm to compute the surface area

5.3.1 Notation and Preliminaries

A body K is said to be in t-isotropic position if, for every unit vector u,

1

t
≤
∫

K
(uT (x− x̄))2dx ≤ t,

where x̄ is the center of mass of K. Let ρ be the uniform distribution on convex body K.

We call a random point x ε-uniform if

sup
measurable A

P (x ∈ A)− ρ(A) ≤ ε

2
,

Two random variables will be called µ-independent if for any two Borel sets A and B in their

ranges,

|P (X ∈ A, Y ∈ B)− P (X ∈ A)P (Y ∈ B)| ≤ µ.

A density ρ′ is said to have L2 norm
∫
K

(
dρ′

dρ

)2
dρ with respect to the uniform distribution

on K.

A consequence of the results on page 4 of ([61]), and Theorem 7.2, [102] is, given a starting

point that is ε-uniform, and comes from a distribution that has a bounded L2 norm it takes

O(n3 ln7 n
εµ) oracle calls per point, to generate N points x1, . . . , xN that are ε-uniform, such

that each pair is µ-independent from a convex body that is 2-isotropic. This fact plays a

crucial role in allowing the surface area algorithm to have a complexity bounded by O∗(n4).

5.3.2 Algorithm

We present an algorithm below that outputs an ε-approximation to the surface area of a

convex body K with probability > 3/4. Running it d36 ln
(

2
δ

)
e times and taking the median
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of the outputs gives the result with a confidence > 1− δ.

Input: Convex body K, given by a membership oracle, and parameters r, R such that

rB ⊆ K ⊆ RB and an error parameter ε < 1.

Output: An estimate Ŝ, that with probability > 3/4 has a relative error of less than ε with

respect to S.

Set ε′ := ε
8 , µ := ε′4

218n2 , N := d213n
ε′3
e.

Step 1. Run a volume algorithm to obtain an estimate V̂ of V that has a relative error

ε′ with probability > 15
16 .

Step 2 Generate a linear transformation T given by a symmetric positive-definite matrix

such that TK is 2-isotropic with probability > 15
16 .

Step 3 Compute a lower bound r′ to the smallest eigenvalue ropt of T
−1√
2

,

that satisfies 2√
5
ropt < r′ < ropt. Set rin := max(r, r′).

Step 4 Set
√
t := ε′rin

4n .

Step 5 Generate N random points x2, . . . , xN from K, such that with probability 15/16,

they are ε′2
64n -uniform and each pair {xi, xj} for 1 ≤ i < j ≤ N is µ-independent.

Step 6 Generate N independent random samples v1, . . . , vN from the spherically symmetric

multivariate Gaussian distribution with mean ~0 and variance 2nt.

Step 7 Let N̂ := |{i|xi + vi /∈ K}| be the number of times xi + vi lands outside of K.

Step 8 Output N̂
N

√π
t V̂ .

5.3.3 Analysis of the Run-time

Step 1 takes at most

O

(
n4

ε2
log9 n

ε
+ n4 log8 n log

R

r

)
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oracle calls, using the volume algorithm of Lovász and Vempala ([61].) The number of steps

in the computation is O∗(n6).

Step 2 Such a transformation is obtained during the execution of the volume algorithm from

[61] for no additional cost.

Step 3 takes O(n3) steps of computation ([80].)

Step 4 takes O(1) steps.

Step 5 takes

O

(
n4

ε3
log7

(n
ε

))

steps of computation (including oracle calls) once a point x1 is obtained that is ε′2
64n -uniform,

and has an L2 norm that is bounded above by a constant. Such a point can be obtained

from the algorithm in step 1, for no additional cost up to constants. The cost mentioned

in this step is incurred because we are required to generate O( n
ε3

) random points given the

initial random point x1 and the time per point is O(n3 ln7 n
ε ). This last fact follows from

the complexity per point mentioned on page 4 ([61]), and theorems 7.1 and 7.2 of ([102].)

Step 6 and Step 7 take O
(
n2

ε3
polylog nεδ

)
steps each, assuming that a sample from univariate

Gaussian distribution can be obtained upto O(polylog( nεδ )) digits in O(polylog( nεδ )) steps.

Step 8 takes O(1) steps. Finally, to obtain the approximation with a confidence > 1 − δ,

this algorithm must be run O
(

log
(

1
δ

))
times. Therefore the overall cost in terms of oracle

calls is

O

(
n4 log

1

δ

(
1

ε2
log9 n

ε
+ log8 n log

R

r
+

1

ε3
log7

(n
ε

)))

i. e. O∗(n4) oracle calls. The number of arithmetic operations is O∗(n6), on numbers with

a polylogarithmic number of digits. This is the same as that for volume computation in [61].
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5.4 Proving correctness of the algorithm

Definition 5.4.1. Let

Gt(x, y) :=
e−‖x−y‖

2/4t

(4πt)n/2
.

and

Ft :=

√
π

t

∫

K

∫

Rn\K
Gt(x, y)dydx.

√
t
π
Ft
V is the fraction of heat that would diffuse out of K in time t.

Our proof hinges on two main propositions. The first, Proposition 5.4.1, states that Ft

is a good approximation for the surface area S. As in the surface area algorithm, let T be a

linear transformation such that TK is 2-isotropic. Compute a lower bound r′ to the smallest

eigenvalue ropt of T−1√
2

, that satisfies 2√
5
ropt < r′ < ropt. Set rin := max(r, r′). Then, the

following is true.

Proposition 5.4.1. Let
√
t = ε′rin

4n and ε′ < 1/2. Then,

(1− ε′)S < Ft < (1 + ε′)S.

Proposition 5.4.2 states that the empirical quantity Ŝ computed by the surface area

algorithm is likely to be an ε-approximation of Ft with probability > 3/4. Let x1, x2, . . . , xN

from K, be ε′-uniform and each pair {xi, xj} for 1 ≤ i < j ≤ N be µ-independent with

probability > 15/16. Let v1, . . . , vN be N independent random samples from the spherically

symmetric multivariate Gaussian distribution whose mean is ~0 and variance is 2nt. Let

N̂ := |{i|xi + vi /∈ K}|. Then,

Proposition 5.4.2. Let
√
t = ε′rin

4n and ε′ < 1/2. Then, with probability greater than 3
4 ,

(1− ε′)(1− 2ε′)Ft <
N̂

N

√
π

t
V̂ < (1 + ε′)(1 + 2ε′)Ft.
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These two Propositions together imply that with probability > 3/4,

(1− ε)S < N̂

N

√
π

t
V̂ < (1 + ε)S.

The argument for boosting the confidence from 3/4 to 1−δ is along the lines of ([43],[37].)

We devote the rest of this chapter to outlining the proofs of Proposition 5.4.1 and Proposi-

tion 5.4.2.

5.5 Relating surface area S to normalized heat flow Ft

In this section, we prove Proposition 5.4.1.

5.5.1 Notation and Preliminaries

The set of points within a distance δ of a convex body K (including K itself) shall be denoted

Kδ. This is called the outer parallel body of K and is convex.

The set of points at a distance ≥ δ to Rn−K shall be denoted K−δ. This is called the inner

parallel body of K and again is convex. For any body K, we denote by ∂K, its boundary.

Given x ∈ K, let Hx be a closest halfspace to x not intersecting K \ ∂K. For y 6∈ K

define Hy to be the halfspace furthest from y containing K.

Observation 5.5.1. If x ∈ ∂K−δ then the distance between x and Hx is δ. If y ∈ ∂Kδ then

the distance between y and Hy is δ.

Definition 5.5.1. Let

e(t, δ) =
1− Erf

(
δ

2
√
t

)

2

where Erf is the usual Gauss error function, defined by

Erf(z) :=
2√
π

∫ z

0
e−t

2
dt.
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Figure 5.1: Points x and y and corresponding halfspaces Hx and Hy

Observation 5.5.2. Let x ∈ ∂K−δ, and y ∈ ∂Kδ. Then,

∫

Hy
Gt(z, y)dz = e(t, δ)

and ∫

Hx
Gt(z, x)dz = e(t, δ)

The volume of Kδ is a polynomial in δ, given by the Steiner formula (see page 197, [86].)

vol(Kδ) = a0 + . . .+

(
n

i

)
aiδ

i + . . .+ anδ
n.

The coefficients ai satisfy the Alexandrov-Fenchel inequalities (see page 334, [86],) which

state that the coefficients ai are log-concave; i. e. a2
i ≥ ai−1ai+1 for 1 ≤ i ≤ n− 1.

Definition 5.5.2. The surface area vol(∂K) of an arbitrary convex body K is defined as

lim
δ→0

volKδ − volK

δ
.

It follows from the Steiner formula that this limit exists and is finite. It is a consequence

of Lemma 5.5.2 that the so defined surface area for an inner parallel body vol(∂K−δ) is
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a continuous function of δ. For an outer parallel body, the Steiner formula implies that

vol(∂Kδ) is a polynomial in δ.

5.5.2 Proof of Proposition 5.4.1

Lemma 5.5.1 is the first step towards proving upper and lower bounds for the normalized

heat flow Ft in terms of S. It bounds Ft above by a function of the vol(∂Kδ) and below by

a function of vol(∂K−δ).

Lemma 5.5.1. 1.
√π

t

∫
δ≥0 vol(∂K−δ)e(t, δ)dδ < Ft

2. Ft <
√π

t

∫
δ≥0 vol(∂Kδ)e(t, δ)dδ.

Proof

Note that for a fixed x ∈ ∂K−δ

∫

Rn\K
Gt(x, y)dy >

∫

Hx
Gt(x, y)dy = e(t, δ).

Therefore integrating over shells ∂K−δ, Ft =

√
π

t

∫

K

∫

Rn\K
Gt(x, y)dydx >

√
π

t

∫

δ≥0
vol(∂K−δ)e(t, δ)dδ.

By the same token for a fixed y ∈ ∂Kδ

∫

K
Gt(x, y)dx <

∫

Hy
Gt(x, y)dx = e(t, δ)

and proceeding as before, we have the upper bound

Ft <

√
π

t

∫

δ≥0
vol(∂Kδ)e(t, δ)dδ.
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The next step is to upper bound vol(Kδ) and lower bound vol(∂Kδ), which is done in

Lemmas 5.5.2 and 5.5.3 respectively.

Lemma 5.5.2.

vol(∂K−δ) ≥
(

1− n δ

rin

)
vol(∂K)

Proof:

Let O be the center of the sphere of radius rin contained inside K. We shall first prove that

K−δ contains (1− δ
rin

)K where this scaling is done from the origin O. Let A be a point on

∂K and let F be the image of A under this scaling. It suffices to prove that F ∈ K−δ.

We construct the smallest cone from A containing the sphere. Let B be a point where

the cone touches the sphere. We have OB = rin. Now consider the inscribed sphere centered

at F . By similarity of triangles, we have

CF

OB
=
AF

AO

Noticing that AF = δ
rin

OA, we obtain

CF = OB
AF

AO
= δ

We thus see that the radius of the inscribed ball is δ and hence the δ-ball centered in F is

contained in K. The fact that F ∈ K−δ follows from the definition.

It is known that the surface area of a convex body is less or equal than the surface area

of any convex body that contains it (page 284, [86]). Therefore

vol(∂K−δ) ≥ vol

(
(1− δ

rin
) ∂K

)
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Figure 5.2: K−δ contains
(

1− δ
rin

)
K

Since the volumes of n − 1-dimensional objects scale as n − 1th powers and observing that

for x < 1, max{0, (1− x)n−1} > 1− nx, we arrive at the conclusion: vol
(

(1− δ
rin

) ∂K
)

=

(1− δ
rin

)n−1 vol(∂K)

≥ (1− nδ
rin

) vol(∂K) �

�

Lemma 5.5.3.

vol(Kδ) ≤ V exp

(
δ
S

V

)
.

Proof: The volume of Kδ is a polynomial in δ, given by the Steiner formula (see page

197, [86].)

vol(Kδ) = a0 + . . .+

(
n

i

)
aiδ

i + . . .+ anδ
n.

From the Alexandrov-Fenchel inequalities (see page 334, [86].) the coefficients ai are log-

72



concave; i. e.

a2
i ≥ ai−1ai+1.

As a result

ai
a0
≤
(
a1
a0

)i
.

a0 is V , the volume of K while na1 is the surface area S of K. Putting these inequalities

together with the fact that
(n
i

)
≤ ni

i! , the lemma follows.

�

Although Lemma 5.5.3 is an upper bound on vol(Kδ) rather than vol(∂Kδ), it can be applied

after transforming the upper bound in Lemma 5.5.1 by integrating by parts. Lemmas 5.5.2,

5.5.3 and 5.5.1 together result in the following lemma.

Lemma 5.5.4. Let α =
(
S
V

)2
t. Then,

S

(
1− n

√
πt

2rin

)
< Ft < S

(√
π

α

exp(α)− 1

2
+ exp(α)

)
.

Finally, we prove the following bounds for the isoperimetric constant V
S of K in terms of

rin.

Lemma 5.5.5.

rin
n
≤ V

S
< 4 rin

Proof: It follows from Lemma 3.4 in [61] that a ball of radius 1√
2

around the centroid of

TK is entirely contained in TK. Therefore

Observation 5.5.3. K contains a ball of radius rin.

Observation 5.5.4. For any unit vector u that minimizes
‖T−1u‖√

2
, if x is chosen uniformly

at random from K, var(u · x) ≤ 5r2
in.
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x

l(x)

Projection

u

Figure 5.3: Projecting along a unit vector u minimizing ‖T−1u‖

We are now in a position to present the proof of Lemma 5.5.5. The first inequality

rin
n ≤ V

S can be obtained from Lemma 5.5.2 by integration. The only condition on rin there,

is that rinB ⊆ K. This property is satisfied by rin by Observation 5.5.3.

Fix a unit vector u such that for x chosen uniformly at random from K, var(u ·x) ≤ 5r2
in.

Observation 5.5.4 states that such a vector exists.

Definition 5.5.3. Let π be an orthogonal projection of K onto a hyperplane perpendicular

to u. Further, for a point y ∈ π(K), let `y be the length of the preimage π−1(y).

var(uTx) ≤ 5r2
in.

The variance of u·x under the condition π(x) = y, is given by `2y/12, since this is the variance
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of a random variable that takes a value from an interval of length `y uniformly at random.

var(u · x) ≥
∫
π(K) var(u · x|π(x) = y)`ydy

V
(5.1)

=

∫
π(K) `

3
ydy

12V
. (5.2)

(5.3)

∫
π(K) `

3
ydy

vol(π(K))
≥
(∫

π(K) `ydy

vol(π(K))

)3

=

(
V

vol(π(K))

)3
.

since for any non-negative random variable X, E[X3] ≥ E[X]3. Therefore,

∫
π(K) `

3
ydy

12V
≥
(

V 2

12 vol(π(K))2

)
.

Further, vol(π(K)) ≤ S/2. Putting these facts together,

5r2
in ≥

(
V 2

12 vol(π(K))2

)
≥
(
V 2

3S2

)
,

and so V
S <

√
15 rin < 4 rin

�

Lemmas 5.5.4 and 5.5.5 together give the result of Proposition 5.4.1, as we show below. The

lower bound on Ft is immediate for
√
t = εrin

4n using the lower bound in Lemma 5.5.4. To

prove the upper bound, we observe that α =
(
S
V

)2
t ≤

(
n
rin

)2
t from Lemma 5.5.1, which

equals ε′2
16 . Since ε < 0.5, α < 1. Therefore eα < 1 + 2α. It follows that

S

(√
π

α

exp(α)− 1

2
+ exp(α)

)
< S

(√
πα + 1 + 2α)

)

< S(1 + 4
√
α)

< (1 + ε)S.
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5.6 Proof of Proposition 5.4.2

The proof of Proposition 5.4.2 is complicated by the large number of parameters involved.

We mention the important steps below.

Lemma 5.6.1. With probability greater than 7/8,

(1− ε′)Ft < E

[
N̂

N

√
π

t
V

]
< (1 + ε′)Ft,

and (1− ε′)V < V̂ < (1 + ε′)V .

Lemma 5.6.2. With probability greater than 15/16,

var

(
N̂

N

√
π

t
V

)
<
ε′2F 2

t

16
.

Using Chebycheff’s inequality and Lemma 5.6.2,

P

[∣∣∣∣∣
N̂

N

√
π

t
V − E

[
N̂

N

√
π

t
V

]∣∣∣∣∣ > ε′Ft

]
<

1

16
.

Putting this together with Lemma 5.6.1, we arrive at the desired result. �
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CHAPTER 6

SAMPLING HYPERSURFACES

6.1 Introduction

Random sampling has numerous applications. They are ingredients in statistical goodness-

of-fit tests and Monte-Carlo methods in numerical computation. In computer science, they

have been used to obtain approximate solutions to problems that are otherwise intractable.

A large fraction of known results in sampling that come with guarantees belong to the

discrete setting. A notable exception is the question of sampling convex bodies in Rd . A

large body of work has been devoted to this question (in particular [25], [61]) spanning the

past 15 years leading to important insights and algorithmic progress.

However, once one leaves the convex domain setting, much less is known. We are inter-

ested in the general setting in which we wish to sample a set that may be represented as

a submanifold of Euclidean space. While continuous random processes on manifolds have

been analyzed in several works, (such as those of P. Matthews [64],[65]), as far as we can

see, these do not directly lead to algorithms with complexity guarantees.

6.1.1 Summary of Main Results for sampling Hypersurfaces

We develop algorithms for the following tasks.

Our basic setting is as follows. Consider an open set A ⊂ Rd specified through a mem-

bership oracle. Assume we have access to an efficient sampler for A and now consider the

task of uniformly sampling the (hyper) surface ∂A. We consider two related but distinct

problems in this setting.

(i) A is a convex body satisfying the usual constraint of Br ⊂ A ⊂ BR where Br and BR

are balls of radius r and R respectively. Then an efficient sampler for A is known to exist.

However, no sampler is known for the surface of the convex body. It is worth noting that a
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number of intuitively plausible algorithms suggest themselves immediately. One idea may be

draw a point x from A, shoot a ray in the direction from 0 to x and find its intersection with

the boundary of the object. This will generate non-uniform samples from the surface (and

it has been studied under the name Liouville measure.) A second idea may be to consider

building a sampler for the set difference of a suitable expansion of the body from itself.

This procedure has a complexity of at least O∗(d8.5) oracle calls with the present technology

because there is no method known to simulate each membership call to the expanded body

using less than O∗(d4.5) calls (see [9]).

Our main result here (Theorem 1) is to present an algorithm that will generate a sample

from an approximately uniform distribution with O∗(d
4

ε ) calls to the membership oracle

where ε is the desired variation distance to the target.

Beyond theoretical interest, the surface of the convex body setting has natural applica-

tions to many goodness of fit tests in statistics. The example of the gamma distribution

discussed earlier requires one to sample from the set
∏
iXi = b embedded in the simplex

(given by
∑
j Xj = a). This set corresponds to the boundary of a convex object.

(ii) A is a domain (not necessarily convex) such that its boundary ∂A has the structure of

a smooth submanifold of Euclidean space of co-dimension one. A canonical example of such

a setting is one in which the submanifold is the zeroset of a smooth function f : Rd → R.

A is therefore given by A = {x|f(x) < 0}. In machine learning applications, the function

f may often be related to a classification or clustering function. In numerical computation

and boundary value problems, one may wish to integrate a function subject to a constraint

(given by f(x) = 0).

In this setting, we have access to a membership oracle for A (through f) and we assume

a sampler for A exists. Alternatively, A ⊂ K such that it has nontrivial fraction of a convex

body K and one can construct a sampler for A sampling from K and using the membership

oracle for rejection.
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In this non-convex setting, not much is known and our main result (Theorem 2) is an

algorithm that generates samples from ∂A that are approximately uniform with complexity

O∗( R
τ
√
ε
) where τ is a parameter related to the curvature of the manifold, R is the radius of

a circumscribed ball and ε is an upper bound on the total variation distance of the output

from uniform.

6.1.2 Notation

Let ‖.‖ denote the Euclidean norm on Rd. Let λ denote the Lebesgue measure on Rd. The

induced measure onto the surface of a manifold M shall be denoted λM. Let

Gt(x, y) :=
1

(4πt)
d
2

e−
‖x−y‖2

4t .

be the d dimensional gaussian.

Definition 6.1.1. Given two measures µ and ν over Rd, let

‖µ− ν‖TV := sup
A⊆Rd

|µ(A)− ν(A)|

denote the total variation distance between µ and ν.

Definition 6.1.2. Given two measures µ and ν on Rd, the transportation distance dTR(µ, ν)

is defined to be the infimum

inf
γ

∫
‖x− y‖ dγ(x, y).

taken over all measures γ on Rd ×Rd such that for measurable sets A and B, γ(A×Rd) =

µ(A), γ(Rd ×B) = ν(B).

Notation: We say that n = O∗(m), if n = O(m polylog(m)). In the complexity analysis,

we shall only consider the number of oracle calls made, as is customary in this literature.
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6.2 Sampling the Surface of a convex body

Let B be the unit ball in Rd. Let Bα denote the ball of radius α centered at the origin.

Consider a convex body K in Rd such that

Br ⊆ K ⊆ BR.

Let B be a source of random samples from K. Our main theorem is

Theorem 6.2.1. Let K be a convex body whose boundary ∂K is a union of finitely many

smooth Hypersurfaces.

1. The output of Csample has a distribution µ̃, whose variation distance measured against

the uniform distribution λ̃ = λ̃∂K is O(ε),

‖µ̃− ν‖TV ≤ O(ε).

2. The expected number of oracles calls made by Csample (to B and the membership oracle

of K) for each sample of Csample is O∗(dε ) (, giving a membership query complexity of

O∗(d
4

ε ) for one random sample from ∂K.)

6.2.1 Algorithm Csample

6.2.2 Correctness

In our calculations, z ∈ ∂K will be be a generic point at which ∂K is smooth. In particular

for all such z, there is a (unique) tangent hyperplane. Let λ∂K denote the n−1-dimensional

surface measure on ∂K. Let S and V denote the surface area and volume, respectively, of K.

Let µ∂K denote the measure induced by the output of algorithm Csample . Let |µ| denote

the total mass for any measure µ. We shall define a measure µ∂K on ∂K related to the
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Csample

1. Estimate (see [80]) with confidence > 1 − ε, the smallest eigenvalue κ of the Inertia
matrix A(K) := E[(x − x)(x − x)T ] where x is random in uniformly K, to within
relative error 1/2 using O(d log2(d)log 1

ε ) random samples (see Rudelson [85].)

2. Set √
t :=

ε
√
κ

32d
.

3. (a) Set p = Ctry (t) .

(b) If p = ∅, goto (3a). Else output p.

Ctry (t):

1. Use B to generate a random point x from the uniform distribution on K.

2. Let y := Gaussian(x, 2tI) be a random vector chosen from a spherical d-dimensional
Gaussian distribution with covariance 2tI and mean x.

3. Let ` the segment whose endpoints are x and y.

4. If y 6∈ K output ` ∩ ∂K, else output ∅.
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“local diffusion” out of small patches. Formally, if ∆ a subset of ∂K, the measure assigned

to it by µ∂K is

µ∂K(∆) :=

∫

x∈S

∫

y∈Rd\S
Gt(x, y)I [xy ∩∆ 6= ∅] dλ(x)dλ(y) (6.1)

where I is the indicator function and Gt(x, y) is the spherical Gaussian kernel with covariance

matrix 2tI. Note that

V P[Ctry (t) ∈ ∆] = µ∂K(∆).

Theorem 1 (part 1)

The output of Csample has a distribution µ̃ = µ∂K
|µ∂K | , whose variation distance measured

against the uniform distribution λ̃∂K is O(ε),

‖µ̃− λ̃∂K‖TV ≤ O(ε).

Proof: It follows from Lemma 6.3.1 to note that at generic points, locally the measure

generated by one trial of Ctry (t) is always less than the value predicted by its small t

asymptotics
√

t
π
S
V , i. e.

∀ generic z ∈ ∂K, dµ∂K
dλ∂k

<

√
t

π
S.

Thus we have a local upper bound on dµ∂K
dλ∂K

≤
√

t
π uniformly for all generic points z ∈ ∂K.

It would now suffice to prove almost matching global lower bound on the total measure, of

the form

|µ∂K | > (1−O(ε))

√
t

π
S.

This is true by Proposition 4.1 in [5]. This proves that

‖µ̃− λ̃M‖TV ≤ O(ε).
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6.2.3 Complexity

The number of random samples needed to estimate the Inertia matrix is O∗(d) (so that

the estimated eigenvalues are all within (0.5, 1.5) of their true values with confidence 1− ε)

from results of Rudelson ([85]). It is known that a convex body contains a ball of radius

≥
√

Λmin(K). Here Λmin(K) is the smallest eigenvalue of A(K). Therefore, K contains a

ball of radius rin, where r2
in = 9

10κ.

Theorem 1 (part 2):

The expected number of oracles calls made by Csample (to B and the membership oracle

of K) for each sample of Csample is O∗(dε ) (, giving a total complexity of O∗(d
4

ε ) for one

random sample from ∂K.)

Proof: The following two results will be used in this proof.

Lemma 6.2.1 ((Lemma 5.5 in [5]). Suppose x has the distribution of a random vector (point)

in K, define A(K) := E[(x − x)(x − x)T ]. Let 5
2r

2
in be greater than the smallest eigenvalue

of this (positive definite) matrix, as is the case in our setting. Then, V
S < 4rin.

Define Ft :=
√π

t |µ∂K |.

Lemma 6.2.2 (Lemma 5.4 in [5]). Suppose K contains a ball of radius rin, (as is the case

in our setting) then S
(

1− d
√
πt

2rin

)
< Ft.

Applying Lemma 6.2.2, we see that

Ft > (1−O(ε))S.

The probability that Ctry succeeds in one trial is
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P[Ctry (t) 6= ∅] =

√
t

π

Ft
V

(6.2)

>

√
t

π

S

V
(1−O(ε)) (6.3)

>

√
t

π

1−O(ε)

4rin
(By Lemma 6.2.1) (6.4)

> Ω(
ε

d
). (6.5)

Therefore the expected number of calls to B and the membership oracle is O∗(dε ). By

results of Lovász and Vempala ([60]) this number of random samples can be obtained using

O∗(d
4

ε ) calls to the membership oracle. �

6.2.4 Extensions

S. Vempala [101] has remarked that these results can be extended more generally to sampling

certain subsets of the surface ∂K of a convex body such as ∂K ∩ H for a halfspace H. In

this case K ∩ H is convex too, and so Csample can be run on K ∩ H. In order to obtain

complexity guarantees, it is sufficient to bound from below, by a constant, the probability

that Csample run on H∩K outputs a sample from ∂K∩H rather than ∂H∩K. This follows

from the fact that ∂H ∩K is the unique minimal surface spanning ∂K ∩ ∂H and so has a

surface area that is less than that of ∂K ∩H.

6.3 Sampling Well Conditioned Hypersurfaces

6.3.1 Preliminaries and Notation

Definition 6.3.1 (Condition Number). Let M be a smooth

d−dimensional submanifold of Rm. We define the condition number c(M) to be 1
τ , where τ
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R

U

M

τ

Figure 6.1: Condition number of a hypersurface

is the largest number to have the property that for any r < τ no two normals of length r that

are incident on M at different points intersect.

In fact 1
τ is an upper bound on the curvature of M ([77]). In this chapter, we shall

restrict attention to a τ -conditioned manifold M that is also the boundary of a compact

subset U ∈ Rd.

Suppose we have access to a Black-Box B that produces i.i.d random points x1, x2, . . .

from the uniform probability distribution on U . We shall describe a simple procedure to

generate almost uniformly distributed points on M.

6.3.2 Algorithm Msample

The input to Msample is an error parameter ε, a guarantee τ on the condition number of

M and a Black-Box B that generates i.i.d random points from the uniform distribution on

U as specified earlier. We are also provided with a membership oracle to U , of which M

is the boundary. We shall assume that U is contained in a Euclidean ball of radius R, BR.

Msample , like Csample is a Las Vegas algorithm.
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Let the probability measure of the output be µ̃out. The following is the main theorem

of this section. Note that given perfectly random samples from U , the output probability

density is close to the uniform in the L∞−norm, which is stronger than a total variation

distance bound, and the number of calls to the Black box B is independent of dimension.

Theorem 6.3.1. Let M be a τ -conditioned hypersurface that is the boundary of an

open set contained in a ball of radius R. Let µ̃out be the distribution of the output of

Msample .

1. Let ˜λM be the uniform probability measure on M. Then, for any subset ∆ of M, the

probability measure µ̃out satisfies

1−O(ε) <
µ̃out(∆)

λ̃M(∆)
< 1 +O(ε).

2. The total expected number of calls to B and the membership oracle of U is O(
R(1+2

d ln 1
ε )

τ
√
ε

).

Msample

1. Set
√
t :=

τ
√
ε

4(d+2 ln 1
ε )
.

2. Set p = Mtry (t) .

3. If p = ∅, goto (2). Else output p.

6.3.3 Correctness

Proof of part (1) of Theorem 6.3.1: We shall define a measure µM onM related to the

“local heat flow” out of small patches. Formally, if ∆ a subset of M, the measure assigned
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Mtry (t)

1. Use B to generate a point x from U .

2. Generate a point y := Gaussian(x, 2tI) from a spherical d-dimensional Gaussian of
mean x and covariance matrix 2tI.

3. If y ∈ U output ∅.
Else output an arbitrary element of xy ∩M using binary search. (Unlike the convex
case, |xy ∩M| is no longer only 0 or 1.)

to it by µM is

µM(∆) :=

∫

x∈U

∫

y∈Rd\U
Gt(x, y)I [xy ∩∆ 6= ∅] dλ(x)dλ(y) (6.6)

where I is the indicator function and Gt(x, y) is the spherical Gaussian kernel with covariance

matrix 2tI. For comparison, we shall define µout by

µout := V µ̃outP[Mtry (t) 6= ∅].

Since Msample outputs at most one point even when |xy ∩ M| > 1, we see that for all

∆ ⊆M,

µout(∆) ≤ µM(∆).

The following Lemma provides a uniform upper bound on the Radon-Nikodym derivative

of µM with respect to the induced Lebesgue measure on M.

Lemma 6.3.1. Let λM be the measure induced on M by the Lebesgue measure λ on Rd.

Then

dµM
dλM

<

√
t

π
.

The Lemma below gives a uniform lower bound on dµout
dλM

.
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Lemma 6.3.2. Let
√
t =

τ
√
ε

4(d+2 ln 1
ε )
. Then

dµout
dλM

>

√
t

π
(1−O(ε)).

Together the above Lemmas prove the first part of the Theorem. Their proofs have been

provided below.

6.3.4 Complexity

Proof of part (2) of Theorem 6.3.1: Let S be the surface area of U (or the d − 1-

dimensional volume of M.) Let V be the d-dimensional volume of U . We know that

U ⊆ BR. Since of all bodies of equal volume, the sphere minimizes the surface area, and S
V

decreases as the body is dilated,

S

V
≥ d

R
.

Lemma 6.3.2 implies that

P[Mtry (t) 6= ∅] >
S
√

t
π (1−O(ε))

V
(6.7)

≥ d

R

τ
√
ε(1−O(ε))

8(d+ 2 ln 1
ε )

(6.8)

= Ω(
τ
√
ε

R(1 + 2
d ln 1

ε )
). (6.9)

This completes the proof. �

In our proofs of Lemma 6.3.1 and Lemma 6.3.2, we shall use the following Theorem of

C. Borell.

Theorem 6.3.2 (Borell, [11]). Let µt = Gt(0, ·) be the d-dimensional Gaussian measure with

mean 0 and covariance matrix 2It. Let A be any measurable set in Rd such that µ(A) = 1
2 .
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Let Aε be the set of points at a distance ≥ ε from A. Then, µt(Aε) ≥ 1− e−ε
2

4t .

Fact: With µt as above, and B(R) the Euclidean ball of radius R centered at 0, 1
2 <

µt(B(
√

2dt)).

Proof of Lemma 6.3.1: Let H be a halfspace and ∂H be its hyperplane boundary.

Halfspaces are invariant under translations that preserve their boundaries. Therefore for any

halfspace H, µ∂H is uniform on ∂H. Noting that the image of a Gaussian under a linear

transformation is a Gaussian, it is sufficient to consider the 1-dimensional case to compute

the d− 1-dimensional density dµ∂H
dλ∂H

.

dµ∂H
dλ∂H

=

∫

R−

∫

R+
Gt(x, y)dλ(x)dλ(y), (6.10)

which evaluates to
√

t
π by a direct calculation. For any z ∈ M, let Hz be the halfspace

with the same outer normal as U such that ∂Hz is tangent to M at z. Let ∆ be a small

neighborhood of z in Rd, and |∆| denote its diameter.

dµM
dλM

(z) = lim
|∆|→0

∫
x∈U

∫
y∈Rd\U G

t(x, y) I [xy ∩∆ 6= ∅] dλ(x) dλ(y)

λM(∆)

= lim
|∆|→0

∫
x∈Rd

∫
y∈Rd G

t(x, y) I [xy ∩∆ 6= ∅] I[x ∈ U and y ∈ Rd \ U ] dλ(x) dλ(y)

λM(∆)

< lim
|∆|→0

∫
x∈Rd

∫
y∈Rd G

t(x, y) I [xy ∩∆ 6= ∅] dλ(x) dλ(y)

2λM(∆)

=
dµ∂Hz
dλ∂Hz

(z)

=

√
t

π
.

The inequality in the above array of equations is strict because U is bounded. �
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Figure 6.2: A transition x→ y intersecting the hypersurface

Proof of Lemma 6.3.2: Let ∆ be a small neighborhood of z in Rd. Since M is a

τ -conditioned manifold, for any z ∈ M, there exist two balls B1 ⊆ U and B2 ⊆ Rd \ U of

radius τ that are tangent to M at z.

dµout
dλM

(z) > lim
|∆|→0

∫
x∈B1

∫
y∈B2

Gt(x, y) I [xy ∩∆ 6= ∅] dλ(x) dλ(y)

λM(∆)
.

The above is true because |xy ∩M| = 1 if x ∈ B1 and y ∈ B2. Let us define

Pτ := lim
|∆|→0

∫
x∈B1

∫
y∈B2

Gt(x, y) I [xy ∩∆ 6= ∅] dλ(x) dλ(y)
∫
x∈Hz

∫
y∈Rd\Hz G

t(x, y) I [xy ∩∆ 6= ∅] dλ(x) dλ(y)
. (6.11)

Then

Pτ <
√
π

t

dµout
dλM

(z) .

The proof now follows from

Lemma 6.3.3. Pτ > 1−O(ε). �

Proof of Lemma 6.3.3: In order to obtain bounds on Pτ , we shall follow the strategy
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of mapping the picture onto a sufficiently large torus and doing the computations on this

torus. This has the advantage that now averaging arguments can be used over the torus by

virtue of its being compact (and a symmetric space.) These arguments do not transfer to

Rd in particular because it is not possible to pick a point uniformly at random on Rd.

Consider the natural surjection

φk : Rd → Tk (6.12)

onto a d dimensional torus of side k for k >> max(diam(U),
√
t). For each point p ∈ Tk,

the fibre φ−1
k (p) of this map is a translation of kZd.

Let x be the origin in Rd, and e1, . . . , ed be the canonical unit vectors. For a fixed k, let

Ξk := φk(κe1 + span(e2, . . . , ed)),

where κ is a random number distributed uniformly in [0, k), be a random d− 1-dimensional

torus aligned parallel to φk(span(e2, . . . , ek)). Let y := (y1, . . . , yd) be chosen from a spher-

ical d-dimensional Gaussian in Rd centered at 0 having covariance 2tI.

Define P(k)
τ to be

P(k)
τ := P[y2

2 + . . .+ y2
d < |y1|τ < τ2∣∣ 1 = |φk(xy) ∩ Ξk|] (6.13)

It makes sense to define B1 and B2 on Ξk exactly as before i. e. tangent to Ξk at φk(xy)∩Ξk

oriented so that B1 is nearer to x than B2 in geodesic distance. For geometric reasons, P̃(k)
τ

is a lower bound on the probability that, even when the line segment xy in Figure 6.2 is slid

along itself to the right until x occupies the position where z is now, y does not leave B2.

Figure 6.3 illustrates ball B2 being slid, which is equivalent. In particular, this event would
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y

k

2τ

√
y2

2 + . . . + y2
d

0

|y1|
Ξk

Tk

B2→

B2

Figure 6.3: Sliding B2

imply that x ∈ B1 and y ∈ B2.

lim sup
k→∞

P(k)
τ ≤ Pτ .

In the light of the above statement, it suffices to prove that for all sufficiently large k,

P(k)
τ > 1−O(ε)

which will be done in Lemma 6.3.4. This completes the proof of this proposition. �

Lemma 6.3.4. For all sufficiently large k,

P(k)
τ > 1−O(ε).

Proof: Recall that x is the origin and that y := (y1, . . . , yd) is Gaussian(0, 2tI). Denote

by Ek the event that

|φk(xy) ∩ Ξk| = 1.
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We note that

P[Ek | y1 = s] =
|s|
k
I[|s| < k].

By Bayes’ rule,

ρ[y1 = s |Ek] P[Ek] =
|s|
k

(
e−s

2/4t
√

4πt

)
I[|s| < k],

where I denotes the indicator function. In other words, there exists a constant ck :=
P[Ek]−1
√

4πt

such that

ρ[y1 = s | |Ξk ∩ φk(xy)| = 1] = ck
|s|
k
e−s

2/4tI[|s| < k].

A calculation tells us that

ck ∼
k

4t
.

Let

Iτ := I
[
τ | y1| > y2

2 + . . .+ y2
d

]
I[|y1| < τ ]I[Ek].

By their definitions , E[Iτ |Ek] = P(k)
τ . Define

Iq := I
[
| y1| 6∈ [

√
εt, τ ]

]
I [Ek] ,

and

I⊥ := I
[
y2

2 + . . . y2
d > 4t(d+ 2 ln

1

ε
)

]
I [Ek] .

A direct calculation tells us that E[Iq|Ek] = O(ε). Similarly E[I⊥|Ek] = O(ε) follows from

Theorem 6.3.2 and the fact mentioned below it. This Lemma is implied by the following

claim. �

Claim 6.3.1.

Iτ ≥ I[Ek]− Iq − I⊥.
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Proof:

I⊥ = I
[
y2

2 + . . .+ y2
d > 4t(d+ 2 ln

1

ε
)

]
I [Ek]

= I
[
y2

2 + . . .+ y2
d > τ

√
εt
]
I [Ek]

Therefore

I[Ek]− Iq − I⊥ ≤ I[Ek] [y2
2 + . . .+ y2

d < τ
√
εt < τ |y1| ] I[|y1| < τ ] (6.14)

≤ Iτ (6.15)

�
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CHAPTER 7

A GEOMETRIC INTERPRETATION OF HALFPLANE

CAPACITY

Following Schramm’s seminal paper [92] “Scaling limits of loop-erased random walks and

uniform spanning trees,” important progress has been made towards understanding the con-

formal invariance of the scaling limits of several two dimensional lattice models in statistical

physics by several researchers including Lawler, Werner and Smirnov [54, 88]. These lim-

its have been described using a new tool known as Schramm-Loewner Evolution (SLE).

The chordal Schramm-Loewner evolution with parameter κ ≥ 0 is the random collection of

conformal maps satisfying the following stochastic differential equation:

ġt(z) =
2

gt(z)−√κBt
, g0(z) = z,

where z belongs to the upper half plane H. Denoting the domain of gt by Ht, we obtain a

random collection of continuously growing hulls Kt := H \Ht. In this parametrization, the

halfplane capacity of Kt is equal to 2t [51]. Thus, halfplane capacity is a quantity arising

naturally in the context of SLE.

Suppose A is a bounded, relatively closed subset of the upper half plane H. We call A

a compact H-hull if A is bounded and H \ A is simply connected. The halfplane capacity of

A, hcap(A), is defined in a number of equivalent ways (see [51], especially Chapter 3). If

gA denotes the unique conformal transformation of H \ A onto H with gA(z) = z + o(1) as

z →∞, then gA has the expansion

gA(z) = z +
hcap(A)

z
+O(|z|−2), z →∞.
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Equivalently, if Bt is a standard complex Brownian motion and τA = inf{t ≥ 0 : Bt 6∈ H\A},

hcap(A) = lim
y→∞ y Eiy

[
=(BτA)

]
.

Let =[A] = sup{=(z) : z ∈ A}. Then if y ≥ =[A], we can also write

hcap(A) =
1

π

∫ ∞

−∞
Ex+iy [=(BτA)

]
dx.

These last two definitions do not require H \ A to be simply connected, and the latter

definition does not require A to be bounded but only that =[A] <∞.

For H-hulls (that is, for A for which H \ A is simply connected), the halfplane capacity

is comparable to a more geometric quantity that we define. This fact is not new (Gregory

Lawler learned the fact from Oded Schramm in oral communication), but we do not know

of a proof in the literature. In this note, we prove the fact giving (nonoptimal) bounds on

the constant. We start with the definition of the geometric quantity.

Definition 7.0.2. For an H-hull A, let hsiz(A) be the 2-dimensional Lebesgue measure of

the union of all balls centered at points in A that are tangent to the real line. In other words

hsiz(A) = area


 ⋃

x+iy∈A
B(x+ iy, y)


 ,

where B(z, ε) denotes the disk of radius ε about z.

In this chapter, we prove the following.

Theorem 7.0.3. For every H-hull A,

1

66
hsiz(A) < hcap(A) ≤ 7

2π
hsiz(A).
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We first comment that it suffices to prove the result for weakly bounded H-hulls by which

we mean H-hulls A with =(A) < ∞ and such that for each ε > 0, the set {x + iy : y > ε}

is bounded. Indeed, for H-hulls that are not weakly bounded, it is easy to verify that

hsiz(A) = hcap(A) =∞.

We start with a simple limit that is implied but not explicitly stated in [51].

Lemma 7.0.5. If A is an H-hull, then

hcap(A) ≥ =[A]2

2
. (7.1)

Proof. It suffices to prove the result for hulls of the form A = η(0, T ] where η is a simple curve

with η(0+) ∈ R parametrized so that hcap[η(0, t]) = 2t. In particular, T = hcap(A)/2. If

gt = gη(0,t], then gt satisfies the Loewner equation

∂tgt(z) =
2

gt(z)− Ut
, g0(z) = z, (7.2)

where U : [0, T ]→ R is continuous. Suppose =(z)2 > 2 hcap(A) and let Yt = =[gt(z)]. Then

(7.2) gives

−∂tY 2
t ≤

4Yt
|gt(z)− Ut|2

≤ 4,

which implies

Y 2
T ≥ Y 2

0 − 4T > 0.

This implies that z 6∈ A, and hence =[A]2 ≤ 2 hcap(A).

The next lemma is a standard covering lemma. If c > 0 and z = x+ iy ∈ H, let

I(z, c) = (x− cy, x+ cy),

R(z, c) = I(z, c)× (0, y] = {x′ + iy′ : |x′ − x| < cy, 0 < y′ ≤ y}.
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Lemma 7.0.6. Suppose A is a weakly bounded H-hull and c > 0. Then there exists a (finite

or countable infinite) sequence of points {z1 = xi + iy1, z2 = x2 + iy2, , . . .} ⊂ A such that:

• y1 ≥ y2 ≥ y3 ≥ · · · ;

• the intervals I(x1, c), I(x2, c), . . . are disjoint;

•

A ⊂
∞⋃

j=1
R(zj , 2c). (7.3)

Proof. We define the points recursively. Let A0 = A and given {z1, . . . , zj}, let

Aj = A \




j⋃

k=1

R(zj , 2c)


 .

If Aj = ∅ we stop, and if Aj 6= ∅,we choose zj+1 = xj+1+iyj+1 ∈ A with yj+1 = =[Aj ]. Note

that if k ≤ j, then |xj+1 − xk| ≥ 2 c yk ≥ c (yk + yj+1) and hence I(zj+1, c) ∩ I(zk, c) = ∅.

Using the weak boundedness of A, we can see that yj → 0 and hence (7.3) holds.

Lemma 7.0.7. For every c > 0, let

ρc :=
2
√

2

π
arctan

(
e−θ
)
, θ = θc =

π

4c
.

Then, the following is true. Suppose A is a weakly bounded H-hull and z = x0 + iy0 ∈ A

with y = =(A). Then

hcap(A) ≥ ρ2
c y

2
0 + hcap [A \ R(z, 2c)] .

Proof. By scaling and invariance under real translation, we may assume that =[A] = y0 = 1

and x0 = 0. Let S = Sc be defined to be the set of all points z of the form x + iuy where

x+ iy ∈ A \ R(i, 2c) and 0 < u ≤ 1.

Note that S is an H-hull and that S ∩ A = A \ R(i, 2c).
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Using the capacity relation [51, (3.10)]

hcap(A1 ∪ A2)− hcap(A2) ≤ hcap(A1)− hcap(A1 ∩ A2),

we see that

hcap(S ∪ A)− hcap(S) ≤ hcap(A)− hcap(S ∩ A).

Hence, it suffices to show that

hcap(S ∪ A)− hcap(S) ≥ ρ2
c .

Let f be the conformal map of H \ S onto H such that z − f(z) = o(1) as z → ∞. Let

S∗ := S ∪ A. By properties of halfplane capacity [51, (3.8)] and (7.1),

hcap(S∗)− hcap(S) = hcap[f(S∗ \ S)] ≥ =[f(i)]2

2
.

Hence, it suffices to prove that

=[f(i)] ≥
√

2 ρ =
4

π
arctan

(
e−θ
)
. (7.4)

By construction, S∩R(z, 2c) = ∅. Let V = (−2c, 2c)×(0,∞) = {x+ iy : |x| < 2c, y > 0}

and let τV be the first time that a Brownian motion leaves the domain. Then [51, (3.5)],

=[f(i)] = 1− Ei
[
=(BτS )

]
≥ P

{
BτS ∈ [−2c, 2c]

}
≥ P

{
BτV ∈ [−2c, 2c]

}
.

The map Φ(z) = sin (θz) maps V onto H sending [−2c, 2c] to [−1, 1] and Φ(i) = i sinh θ.
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Using conformal invariance of Brownian motion and the Poisson kernel in H, we see that

P
{
BτV ∈ [−2c, 2c]

}
=

2

π
arctan

(
1

sinh θ

)
=

4

π
arctan

(
e−θ
)
.

The second equality uses the double angle formula for the tangent.

Lemma 7.0.8. Suppose c > 0 and x1 + iy1, x2 + iy2, . . . are as in Lemma 7.0.6. Then

hsiz(A) ≤ [π + 8c]
∞∑

j=1
y2
j . (7.5)

If c ≥ 1, then

π
∞∑

j=1
y2
j ≤ hsiz(A). (7.6)

Proof. A simple geometry exercise shows that

area


 ⋃

x+iy∈R(zj ,2c)

B(x+ iy, y)


 = [π + 8c] y2

j .

Since

A ⊂
∞⋃

j=1
R(zj , 2c),

the upper bound in (7.5) follows. Since c ≥ 1, and the intervals I(zj , c) are disjoint, so are

the disks B(zj , yj). Hence,

area


 ⋃

x+iy∈A
B(x+ iy, y)


 ≥ area



∞⋃

j=1
B(zj , yj)


 = π

∞∑

j=1
y2
j .
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Proof of Theorem 7.0.3. Let Vj = A ∩R(zj , c). Lemma 7.0.7 tells us that

hcap



∞⋃

k=j

Vj


 ≥ ρ2

c y
2
j + hcap



∞⋃

k=j+1

Vj


 ,

and hence

hcap(A) ≥ ρ2
c

∞∑

j=1
y2
j .

Combining this with the upper bound in (7.5) with any c > 0 gives

hcap(A)

hsiz(A)
≥ ρ2

c

π + 8c
.

Choosing c = 8
5 gives us

hcap(A)

hsiz(A)
>

1

66
.

For the upper bound, choose a covering as in Lemma 7.0.6 with c = 1. Subadditivity

and scaling give

hcap(A) ≤
∞∑

j=1
hcap

[
R(zj , 2yj)

]
= hcap[R(i, 2)]

∞∑

j=1
y2
j .

Combining this with the lower bound in (7.5) gives

hcap(A)

hsiz(A)
≤ hcap[R(i, 2)]

π
.

Note thatR(i, 2) is the union of two real translates ofR(i, 1), hcap[R(i, 2)] ≤ 2 hcap[R(i, 1)]

whose intersection is the interval (0, i]. Using the capacity relation [51, (3.10)]

hcap(A1 ∪ A2) ≤ hcap(A1) + hcap(A2)− hcap(A1 ∩ A2),
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we see that

hcap(R(i, 2)) ≤ 2 hcap(R(i, 1))− hcap((o, i]) = 2 hcap(R(i, 1))− 1

2
.

But R(i, 1) is strictly contained in A′ := {z ∈ H : |z| ≤
√

2}, and hence

hcap[R(i, 1)] < hcap(A′) = 2.

The last equality can be seen by considering h(z) = z + 2z−1 which maps H \ A′ onto H.

Therefore,

hcap[R(i, 2)] <
7

2
,

and hence

hcap(A)

hsiz(A)
≤ 7

2π
.
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CHAPTER 8

RANDOM WALKS ON MANIFOLDS

8.0.5 Markov Schemes on metric spaces

In this section, we present a general setup in which bounds can be obtained for the mixing

times of Markov chains on metric spaces. This setup has been used earlier in a number of

settings. The division of the argument to bound mixing time into an isoperimetric inequality

and a relation between geometric and probabilistic distance that is presented here appeared

for a specific metric and measure in [60]. There is recent interest in the question of sampling

manifolds, for example in [19]. The techniques used in this chapter do not lead to bounds

for specific Markov Chains on manifolds, rather they give bounds that eventually hold on

Markov chains that are part of a sequence parameterized by a “step-size” that tends to zero.

Our application to sampling manifolds, on the other hand gives mixing bounds for specific

step-sizes that we can state explicitly.

We begin with the definition of a Markov Scheme given by Lovász and Simonovits [58].

Definition 8.0.3. Let (Ω,A) be a σ−algebra. For every u ∈ Ω, let Pu be a probability

measure on Ω and assume that for every A ∈ A, the value Pu(A) is measurable as a function

of u. We assume M is lazy, i. e.Px(x) ≥ 1
2 and reversible, i. e. for any measurable S1, S2 ⊆

Ω,

∫

S1

Px(S2)dµ(x) =

∫

S2

Py(S1)dµ(y). (8.1)

We call the triple (Ω,A, {Pu : u ∈ Ω}) a Markov Scheme.

A Markov chain is a process governed by a Markov Scheme, started from some initial

103



probability distribution. The conductance of the Markov Scheme is

Φ = inf
0<µ(A)≤1

2

∫
A Pu(Ω \ A)dµ(A)

µ(A)
.

Let (M, dM) be a metric space. For every point x ∈M, let Px be a transition probability

distribution on M, defining a Markov Scheme M whose stationary distribution is µ.

For x, y ∈M, let dM(x, y) be the distance between x and y and for any sets S1 and S2,

let

dM(S1, S2) := inf
x∈S1,y∈S2

dM(S1, S2). (8.2)

Suppose the following conditions hold.

1. For any x, y ∈M,

dM(x, y) < δM ⇒ dTV (Px, Py) < 1− εM. (8.3)

2. For any partition of M into disjoint parts S1, S2 and S3, if dM(S1, S2) ≥ δM, then

µ(S3) ≥ αMmin(µ(S1), µ(S2)). (8.4)

Theorem 8.0.4. Let S1 be a measurable subsets of M, whose stationary measure µ(S1) is

less or equal to 1
2 . Then,

∫

S1

Px(M\ S1)dµ(x) ≥ εMmin(αM, 1)µ(S1)

4
.

Proof. Let S2 :=M\ S1.

Let S′1 = S1 ∩ {x
∣∣Px(S2) < εM

2 } and S′2 = S2 ∩ {y
∣∣Py(S1) < εM

2 }.
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If x ∈ S′1 and y ∈ S′2 then dTV (Px, Py) > 1 − εM. By (8.3), dM(x, y) ≥ δM. However,

by the isoperimetric inequality (8.4), we then have

µ(M\ (S′1 ∪ S′2)) ≥ αM min(µ(S′1), µ(S′2)). (8.5)

M\ (S′1 ∪ S2) consists, of those points in S1, from which the probability of moving to the

other part in one step of the Markov chain is greater or equal to εM
2 . Similarly,M\(S1∪S′2)

consists, precisely of those points in S2, from which the probability of moving to the other

part in one step of the Markov chain is greater than or equal to εM
2 . By the reversibility of

the Markov chain, ∫

S1

Px(S2)dµ(x) =

∫

S2

Py(S1)dµ(y).

Therefore,

∫

S1

Px(M\ S1)dµ(x) =

∫
S1
Px(M\ S1)dµ(x) +

∫
M\S1

Py(S1)dµ(y)

2
(8.6)

≥ εM µ(M\ (S′1 ∪ S′2))

4
. (8.7)

We consider two cases separately. First, suppose µ(S′1) ≥ µ(S1)
2 . Then, by (8.5),

µ(M\ (S′1 ∪ S′2)) ≥ αM min

(
µ(S1)

2
, µ(S1)− µ(M\ (S′1 ∪ S′2))

)
.

It follows that

µ(M\ (S′1 ∪ S′2)) ≥ αM µ(S1)

2
, (8.8)
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and therefore,

∫

S1

Px(M\ S1)dµ(x) ≥ εMαMµ(S1)

4
. (8.9)

Next, suppose µ(S′1) ≤ µ(S1)
2 . Then,

µ(M\ (S′1 ∪ S′2)) ≥ µ(S1)

2
,

implying that

∫

S1

Px(M\ S1)dµ(x) ≥ εMµ(S1)

4
.

Now applying Theorem 9.3.5 due to Lovász and Simonovits, we have the following theo-

rem.

Theorem 8.0.5. Let µ0 be the initial distribution for a lazy reversible ergodic Markov chain

on a metric space satisfying the above conditions and µk be the distribution of the kth step.

Let s := supS
µ0(S)
µ(S) where the supremum is over all measurable subsets S of K. Then, for

all such S,

|µk(S)− µ(S)| ≤ √s
(

1− (εMmin(αM, 1))2

32

)k
.

8.1 The case of manifolds

In this section, we will consider the special case of a manifold with density, specified by a

collection of smoothly varying charts indexed by the points of the manifold. Let B be the

Euclidean unit ball. Let M be a Riemannian manifold. For x, y ∈ M, let dM(x, y) be the

geodesic distance between x and y. Let M be specified by an a family of injective maps
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{Ux : B →M}x∈M where x ∈ Ux(B). Let ρ(x) = e−V (x) be a probability density function

on M, whose value at x is measured with respect to the push-forward of the Lebesgue

measure via Ux at the point x. Let Jac denote the Jacobian of a map. An atlas can be

constructed from this family of maps, namely {U−1
x }x∈M. We consider the Markov Scheme

in which, for any x ∈M, Px is the distribution of the random point z obtained as follows.

1. Toss a fair coin and if Heads, set z to x.

2. If Tails, do the following:

(a) Pick a random point w ∈ B from the uniform measure on the unit ball and let
z := Ux(w).

(b) If x ∈ Uz(B),

i. with probability min

(
1,
ρ(z) det Jac(U−1

z Ux)(0)
ρ(x)

)
let z remain unchanged.

ii. Else, set z to x.

(c) If x 6∈ Uz(B), set z to x.

3. Output z.

8.1.1 A good atlas

Let the atlas {U−1
x }x∈M and V , the logarithm of the density function, satisfy the following.

There exists rm > 0 such that for any α ∈ (0, 1),

1.

dM(x, y) ≤ αe−
1
n rM ⇒ y ∈ Ux(αB), (8.10)

and

y′ ∈ αe− 1
nB ⇒ dM(x, Ux(y′)) ≤ αrM. (8.11)
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2. On its domain of definition, U−1
z Ux has continuous partial derivatives upto order 3,

and for all z ∈ Ux(B),

∣∣V (z)− V (x) + ln det Jac(U−1
z Ux)(0)

∣∣ < 1. (8.12)

For a manifold M equipped with a measure µ, let the Minkowski outer measure of a (mea-

surable) set A be defined as

µ+(∂A) := lim
ε→0+

µ(Aε)− µ(A)

ε
, (8.13)

where Aε := {x|dM(x,A) < ε}.

Definition 8.1.1. The Cheeger constant of the weighted manifold (M, µ) is

βM = inf
A⊂M,µ(A)≤1

2

µ+(∂A)

µ(A)
, (8.14)

where the infimum is taken over measurable subsets.

With the above terminology, we have the following theorem.

Theorem 8.1.1. Let µ0 be the initial distribution for the Markov chain whose transitions

are made as above. Let µk be the distribution of the kth step. Let s := supS
µ0(S)
µ(S) where the

supremum is taken over all measurable subsets S of K. Then, for all such S,

|µk(S)− µ(S)| ≤ √s
(

1− (εMmin(rMβM
n , 1))2

128e12

)k
.

We will need two lemmas for the proof of this theorem. These lemmas appear below.

Lemma 8.1.1. Let C,D ⊆M and dM(C,D) ≥ δM. Then,

µ(M\ {C ∪D}) ≥ 2 min(µ(C), µ(D))(e
βMδM

2 − 1). (8.15)
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Proof. We will consider two cases.

First, suppose that max(µ(C), µ(D)) > 1
2 . Without loss of generality, we assume that

µ(C) ≤ µ(B). Then, let

δ1 := sup
µ(Cδ)<1

2

δ.

We proceed by contradiction. Suppose for some β < βM,

∃δ ∈ [0, δ1), µ(Cδ) < eβδµ(C). (8.16)

Let δ′ be the infimum of such δ. Note that since µ(Cδ) is a monotonically increasing function

of δ,

µ(Cδ′) = eβδ
′
µ(C).

However, we know that

µ+(∂Cδ′) := lim
ε→0+

µ(Cε)− µ(C)

ε
≥ βM, (8.17)

which contradicts the fact that in any right neighborhood of δ′, there is a δ for which (8.16)

holds. This proves that for all δ ∈ [0, δ1), µ(Cδ) ≥ eδβMµ(C). We note that Cδ1∩DδM−δ1 =

∅, therefore µ(δM − δ1) ≤ 1
2 . So the same argument tells us that

µ(DδM−δ1) ≥ eβM(δM−δ1)µ(D). (8.18)

Thus, µ(M\ {C ∪D}) ≥ µ(C)(eβM(δM−δ1) + eβMδ1 − 2). This implies that

µ(M\ {C ∪D}) ≥ 2µ(C)

(
e
βMδM

2 − 1

)
.

Next, suppose µ(D) ≥ 1
2 . We then set δ1 := δM, and see that the arguments from (8.16)
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to (8.18) carry through verbatim. Thus, in this case, µ(M\{C∪D}) ≥ min(µ(C), µ(D))(eβMδM−

1).

Lemma 8.1.2. If dM(x, y) < e−
1
n rM
n , then

dTV (Px, Py) ≤ 1− 1

2e5 . (8.19)

Proof. For any x ∈ M, let Dx := Ux(B). Let us fix the convention that
dPy
dPx

(x) := 0 and

dPy
dPx

(y) := +∞. Suppose x→ w is one step of the chain. Then,

d(Px, Py) = 1− Ew
[
min

(
1,
dPy
dPx

(w)

)]
.

By a direct computation,

Ew
[
min

(
1,
dPy
dPx

(w)

)]
≥ min

(
1,
ρ(x) det Jac(U−1

x Uy)(0)

ρ(y)

)
P
[
(y ∈ Dw) ∧ (w ∈ Dy \ {x})

]
.

As a consequence of (8.10),

P
[
(y ∈ Dw) ∧ (w ∈ Dy \ {x})

]
≥ P

[
(y ∈ Dw) ∧ (U−1

y (w) ∈ e− 1
nB \ {0})

]
.

By the triangle inequality, and (8.11),

dM(w, y) ≤ dM(x, y) + dM(x,w)

≤ dM(x, y) + e
1
n rM‖U−1

x (w)‖.
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Let E1 denote the event that U−1
x (w) ∈ e− 3

nB \ {0}. Then, if dM(x, y) ≤ e−
1
n rM
n ,

P
[
dM(w, y) ≤ rM(e−

1
n )
∣∣E1

]
≥ P

[
dM(x, y) + e

1
n rM‖U−1

x (w)‖ ≤ rM(e−
1
n )
∣∣E1

]

≥ P
[
e

1
n rM‖U−1

x (w)‖ ≤ rM(e−
2
n )
∣∣E1

]

= 1.

Analyzing the transition probabilities of the chain, we see that P[E1] ≥ 1
2e4 . Therefore,

P [(y ∈ Dw) ∧ (E1)] = P
[
(y ∈ Dw)

∣∣E1
]
P[E1]

=
1

2e4 .

As a consequence of (8.12),

min

(
1,
ρ(x) det Jac(U−1

x Uy)(0)

ρ(y)

)
≥ 1

e
.

Therefore,

Ew
[
min

(
1,
dPy
dPx

(w)

)]
≥ min

(
1,
ρ(x) det Jac(U−1

x Uy)(0)

ρ(y)

)
P
[
(y ∈ Dw) ∧ (w ∈ Dy \ {x})

]

≥ 1

2e5 .

Proof of Theorem 8.1.1. Theorem 8.0.5 gives mixing bounds for general metric spaces in

terms of εM, αM and implicitly, δM. By Lemma 8.1.1 and Lemma 8.1.2, we see that in the

present context we can set δM to rM

ne
1
n

, εM to 1
2e5 and αM to rMβM

ne
1
n

. The theorem follows

by substituting these values into Theorem 8.0.5.
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CHAPTER 9

RANDOM WALKS ON POLYTOPES AND AN AFFINE

INTERIOR POINT METHOD FOR LINEAR PROGRAMMING

9.1 Introduction

In this chapter, we use ideas from interior point algorithms to define a random walk on

a polytope. We call this walk Dikin walk after I. I. Dikin, because it relies on ellipsoids

introduced by Dikin [22] in 1967, which he used to develop an affine-scaling interior point

algorithm for linear programming.

There is a large body of literature addressing algorithms for sampling convex bodies in Rn.

Previous sampling algorithms were applicable to convex sets specified in the following way.

The input consists of an n-dimensional convex set K circumscribed around and inscribed

in balls of radius r and R respectively. The algorithm has access to an oracle which, when

supplied with a point in Rn answers “yes” if the point is in K and “no” otherwise.

The first polynomial time algorithm for sampling convex sets appeared in [25]. It did

a random walk on a sufficiently dense grid. The dependence of its mixing time on the

dimension was O∗(n23). It resulted in the first randomized polynomial time algorithm to

approximate the volume of a convex set.

Another random walk that has been analyzed for sampling convex sets is known as the

ball walk, which does the following. Suppose the current point is xi. y is chosen uniformly

at random from a ball of radius δ centered at xi. If y ∈ K, xi+1 is set to K; otherwise

xi+1 = xi. After many successive improvements over several papers, it was shown in [39]

that a ball walk mixes in O∗(nR
2

δ2 ) steps from a warm start if δ < r√
n

. A ball walk has not

been proved to mix rapidly from any single point. A third random walk analyzed recently is

known as Hit-and-Run [57, 60]. This walk mixes in O
(
n3(Rr )2 ln R

dε

)
steps from a point at a

distance d from the boundary [60], where ε is the desired variation distance to stationarity.

112



9.2 Results

The Markov Chain defining Dikin walk is invariant under affine transformations of the poly-

tope. Consequently, the complex interleaving of rounding and sampling present in previous

sampling algorithms for convex sets (see [25, 39, 62]) is unnecessary.

Some features of Dikin walk are the following.

1. The measures defined by the transition probabilities of Dikin walk are affine invariants,

so there is no dependence on R/r (where R is the radius of the smallest ball containing

the polytope K and r is the radius of the largest ball contained in K).

2. If K is an n-dimensional polytope defined by m linear constraints, the mixing time

of the Dikin walk is O(nm) from a warm start (i. e. if the starting distribution has a

density bounded above by a constant).

3. If the walk is started at the “analytic center” (which can be found efficiently by interior

point methods [83, 96]), it achieves a variation distance of ε in

O
(
mn

(
n logm+ log 1

ε

))
steps. This is strongly polynomial in the description of the

polytope.

Dikin walk is similar to ball walk except that Dikin ellipsoids (defined later) are used instead

of balls. Dikin walk is the first walk to mix in strongly polynomial time from a central point

such as the center of mass (for which s, as defined below, is O(n)) and the analytic center

(for which s = O(m)). Our main result related to the Dikin walk is the following.

Theorem 9.2.1. Let n be greater than some universal constant. Let K be an n-dimensional

polytope defined by m linear constraints and x0 ∈ K be a point such that s is the supremum

over all chords pq passing through x0 of
|p−x0|
|q−x0| and ε > 0 be the desired variation distance

to the uniform distribution. Let τ > 7× 108×mn
(
n ln (20 s

√
m) + ln

(
32
ε

))
and x0, x1, . . .

113



be a Dikin walk. Then, for any measurable set S ⊆ K, the distribution of xτ satisfies
∣∣∣P[xτ ∈ S]− vol(S)

vol(K)

∣∣∣ < ε.

Running times

The mixing time for Hit-and-Run from a warm start is O
(
n2R2

r2

)
, while for Dikin walk this is

O(mn). Hit-and-Run takes more random walk steps to provably mix on any class of polytopes

where m = o
(
nR2

r2

)
. For polytopes with polynomially many faces, R/r cannot be O

(
n

1
2−ε
)

(but can be arbitrarily larger). Thus, m = o(n
(
R
r

)2
) holds true for some important classes of

polytopes, such as those arising from the question of sampling contingency tables with fixed

row and column sums (where m = O(n)). Each step of Dikin walk can be implemented using

O(mnγ−1) arithmetic operations, γ < 2.376 being the exponent of matrix multiplication

(see 9.3.1). One step of Hit-and-Run implemented naively would need O(mn) arithmetic

operations. Evaluating costs in this manner, Hit-and-Run takes more random walk steps to

provably mix on any class of polytopes where mγ = o
(
n2R2

r2

)
. A sufficient condition for

m = o
(
n3−γR2

r2

)
to hold is m = o(n4−γ).

9.2.1 Applications

Sampling lattice points in polytopes

While polytopes form a restricted subclass of the set of all convex bodies, algorithms for

sampling polytopes have numerous applications. It was shown in [41] that if an n dimensional

polytope defined by m inequalities contains a ball of radius Ω(n
√

logm), then it is possible to

sample the lattice points inside it in polynomial time by sampling the interior of the polytope

and picking a nearby lattice point. Often, combinatorial structures can be encoded as lattice

points in a polytope, leading in this way to algorithms for sampling them. Contingency

tables are two-way tables that are used by statisticians to represent bivariate data. A
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solution proposed in [20] to the frequently encountered problem of testing the independence

of two characteristics of empirical data involves sampling uniformly from the set of two-way

tables having fixed row and column sums. It was shown in [67] that under some conditions,

this can be achieved in polynomial time by quantizing random points from an associated

polytope.

Linear Programming

We use this result to design an affine interior point algorithm that does a single random

walk to solve linear programs approximately. In this respect, our algorithm differs from

existing randomized algorithms for linear programming such as that of Lovász and Vempala

[59], which solves more general convex programs. While optimizing over a polytope specified

as in the previous subsection, if m = O(n2−ε), the number of random steps taken by our

algorithm is less than that of [59]. Given a polytope Q containing the origin and a linear

objective c, our aim is to find with probability > 1− δ, a point y ∈ Q such that cT y ≥ 1− ε

if there exists a point z ∈ Q such that cT z ≥ 1. We first truncate Q using a hyperplane

cT y = 1 − ε̂, for ε̂ << ε and obtain Qε̂ = Q ∩ {y
∣∣cT y ≤ 1 − ε̂}. We then projectively

transform Qε̂ to “stretch” it into a new polytope γ(Qε̂) where γ : y 7→ y
1−cT y . Finally, we

do a simplified Dikin walk (without the Metropolis filter) on γ(Qε̂) which approaches close

to the optimum in polynomial time. This algorithm is purely affine after one preliminary

projective transformation, in the sense that Dikin ellipsoids are used that are affine invari-

ants but not projective invariants. This is an important distinction in the theory of interior

point methods and the fact that our algorithm is polynomial time is notable since the corre-

sponding deterministic affine algorithm analyzed by Dikin [22, 99] has no known polynomial

guarantees on its run-time. Its projective counterpart, the algorithm of Karmarkar however

does [42]. In related work [7], Belloni and Freund have explored the use of randomization

for preconditioning. While there is no “local” potential function that is improved upon in
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each step, our analysis may be interpreted as using the L2,µ norm (µ being the appropriate

stationary measure) of the probability density of the kth point as a potential, and showing

that this reduces at each step by a multiplicative factor of (1− Φ2

2 ) where Φ is the conduc-

tance of the walk on the transformed polytope. We use the L2,µ norm rather than variation

distance because this allows us to give guarantees of exiting the region where the objective

function is low before the relevant Markov Chain has reached approximate stationarity. The

main result related to algorithm (Dikin ) is the following.

Theorem 9.2.2. Let n be larger than some universal constant. Given a system of inequalities

By ≤ 1, a linear objective c such that the polytope

Q := {y : By ≤ 1 and |cT y| ≤ 1}

is bounded, and ε, δ > 0, the following is true. If ∃ z such that Bz ≤ 1 and cT z ≥ 1, then y,

the output of Dikin , satisfies

By ≤ 1

cT y ≥ 1− ε

with probability greater than 1− δ.

Strong Polynomiality

Let us call a point x central if ln s, where s is the function of x defined in Theorem 9.2.1, is

polynomial in m. The mixing time of Dikin walk both from a warm start, and from a starting

point that is central, is strongly polynomial in that the number of arithmetic operations

depends only on m and n. Previous Markov Chains for sampling convex sets (and hence

polytopes) do not possess either of these characteristics. In the setting of approximate Linear
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Programming that we have considered, the numbers of iterations taken by known interior

point methods such as those of Karmarkar [42], Renegar [83], Vaidya [96] etc are strongly

polynomial when started from a point that is central in the above sense. The algorithm

Dikin presented here is no different in this respect. The fact that Dikin walk has a mixing

time that is strongly polynomial from a central point such as the center of mass, is related

to two properties of Dikin ellipsoids listed below.

Dikin ellipsoids and their virtues

Let K be a polytope in n−dimensional Euclidean space given as the intersection of m

halfspaces aTi x ≤ 1, 1 ≤ i ≤ m. Defining A to be the m× n matrix whose ith row is aTi , the

polytope can be specified by Ax ≤ 1. Let x0 ∈ int(K) belong to the interior of K. Let

H(x) =
∑

1≤i≤m

aia
T
i

(1− aTi x)2

and ‖z − x‖2x := (z − x)TH(x)(z − x). The Dikin ellipsoid Dr
x of radius r for x ∈ K is the

ellipsoid containing all points z such that

‖z − x‖x ≤ r.

Fact 9.2.1. (1) Dikin ellipsoids are affine invariants in that if T is an affine transforma-

tion and x ∈ K, the Dikin ellipsoid of radius r centered at the point Tx for the polytope

T (K) is T (Dr
x). This is easy to verify from their definition.

(2) For any interior point x, the Dikin ellipsoid centered at x, having radius 1, is contained

in K. This has been shown in Theorem 2.1.1 of [74]. Also, the Dikin ellipsoid at x

having radius
√
m contains Symx(K) := K ∩ {y

∣∣2x− y ∈ K}. This can be derived by

an argument along the lines of Theorem 9.3.2.
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P

Figure 9.1: A realization of Dikin walk. Dikin ellipsoids Dx0 , Dx1 and Dx6 have been
depicted.

9.3 Randomly Sampling Polytopes

9.3.1 Preliminaries

For two vectors v1, v2, let
〈
v1, v2

〉
x = vT1 H(x)v2. For x ∈ K, we denote by Dx, the Dikin

ellipsoid of radius 3
40 centered at x. Dikin ellipsoids have been studied in the context of

optimization [22] and have recently been used in online learning [1]. The second property

mentioned in the subsection below implies that the Dikin walk does not leave K.

The “Dikin walk” is a “Metropolis” type walk which picks a move and then decides

whether to “accept” the move and go there or “reject” and stay. The transition probabilities

of the Dikin walk are listed below. When at x, one step of the walk is made as follows.

Therefore,

P[x→ y] =





min
(

1
2 vol(Dx) ,

1
2 vol(Dy)

)
,

if y ∈ Dx and x ∈ Dy;

0, otherwise.
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1. Flip an unbiased coin. If Heads, stay at x.

2. If Tails pick a random point y from Dx.

3. If x /∈ Dy, then reject y (stay at x);
if x ∈ Dy, then accept y with probability

min
(

1,
vol(Dx)
vol(Dy)

)
= min

(
1,

√
detH(y)
detH(x)

)
.

and P[x→ x] = 1−
∫
y dP[x→ y].

Implementation of a Dikin step

Let K be the set of points satisfying the system of inequalities Ax ≤ 1. H(x) = ATD(x)2A

where D(x) is the diagonal matrix whose ith diagonal entry dii(x) = 1
1−aTi x

.

We can generate a Gaussian vector v such that E[vvT ] = (ATD2A)−1 by the following

procedure. Let u be a random m-vector from a Gaussian distribution whose covariance

matrix is Id. Find v that satisfies the linear equations:

DAv = z

ATD(z − u) = 0,

or equivalently,

ATD2Av = ATDu.

Allowing (DA)† to be the Moore-Penrose pseudo-inverse of DA,

(DA)†(z − u) = 0⇔ (z − u) ⊥ column span(DA)

⇔ ATD(z − u) = 0.
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Thus, EvvT = (DA)†EzzT (DA)†T . z is the orthogonal projection of u onto the column span

of DA,

therefore (DA)†EzzT (DA)†T = H(x)−1. We can now generate a random point from the

Dikin ellipsoid by scaling v/‖v‖x appropriately. The probability of accepting a Dikin step,

is either 0 or the minimum of 1 and ratio of two determinants. Two matrix-vector products

suffice to test whether the original point lies in the Dikin ellipsoid of the new one. By results

of Baur and Strassen [4], the complexity of solving linear equations and of computing the

determinant of an n × n matrix is O(nγ). The most expensive step, the computation of

ATD(x)2A can be acheived using mnγ−1, by partitioning a padded extension of ATD into

≤ m+n−1
n square matrices. Thus, all the operations needed for one step of Dikin walk can

be computed using O(mnγ−1) arithmetic operations where γ < 2.377 is the exponent for

matrix multiplication.

9.3.2 Isoperimetric inequality

Given interior points x, y in a polytope K, suppose p, q are the ends of the chord in K

containing x, y and p, x, y, q lie in that order. Then we denote
|x−y||p−q|
|p−x||q−y| by σ(x, y). ln(1 +

σ(x, y)) is a metric known as the Hilbert metric, and given four collinear points a, b, c, d,

(a : b : c : d) =
(a−c)·(b−d)
(a−d)·(b−c) is known as the cross ratio.

The theorem below was proved by Lovász in [57].

Theorem 9.3.1 (Lovász). Let S1 and S2 be measurable subsets of K. Then,

vol(K \ S1 \ S2) vol(K) ≥ σ(S1, S2) vol(S1) vol(S2).
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9.3.3 Dikin norm and Hilbert metric

Theorem 9.3.2 relates the Dikin norm to the Hilbert metric. The Dikin norms can be used

to define a Riemannian manifold by using the associated bilinear form < ·, · >x to construct

a metric tensor. Dikin walk is a random walk on such a manifold in the spirit of the random

walks discussed in Section 8.1.

Observation 9.3.1. The isoperimetric properties of this manifold can be deduced from those

of the Hilbert metric, and in fact, Theorem 9.3.1 and Theorem 9.3.2 together imply that the

weighted Cheeger constant (see Definition 8.1.1) of this manifold is bounded below by 1
2
√
m
.

Theorem 9.3.2. Let x, y be interior points of K. Then,

σ(x, y) ≥ ‖x− y‖x√
m

.

Proof. It is easy to see that we can restrict attention to the line ` containing x, y. We may

also assume that x = 0 after translation. So now bi ≥ 0. Let ci be the component of ai

along `; we may view ci, y as real numbers with ` as the real line now. K ∩ ` = {y : ciy ≤ bi}

(where bi had been taken to be 1). Dividing constraint i by |ci|, we may assume that |ci| = 1.

After renumbering constraints so that b1 = min{bi
∣∣ci = −1} and b2 = min{bi

∣∣ci = 1}, we

have K ∩ ` = [−b1, b2]. Also

‖x− y‖2x = y2
∑

i

1

b2i
.

Without loss of generality, assume that y ≥ 0. [The proof is symmetric for y ≤ 0.] Then,

σ(x, y) =
y(b1+b2)
b1(b2−y) , which is ≥ ymaxi(1/|bi|). This is in turn ≥ ‖x−y‖x√

m
.

9.3.4 Geometric and probabilistic distance

Let the Lebesgue measure be denoted λ. The total variation distance between two distribu-

tions π1 and π2 is d(π1, π2) := supS |π1(S)−π2(S)| where S ranges over all measurable sets.
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Let the marginal distributions of transition probabilities starting from a point u be denoted

Pu. Let us fix r := 3/40 for the remainder of this chapter. The main lemma of this section

is stated below.

Lemma 9.3.1. Let x, y be points such that σ(x, y) ≤ 3
400
√
mn

. Then, the total variation

distance between Px and Py is less than 1− 13
200 + o(1).

Proof. Let us fix the convention that
dPy
dPx

(x) := 0 and
dPy
dPx

(y) := +∞. If x→ w is one step

of the Dikin walk,

d(Px, Py) = 1− Ew
[
min

(
1,
dPy
dPx

(w)

)]
.

It follows from Lemma 9.3.2 that

Ew
[
min

(
1,
dPy
dPx

(w)

)]
≥ min

(
1,

volDx
vol(Dy)

)
P
[
(y ∈ Dw) ∧ (w ∈ Dy \ {x})

]
.

It follows from Lemma 9.3.4 that

min

(
1,

vol(Dx)

volDy

)
P
[
(y ∈ Dw) ∧ (w ∈ Dy \ {x})

]
≥ (9.1)

e−
r
5 P
[
(y ∈ Dw) ∧ (w ∈ Dy \ {x})

]
. (9.2)

Let Ex denote the event that

0 < max
(
‖x− w‖2w, ‖x− w‖2x

)
≤ r2

(
1− 1

n

)
,

Ey denote the event that max
(
‖y − w‖w, ‖y − w‖y

)
≤ r and Evol denote the event that

vol(Dw) ≥ e4r vol(Dx). The complement of an event E shall be denoted E.

The probability of Ey when x → w is a transition of Dikin walk can be bounded from

below by
(
e−4r

2

)
P
[
Ey ∧ Ex ∧ Evol

]
where w is chosen uniformly at random from Dx. It

thus suffices to find a lower bound for P
[
Ey ∧ Ex ∧ Evol

]
where w is chosen uniformly at
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random from Dx, which we proceed to do. Let erf(x) denote the well known error function

2√
π

∫ x
0 e−t

2
dt and erfc(x) := 1− erf(x).

P
[
Ey ∧ Ex ∧ Evol

]
≥ (9.3)

P
[
Ey ∧ Ex

]
− P [Evol] . (9.4)

Lemma 9.3.3 implies that P [Evol] ≤ erfc(2)
2 + o(1). Let E1

x be the event that

‖x− w‖2x ≤ r2
(

1− 1

n

)
.

As a consequence of Lemma 9.3.5,

P [Ex] + o(1) ≥
(

1− 3
√

2r

2

)
P
[
E1
x

]

≥
(

1− 3
√

2r

2
√
e

)
− o(1). (9.5)

Lemma 9.3.6 and Lemma 9.3.7 together tell us that

P
[
Ey

∣∣∣Ex
]
≥ 1−

(
4r2 + erfc(2) + o(1)

1− 3
√

2r

)
−
(

4r2 + erfc(3/2) + o(1)

1− 3
√

2r

)
(9.6)

= 1−
(

8r2 + erfc(2) + erfc(3
2) + o(1)

1− 3
√

2r

)
. (9.7)

Putting (9.5) and (9.7) together gives us that

P
[
Ey ∧ Ex

]
= P

[
Ey

∣∣∣Ex
]

P [Ex] (9.8)

≥ 1− 3
√

2r

2
√
e
−
(

8r2 + erfc(2) + erfc(3
2)

2
√
e

)
− o(1). (9.9)

Putting together (9.2), (9.4) and (9.9), we see that if x → w is a transition of the Dikin
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walk,

Ew
[
min

(
1,
dPy
dPx

(w)

)]
≥ e−

21r
5

4
√
e

(
1− (3

√
2r + 8r2 + erfc(2)(1 +

√
e) + erfc(

3

2
))

)
− o(1).

For our choice of r = 3/40, this evaluates to more than 13
200 − o(1).

Since Dikin ellipsoids are affine-invariant, we shall assume without loss of generality that

x is the origin and the Dikin ellipsoid at x is the Euclidean unit ball of radius r. This also

means that in system of coordinates, the local norm ‖ · ‖x = ‖ · ‖o is the Euclidean norm ‖ · ‖

and the local inner product
〈
·, ·
〉
x =

〈
·, ·
〉
o is the usual inner product

〈
·, ·
〉
. On occasion we

have used a · b to signify
〈
a, b
〉
.

Lemma 9.3.2. Let w ∈ supp(Px) \ {x, y} and y ∈ Dw and w ∈ Dy. Then,

dPy
dPx

(w) ≥ min

(
1,

vol(Dx)

vol(Dy)

)
.

Proof. Under the hypothesis of the lemma,

dPy
dPx

(w) =
min

(
1

vol(Dy) ,
1

volDw

)

min
(

1
vol(Dx) ,

1
volDw

)

=
min

(
vol(Dw)
vol(Dy) , 1

)

min
(

vol(Dw)
vol(Dx) , 1

) .

The above expression can be further simplified by considering two cases.

1. Suppose min
(

vol(Dw)
vol(Dy) , 1

)
= 1, then

min
(

volDw
vol(Dy) , 1

)

min
(

vol(Dw)
vol(Dx) , 1

) ≥ 1.
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2. Suppose min
(

vol(Dw)
vol(Dy) , 1

)
=

vol(Dw)
vol(Dy) , then

min
(

vol(Dw)
vol(Dy) , 1

)

min
(

vol(Dw)
vol(Dx) , 1

) ≥ vol(Dx)

vol(Dy)
.

Therefore,

dPy
dPx

(w) ≥ min

(
1,

vol(Dx)

volDy

)
.

Lemma 9.3.3. Let w be chosen uniformly at random from Dx. The probability that vol(Dx) ≤

e2rc vol(Dw) is greater or equal to 1− erfc(c)
2 − o(1), i. e.

P
[

vol(Dw)

vol(Dx)
≤ e2rc

]
≥ 1− erfc (c)

2
− o(1).

Proof. By Lemma 9.3.13, ln( 1
vol(Dx)) is a convex function. Therefore,

ln vol(Dw)− ln vol(Dx) ≤ ∇ ln(
1

vol(Dx)
) · (w − x).

By Lemma 9.3.12, ‖∇ ln( 1
vol(Dx))‖ ≤ 2

√
n. Therefore,

∇ ln(
1

vol(Dx)
) · (w − x) ≤ 2r



√
n∇ ln( 1

vol(Dx)) · (w − x)

‖∇ ln( 1
vol(Dx))‖‖w − x‖




As stated in Theorem 9.3.3, when the dimension n→∞,

√
n∇ ln( 1

vol(Dx)) · (w − x)

‖∇ ln( 1
vol(Dx))‖‖w − x‖
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converges in distribution to a standard Gaussian random variable whose mean is 0 and

variance is 1. Therefore,

P



√
n∇ ln( 1

vol(Dx)) · (w − x)

‖∇ ln( 1
volDx

)‖‖w − x‖
≤ c


 ≥ 1 + erf(c)

2
− o(1).

This implies that

P
[

vol(Dw)

vol(Dx)
≤ ec

]
≥ P

[
∇ ln(

1

vol(Dx)
) · (w − x) ≤ c

]

≥
(

1 + erf
( c

2r
)

2

)
− o(1).

Lemma 9.3.4.

ln

(
vol(Dy)

vol(Dx)

)
≤ nσ(x, y).

Proof. Suppose pq is a chord and p, x, y, q appear in that order. By Theorem 9.6.1,

ln

(
vol(Dy)

vol(Dx)

)
≤ ln

( |p− y|n
|p− x|n

)

≤ nσ(x, y).

Lemma 9.3.5. Let w be chosen uniformly at random from Dx. Then,

P
[
‖x− w‖2w ≤ r2

(
1− 1

n

) ∣∣∣‖x− w‖2x ≤ r2
(

1− 1

n

)]

≥ 1− 3
√

2r

2
− o(1).
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Proof. Let E1
x be the event that

‖x− w‖2x ≤ r2
(

1− 1

n

)
.

We set c to 3
√

2r in Lemma 9.3.8 and see that

P
[
‖x− w‖2w + ‖x− w‖22x−w ≥ 2r2

(
1− 1

n

) ∣∣∣E1
x

]

≤ 3
√

2r + o(1).

If ‖x−w‖2w + ‖x−w‖22x−w ≤ 2r2
(

1− 1
n

)
, then either ‖x−w‖2w or ‖x−w‖22x−w must be

less or equal to r2
(

1− 1
n

)
.

Lemma 9.3.6. Let σ(x, y) ≤ 3
400
√
mn

. Then, if w is chosen uniformly at random from Dx,

P
[
‖y − w‖y ≥ r

∣∣∣max
(
‖x− w‖2x, ‖x− w‖2w

)
≤ r2

(
1− 1

n

)]

≤ 4r2 + erfc(2) + o(1)

1− 3
√

2r
.

Proof. It follows from Lemma 9.3.10, after substituting 1 for η and 2 for η1 that

P
[
‖y − w‖y ≥ r

∣∣∣‖x− w‖2x ≤ r2
(

1− 1

n

)]

≤ 2r2 +
erfc(2)

2
+ o(1).

This lemma follows using the upper bound from Lemma 9.3.5 for

P
[
‖x− w‖2w ≤ r2

(
1− 1

n

) ∣∣∣‖x− w‖2x ≤ r2
(

1− 1

n

)]
.

An application of Theorem 9.3.2 completes the proof.
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Lemma 9.3.7. Suppose σ(x, y) ≤ 3
400
√
mn

. Let w be chosen uniformly at random from Dx.

Then,

P
[
‖y − w‖w ≥ r

∣∣∣max(‖x− w‖2w, ‖x− w‖2x) ≤ r2
(

1− 1

n

)]

≤ 4r2 + erfc(3/2) + o(1)

1− 3
√

2r
.

Proof. Substituting c = 1 in Lemma 9.3.9, we see that

P
[
‖y − w‖2w − ‖x− w‖2w ≥ ψ1

∣∣∣‖x− w‖2x ≤ r2(1− c

n
)
]

≤ 2r2 +
erfc(3/2)

2
+ o(1).

This implies that

P
[
‖y − w‖2w − ‖x− w‖2w ≥

r

n

∣∣∣‖x− w‖2x ≤ r2
(

1− 1

n

)]

≤ 2r2 +
erfc(3/2)

2
+ o(1).

This lemma follows using the lower bound from Lemma 9.3.5 for

P
[
‖x− w‖2w ≤ r2

(
1− 1

n

) ∣∣∣‖x− w‖2x ≤ r2
(

1− 1

n

)]
.

The following theorem has the geometric interpretation that the probability distribution

obtained by orthogonally projecting a random vector vn from an n-dimensional ball of radius

√
n onto a line converges in distribution to the standard mean zero, variance 1, normal

distribution N [0, 1]. This was known to Poincaré, and is a fact often mentioned in the

context of measure concentration phenomena, see for example [55].
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Theorem 9.3.3 (Poincaré). Let vn be any n-dimensional vector and hn be a random vector

chosen uniformly from the n-dimensional unit Euclidean ball. Then, as n→∞,
√
n<vn,hn>
‖vn‖‖hn‖

converges in distribution to a zero-mean Gaussian whose variance is 1, i. e.N [0, 1].

Let

ψ1 :=
‖y − x‖2x
(1− r)2 +

(3 + 2
√

6)r‖y − x‖x√
n

.

Lemma 9.3.8. Let v be chosen uniformly at random from Dx and c be a positive constant.

Then,

P

[
‖x− v‖2v + ‖x− v‖22x−v ≥ 2r2

(
1− (c− 18r2

c )

n

)]

≤ c+ o(1).

Proof. Let the ith constraint be aTi x ≤ 1 for all i ∈ {1, . . . ,m}. Let x− v be denoted h. In

the present frame, for any vector v, ‖v‖x = ‖v‖.

‖x− v‖2v + ‖x− v‖22x−v =
∑

i

(aTi h)2

(1− aTi h)2
+
∑

i

(aTi h)2

(1 + aTi h)2
(9.10)

In the present coordinate frame
∑
i aia

T
i = I. Consequently for each i,

E[(aTi h)2] =
‖ai‖2E[‖h‖2]

n
(9.11)

≤ r2

n
. (9.12)
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∑

i

(
(aTi h)2

2(1− aTi h)2
+

(aTi h)2

2(1 + aTi h)2

)
=

∑

i

(aTi h)2

(
1 + (aTi h)2

(1− (aTi h)2)2

)
(9.13)

=
∑

i

(
(aTi h)2 +

3(aTi h)4 − (aTi h)6

(1− (aTi h)2)2

)

= ‖h‖2x +
∑

i

3(aTi h)4 − (aTi h)6

(1− (aTi h)2)2
. (9.14)

In the present coordinate frame
∑
i aia

T
i = I. Consequently for each i,

E

[
(aTi h)2

‖ai‖2‖h‖2

]
=

1

n
. (9.15)

By Theorem 9.3.3, the probability that |aTi h| ≥ n−
1
4 is O(e−

√
n/2). |aTi h| is ≤ ‖aTi ‖r,

which is less than 1
2 . This allows us to write

E

[
3(aTi h)4 − (aTi h)6

(1− (aTi h)2)2

]
= 3E[(aTi h)4](1 + o(1)), (9.16)

and so

E

[∑

i

3(aTi h)4 − (aTi h)6

(1− (aTi h)2)2

]
=

∑

i

3E[(aTi h)4](1 + o(1)). (9.17)

Next, we shall find an upper bound on E[
∑
i(a

T
i h)4]. The length of h and its direction are

independent, therefore

E

[∑

i

(aTi h)4

]
=

∑

i

‖ai‖4E[‖h‖4]E

[
(aTi h)4

‖ai‖4‖h‖4

]
. (9.18)

A direct integration by parts tells us that if the distribution of X is N [0, 1], then E[X4] = 3.
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Therefore,

E

[
(aTi h)4

‖ai‖4‖h‖4

]
=

3 + o(1)

n2 . (9.19)

E[‖h‖4] is equal to r4(1 + o(1)) and so

E

[∑

i

(aTi h)4

]
=

∑

i

(
3 + o(1)

n2

)
‖ai‖4r4. (9.20)

This implies that

E

[∑

i

3(aTi h)4

(1− (aTi h)2)2

]
=

9 + o(1)

n2

∑

i

‖ai‖4r4 (9.21)

≤ 9 + o(1)

n2

∑

i

‖ai‖2r4 (9.22)

=
(9 + o(1))r4

n
. (9.23)

In (9.22), we used the fact that
∑
i aia

T
i = I and so ‖ai‖2 ≤ 1 for each i. Together, Markov’s

inequality and (9.23) yield the following.

P

[∑

i

3(aTi h)4 − (aTi h)6

(1− (aTi h)2)2
≥ c2r

4

n

]
≤ P

[∑

i

3(aTi h)4

(1− (aTi h)2)2
≥ c2r

4

n

]
(9.24)

≤ 9 + o(1)

c2
. (9.25)

Also,

P[‖h‖2x ≥ r2(1− c1
n

)] = P[‖h‖nx ≥ rn(1− c1
n

)n/2] (9.26)

≤ 1− e−
c1
2 + o(1). (9.27)
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We infer from (9.25) and (9.27) that

P

[
‖h‖2x +

∑

i

3(aTi h)4 − (aTi h)6

(1− (aTi h)2)2
≥ r2(1− c1 − c2r2

n
)

]
≤ 1− e−

c1
2 +

9

c2
+ o(1)

≤ c1
2

+
9

c2
+ o(1). (9.28)

Setting c1 to c and c2 to 18
c proves the lemma.

Let Ecx be the event that ‖x− w‖2x ≤ r2(1− c
n).

Lemma 9.3.9. Let w be a point chosen uniformly at random from Dx. Then, for any

positive constant c, independent of n,

P
[
‖y − w‖2w − ‖x− w‖2w ≥ ψ1

∣∣∣Ecx
]

≤ 2r2 +
erfc(3/2)

2
+ o(1).

Proof. ‖y‖2w can be bounded above in terms of ‖y‖o as follows.

‖y‖2w ≤ yT

(∑

i

aia
T
i

(1− aTi w)2

)
y (9.29)

≤
(

sup
i

1

(1− aTi w)2

)∑

i

yT aia
T
i y. (9.30)

For each i, ‖ai‖ ≤ 1, therefore

(
sup
i

1

(1− aTi w)2

)∑

i

yT aia
T
i y ≤

‖y‖2o
(1− r)2 . (9.31)

Let Ecw be the event that ‖w‖2o ≤ 1− c
n .
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By Theorem 9.3.3,

P
[
(−2

〈
y, w

〉
o) ≥

2rη1‖y‖o√
n

∣∣∣Ecw
]
≤ 1− erf(η1)

2
+ o(1). (9.32)

(
〈
y, w

〉
o−
〈
y, w

〉
w)2 can be bounded above using the Cauchy-Schwarz inequality as follows.

(
〈
y, w

〉
o −

〈
y, w

〉
w)2 =

(
wT

(
1−

∑

i

aia
T
i

(1− aTi w)2

)
y

)2

=

(∑

i

wT ai((1− aTi w)2 − 1)aTi y

(1− aTi w)2

)2

≤



∑

i

(
wT ai((1− aTi w)2 − 1)

)2

(1− aTi w)4



(∑

i

(aTi y)2

)
.

Let κ be a standard one-dimensional Gaussian random variable whose variance is 1 and

mean is 0 ( i. e. having distribution N [0, 1]). Since r < 1
2 and each ‖ai‖ = ‖ai‖o is less or

equal to 1, it follows from Theorem 9.3.3 that conditional on Ecw,

(
nwT ai((1− aTi w)2 − 1)

)2

4r2‖ai‖2(1− aTi w)4

converges in distribution to the distribution of κ4, whose expectation can be shown using

integration by parts to be 3. So,

E



∑

i

(
wT ai((1− aTi w)2 − 1)

)2

(1− aTi w)4

∣∣∣Ecw


 ≤

∑

i

(
4

n2

)
‖ai‖4or4(3 + o(1))

≤
(

12 + o(1)

n2

)
r4
∑

i

‖ai‖2o

=
(12 + o(1))r4

n
.
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Thus by Markov’s inequality,

P



∑

i

(
wT ai((1− aTi w)2 − 1)

)2

(1− aTi w)4
≥ 12η2r

4

n

∣∣∣Ecw


 ≤ 1 + o(1)

η2
. (9.33)

∑
i(a

T
i y)2 is equal to ‖y‖2o. Therefore (9.33) implies that

P
[
(
〈
y, w

〉
o −

〈
y, w

〉
w)2 ≥ 12η2r

4‖y‖2o
n

]
≤ 1 + o(1)

η2
. (9.34)

Putting (9.32) and (9.34) together, we see that

P

[
−2
〈
y, w

〉
w ≥

2rη1‖y‖o√
n

+ 2

√
12η2r4‖y‖2o

n

∣∣∣∣∣E
c
w

]
≤ 1− erf(η1)

2
+

1 + o(1)

η2
(9.35)

Conditional on Ecw, ‖w‖2w is less or equal to r(1− c
n).

Therefore, using erfc(x) to denote 1− erf(x),

P
[
‖y − w‖2w − ‖w‖2w ≥

‖y‖2o
(1− r)2 +

2r‖y‖o√
n

(
η1 + r

√
12η2

) ∣∣∣Ecw
]
≤ η−1

2 +
erfc(η1)

2
+ o(1).

Setting η1 = 3/2 and η2 = 1
2r2 , gives

P
[
‖y − w‖2w − ‖w‖2w ≥

∣∣∣Ecw
]
≤ 2r2 +

erfc(3/2)

2
+ o(1). (9.36)

Lemma 9.3.10. Let c be a positive constant. Let

ψ2 := ‖y − x‖2y +
2rη1‖y − x‖x√

n
+

2η‖y − x‖x√
n

(√
3r + ‖y − x‖x

)
.
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If w is a point chosen uniformly at random from Dx, for any positive constants η and η1,

Then,

P
[
‖y − w‖2y − ‖x− w‖2x ≥ ψ2

∣∣∣Ecw
]

≤ 2r2

η2 +
erfc(η1)

2
+ o(1).

Proof.

‖y − w‖2y = ‖y‖2y + ‖w‖2y − 2
〈
w, y

〉
y (9.37)

≤ ‖y‖2y + ‖w‖2o (9.38)

+
√

(‖w‖2y − ‖w‖2o)2 − 2
〈
w, y

〉
o + 2

√
(
〈
w, y

〉
o −

〈
w, y

〉
y)2. (9.39)

We shall obtain probabilistic upper bounds on each term in (9.39).

(‖w‖2y − ‖w‖2o)2 =

(
wT

(∑

i

aia
T
i

(
1− (1− aTi y)2

(1− aTi y)2

))
w

)2

(9.40)

≤
(∑

i

(wT ai)
4

)
∑

i

(
1− (1− aTi y)2

(1− aTi y)2

)2

 (9.41)

=

(∑

i

(wT ai)
4

)(∑

i

4
(
aTi y

)2
(1 + o(1))

)
(9.42)

= (4 + o(1)) ‖y‖2o
∑

i

(wT ai)
4. (9.43)

In inferring (9.42) from (9.41) we have used the fact that ‖y‖o is O( 1√
n

) which is o(1). As

was stated in (9.19) in slightly different terms,

E
[
(wT ai)

4
]

=
‖ai‖4r4(3 + o(1))

n2 .
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Therefore by Markov’s inequality, for any constant c,

E

[∑

i

(wT ai)
4
∣∣∣‖w‖2o ≤ r2(1− c

n
)

]
=

∑

i

‖ai‖4r4(3 + o(1))

n2

≤ r4(3 + o(1))

n2

∑

i

‖ai‖2

=
r4(3 + o(1))

n
.

Therefore,

P
[
(‖w‖2y − ‖w‖2o)2 ≥ η2 12‖y‖2or4

n

]
≤ 1 + o(1)

η2 . (9.44)

By Theorem 9.3.3, as n → ∞, the distribution of

√
n
〈
w,y
〉
o

r‖y‖o converges in distribution to

N [0, 1]. Therefore

P
[
(−2

〈
w, y

〉
o) ≥

2η1r‖y‖o√
n

∣∣∣‖w‖2o ≤ r2(1− c

n
)

]
≤ erfc(η1)

2
+ o(1). (9.45)

Finally, we need similar tail bounds for (
〈
w, y

〉
o −

〈
w, y

〉
y)2. Note that

(
〈
w, y

〉
o −

〈
w, y

〉
y)2 =

(
wT

(∑

i

aia
T
i

(
1− (1− aTi y)2

(1− aTi y)2

))
y

)2

(9.46)

≤
(∑

i

(wT aia
T
i y)2

)
∑

i

(
1− (1− aTi y)2

(1− aTi y)2

)2

 (9.47)

=

(∑

i

(wT aia
T
i y)2

)(∑

i

(4 + o(1))(aTi y)2

)
(9.48)

= (4 + o(1))

(∑

i

(wT aia
T
i y)2

)
‖y‖2o. (9.49)
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It suffices now to obtain a tail bound on
∑
i(w

T aia
T
i y)2. By Theorem 9.3.3,

E

[∑

i

(wT aia
T
i y)2

∣∣∣‖w‖2o ≤ r2(1− c

n
)

]
≤

(∑

i

‖aiaTi y‖2
)
r2(1 + o(1))

n

≤
(∑

i

(aTi y)2

)
r2(1 + o(1))

n

≤ ‖y‖2or2(1 + o(1))

n
.

Therefore,

P
[
(
〈
w, y

〉
o −

〈
w, y

〉
y)2 ≤ 4η2‖y‖4or2

n

]
≤ 1 + o(1)

η2 . (9.50)

Putting together (9.44), (9.45) and (9.50), we see that

P
[
‖y − w‖2y − ‖w‖2o ≥ ‖y‖2y +

2η‖y‖o√
n

(√
3r +

rη1
η

+ ‖y‖o
) ∣∣∣Ecw

]
≤ 2r2

η2 +
erfc(η1)

2
+ o(1).

The following is a generalization of the Cauchy-Schwarz inequality that takes values in a

cone of semidefinite matrices where inequality is replaced by dominance in the semidefinite

cone. It will be used to prove Lemma 9.3.12 and may be of independent interest.

Lemma 9.3.11 (Semidefinite Cauchy-Schwartz). Let

α1, . . . , αm be reals and A1, . . . , Am be r×n matrices. Let B 4 C signify that B is dominated

by C in the semidefinite cone. Then

(
m∑

i=1
αiAi

)(
m∑

i=1
αiAi

)T
4

(
m∑

i=1
α2
i

)(
m∑

i=1
AiA

T
i

)
. (9.51)
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Proof. For each i and j,

0 4
(
αjAi − αiAj

) (
αjAi − αiAj

)T

Therefore,

0 4
1

2

m∑

i=1

m∑

j=1

(
αjAi − αiAj

) (
αjAi − αiAj

)T

=

(
m∑

i=1
α2
i

)(
m∑

i=1
AiA

T
i

)
−
(

m∑

i=1
αiAi

)(
m∑

i=1
αiAi

)T

We shall obtain an upper bound of 2
√
n on

‖∇ ln(
1

volDx
)‖
∣∣∣
x=o

= ‖∇ ln detH‖
∣∣∣
o
.

Lemma 9.3.12. ‖∇ ln detH|x‖x ≤ 2
√
n.

Proof. In our frame,

∑
aia

T
i = I, (9.52)

where I is the n× n identity matrix, and for any vector v,

‖v‖o = ‖v‖. (9.53)

If X is a matrix whose `2 → `2 norm is less than 1, log(I + X) can be assigned a unique
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value by equating it with the power series

∞∑

i=1
(−1)i−1X

i

i
.

Using this formalism when y is in a small neighborhood of the identity.

ln detH(y) = trace lnH(y). (9.54)

In order to obtain an upper bound on ‖∇ ln detH‖ at o, it suffices to uniformly bound
∣∣∂ ln detH

∂h

∣∣ along all unit vectors h, since

‖∇ ln detH‖ = sup
‖h‖=1

∣∣ ∂
∂h

trace lnH
∣∣. (9.55)

[
∂

∂h
trace lnH

] ∣∣∣∣∣
o

= lim
δ→0

(
trace ln

(∑ aia
T
i

(1−δaTi h)2

)
− ln I

)

δ
(9.56)

=
∑

i

2(aTi h)(trace aia
T
i ) (9.57)

= 2
∑

i

‖ai‖2aTi h. (9.58)

The Semidefinite Cauchy-Schwarz inequality from Lemma 9.3.11 gives us the following.

(
∑

i

‖ai‖2ai)(
∑

i

‖ai‖2aTi ) 4 (
∑

i

‖ai‖4)(
∑

i

aia
T
i ) (9.59)
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∑
i aia

T
i = I, so the magnitude of each vector ai must be less or equal to 1, and

∑
i ‖ai‖2

must equal n.

Therefore

(
∑

i

‖ai‖4)(
∑

i

aia
T
i ) = (

∑

i

‖ai‖4)I (9.60)

4 (
∑

i

‖ai‖2)I (9.61)

= nI (9.62)

(9.59) and (9.62) imply that

(
∑

i

‖ai‖2ai)(
∑

i

‖ai‖2aTi ) 4 nI. (9.63)

(9.55), (9.58) and (9.63) together imply that

‖∇ ln detH‖ ≤ 2
√
n. (9.64)

The following is due to P. Vaidya [97].

Lemma 9.3.13. ln detH is a convex function.

Proof. Let ∂
∂h denote partial differentiation along a unit vector h. Recall that

∑
i aia

T
i = I.

∂2 ln detH

(∂h)2

∣∣∣
o
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= lim
δ→0

1

δ2 trace ln

((∑ aia
T
i

(1− δaTi h)2

)(∑ aia
T
i

(1 + δaTi h)2

))

= lim
δ→0

trace
(

ln
(∑

i aia
T
i (
∑
j≥0(j + 1)(δaTi h)j)

))

δ2

+
trace

(
ln
(∑

i aia
T
i (
∑
j≥0(j + 1)(−δaTi h)j)

))

δ2

= lim
δ→0

trace
∑
k≥1

(−1)k−1

k

(∑
i aia

T
i (
∑
j≥1(j + 1)(δaTi h)j)

)k

δ2

+
trace

∑
k≥1

(−1)k−1

k

(∑
i aia

T
i (
∑
j≥1(j + 1)(−δaTi h)j)

)k

δ2 .

The only terms in the numerators of the above limit that matter are those involving δ2. So

this simplifies to

2
∑

i

trace aia
T
i (aTi h)2 = 2

∑

i

‖ai‖2(aTi h)2

≥ 2
∑

i

(aTi h)4

≥
2
(∑

i(a
T
i h)2

)2

m

=
2

m
.

This proves the lemma.

9.3.5 Conductance and mixing time

The proof of the following theorem is along the lines of Theorem 11 in [57].

Theorem 9.3.4. Let n be greater than some universal constant. Let S1 and S2 := K \ S1
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be measurable subsets of K. Then,

∫

S1

Px(S2)dλ(x) ≥ 6

105√mn min ( vol(S1), vol(S2)) .

Proof. Let ρ be the density of the uniform distribution on K. We shall use ρ in some places

where it is seemingly unnecessary because, then, most of this proof transfers verbatim to a

proof of Theorem 9.6.4 as well. For any x 6= y ∈ K,

ρ(y)
dPy
dλ

(x) = ρ(x)
dPx
dλ

(y),

therefore ρ is the stationary density of the Markov chain. Let δ = 3
400
√
mn

and ε = 13
200 .

Let S′1 = S1 ∩ {x
∣∣ρ(x)Px(S2) ≤ ε

2 vol(K)} and S′2 = S2 ∩ {y
∣∣ρ(y)Py(S1) ≤ ε

2 vol(K)}. By the

reversibility of the chain, which is easily checked,

∫

S1

ρ(x)Px(S2)dλ(x) =

∫

S2

ρ(y)Py(S1)dλ(y).

If x ∈ S′1 and y ∈ S′2 then

∫

K
min

(
ρ(x)

dPx
dλ

(w), ρ(y)
dPy
dλ

(w)

)
dλ(w) <

ε

vol(K)
.

For sufficiently large n, Lemma 9.3.1 implies that σ(S′1, S
′
2) ≥ δ. Therefore Theorem 9.3.1

implies that

π(K \ S′1 \ S′2) ≥ δπ(S′1)π(S′2).
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First suppose π(S′1) ≥ (1− δ)π(S1) and π(S′2) ≥ (1− δ)π(S2). Then,

∫

S1

Px(S2)dρ(x) ≥ επ(K \ S′1 \ S′2)

2

≥ εδπ(S′1)π(S′2)

2

≥
(

(1− δ)2εδ

8

)
min(π(S1), π(S2))

and we are done. Otherwise, without loss of generality, suppose π(S′1) ≤ (1− δ)π(S1). Then

∫

S1

Px(S2)dρ(x) ≥ εδ

2
π(S1)

and we are done.

The following theorem was proved in [58].

Theorem 9.3.5 (Lovász-Simonovits). Let µ0 be the initial distribution for a lazy reversible

ergodic Markov chain whose conductance is Φ and stationary measure is µ, and µk be the

distribution of the kth step. Let M := supS
µ0(S)
µ(S) where the supremum is over all measurable

subsets S of K. Then, for all such S,

|µk(S)− µ(S)| ≤
√
M

(
1− Φ2

2

)k
.

We now in a position to prove the main theorem regarding Dikin walk, Theorem 9.2.1.

Proof of Theorem 9.2.1. Let t be the time when the first proper move is made. P[t ≥ t′
∣∣t ≥

t′−1] ≤ 1− 13
200 +o(1) by Lemma 9.3.1 applied when x = x0 and y approaches x0. Therefore

when n is sufficiently large,

P

[
t <

ln( ε2)

ln(1− 6
100)

]
≥ 1− ε

2
.
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γ (Uε̂)

γ (Uε)
U

Uε

Uε̂

γ
Pε

P = Pε̂

o

o

Figure 9.2: The effect of the projective transformation γ.

Let µk be the distribution of xk and µ be the stationary distribution, which is uniform. Let

ρk and ρ likewise be the density of µk and ρ = 1
vol(K) the density of the uniform distribution.

We shall now find an upper bound for
ρk+t
ρ . For any x ∈ K, ρt(x) ≥ 100

6 vol(Dx) by Lemma 9.3.1,

applied when x = x0 and y approaches x0. By (2) in Fact 9.2.1
vol(Dx)
vol(K) ≥

(
r√

2ms

)n
, which

implies that

sup
S⊆K

µt(S)

µ(S)
= sup

x∈K
ρt(x)

ρ
(9.65)

≤
(√

2ms

r

)n(
100

6

)
. (9.66)

The theorem follows by plugging in Equation 9.66 and the lower bound on the conductance

of Dikin walk given by Theorem 9.3.4 into Theorem 9.3.5.
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9.4 Affine algorithm for linear programming

We shall consider problems of the following form. Given a system of inequalities By ≤ 1, a

linear objective c such that the polytope

Q := {y : By ≤ 1 and |cT y| ≤ 1}

is bounded, and ε, δ > 0 the algorithm is required to do the following.

• If ∃ y such that By ≤ 1 and cT y ≥ 1, output y such that By ≤ 1 and cT y ≥ 1− ε with

probability greater than 1− δ.

Any linear program can be converted to such a form, either by the sliding objective method

or by combining the primal and dual problems and using the duality gap added to an

appropriate slack variable as the new objective (see [47] and references therein). Before the

iterative stage of the algorithm which is purely affine, we need to transform the problem

using a projective transformation. Let s ≥ sup
y∈Q
‖By‖+ 1, and

τ :=
⌈
4× 108 ×mn

(
n ln

(
4ms2

ε2

)
+ 2 ln

(
2

δ

))⌉
. (9.67)

Let γ be the projective transformation γ : y 7→ y
1−cT y , and γ−1 the inverse map, γ−1 :

x 7→ x
1+cTx . For any ε′ > 0, let Qε′ := Q ∩ {y

∣∣cT y ≤ 1 − ε′} and Uε′ be the hyperplane

{y
∣∣cT y = 1 − ε′}. Let ε̂ = εδ

4n and Kε := γ(Qε). Let K := Kε̂ = γ (Qε̂). For x ∈ K, let Dx

denote the Dikin ellipsoid (with respect to K) of radius r := 3
40 , centered at x.
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9.5 Algorithm

1. Choose x0 uniformly at random from r−1Do, where o is the origin.

2. While i < τ and cT γ−1(xi) < 1− ε, choose xi+1 using the rule below.

(a) Flip an unbiased coin. If Heads, set xi+1 to xi.

(b) If Tails pick a random point y from Dxi .

(c) If xi 6∈ Dy, then reject y and set xi+1 to xi; if xi ∈ Dy, then set xi+1 to y.

3. If cT γ−1(xτ ) ≥ 1 − ε output γ−1(xτ ), otherwise declare that there is no y such that
By ≤ 1 and cT y ≥ 1.

9.6 Analysis

For any bounded f : K → R, we define

‖f‖2 :=

√∫

K
f(x)2ρ(x)dλ(x)

where ρ(x) =
vol(Dx)∫

K vol(Dx)dλ(x) . The following lemma shows that cross ratio is a projective

invariant.

Lemma 9.6.1. Let γ : Rn → Rn be a projective transformation. Then, for any 4 collinear

points a, b, c and d, (a : b : c : d) = (γ(a) : γ(b) : γ(c) : γ(d)).

Proof. Let {e1, . . . , en} be a basis for Rn. Without loss of generality, suppose that a, b, c, d ∈

Re1. γ can be factorized as γ = γ2 ◦ γ1 where γ1 : Rn → Rn is a projective transformation

and maps Re1 to Re1 and γ2 : Rn → Rn is an affine transformation. Affine transformations

clearly preserve the cross ratio, so the problem reduces to showing that (a : b : c : d) =

(γ1(a) : γ1(b) : γ1(c) : γ1(d)), which is a 1-dimensional question. In 1-dimension, the group

of projective transformations is generated by translations (x 7→ x+ β), scalar multiplication
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(x 7→ αx) and inversion (x 7→ x−1), where α, β ∈ R\{0}. In each of these cases the equality

is easily checked.

The following was proved in a more general context by Nesterov and Todd in Theorem

4.1, [75].

Theorem 9.6.1 (Nesterov-Todd). Let pq be a chord of K and x, y be interior points on it

so that p, x, y, q are in order. Then z ∈ Dy implies that p+
|p−x|
|p−y| (z − p) ∈ Dx.

The following theorem is from [58].

Theorem 9.6.2 (Lovász-Simonovits). Let M be a lazy reversible ergodic Markov chain on

K ⊆ Rn with conductance Φ, whose stationary distribution is µ. For every bounded f , let

‖f‖2,µ denote
√∫

K f(x)2dµ(x). For any fixed f , let Mf be the function that takes x to
∫
K f(y)dPx(y). Then if

∫
K f(x)dµ(x) = 0,

‖Mkf‖2,µ ≤
(

1− Φ2

2

)k
‖f‖2,µ.

We shall now prove the main theorem regarding Algorithm Dikin , Theorem 9.2.2.

Proof of Theorem 9.2.2. Let pq be a chord of the polytope Kε containing the origin o such

that

cT (γ−1(p)) ≥ cT (γ−1(q)). Let p′ = γ−1(p), q′ = γ−1(q) and r′ be the intersection of the

chord p′q′ with the hyperplane U := {y
∣∣cT y = 1}. Then,

|q−o|
|p−o| ≤

|q′−o|
|p′−o| ≤ s.

|p−o|
|q−o| is equal

to |(∞ : o : q : p)|. By Lemma 9.6.1, the cross ratio is a projective invariant. Therefore,

|p− o|
|q − o| =

( |p′ − o|
|p′ − r′|

)( |r′ − q′|
|q′ − o|

)
(9.68)

≤
(

1

ε

)
(s). (9.69)

Therefore, for any chord pq of Kε through o,
|p|
|q| ≤

s
ε .

147



Let D =
∫
K vol(Dy)dλ(y). Let

ρo(x) =





1
vol(Do)

, x ∈ Do;

0, otherwise,

be the density of xo and likewise ρτ be the density of the distribution of xτ . Let f0(x) =
ρ0(x)
ρ(x)

and fτ (x) =
ρτ (x)
ρ(x) .

‖f0‖22 =

∫

Do

(
ρ0(x)

ρ(x)

)2
ρ(x)dλ(x)

≤ D

vol(Do) inf
x∈Do

vol(Dx)

By Fact 9.2.1 and the fact that the Dikin ellipsoid of radius r with respect to Kε is

contained in the Dikin ellipsoid of the same radius with respect to K,
√

2mDo ⊇ Symo(Kε).

(9.69) implies that Symo(Kε) ⊇
( ε
s

)
Kε. We see from Theorem 9.6.1 that inf

x∈Do
vol(Dx) ≥

vol((1− r)Do). Therefore,

‖f0‖22 ≤
D

vol(Do) inf
x∈Do

vol(Dx)

≤
(

2m(sε )
2

1− r

)n(
D∫

Kε
vol(Dy)dλ(y)

)

=

(
2m(sε )

2

1− r

)n(
1

π(Kε)

)
, (9.70)

where π is the stationary distribution. For a line ` ⊥ U , let π` and ρ` be interpreted as the

induced measure and density respectively. Let ` intersect the facet of K that belongs to Uε̂ at

u. Then by Theorem 9.6.1, for any x, y ∈ `∩K such that |x−u| > |y−u|, ρ`(x)
|u−x|n ≤

ρ`(y)
|u−y|n .
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By integrating over such 1-dimensional fibres ` perpendicular to U , we see that

π(Kε) =

∫
`⊥U π`(` ∩Kε)du∫

`⊥U π`(`)du

≤ sup
`⊥U

π`(` ∩Kε)
π`(`)

≤
(

(1− 1/ε̂)n+1 − (1/ε− 1/ε̂)n+1

(1/ε− 1/ε̂)n+1

)

. exp(
δ

4
)− 1 as n→∞. (9.71)

The relationship between conductance Φ and decay of the L2 norm from Theorem 9.6.2 tells

us that

‖fτ − Eρfτ‖22 ≤ ‖f0 − Eρf0‖22 e−τΦ2

=
(
‖f0‖22 − ‖(Eρf0)1‖22

)
e−τΦ2

≤
(

2m(sε )
2

1− r

)n(
e−τΦ2

π(Kε)

)
(from (9.70))

which is less than δ2

4π(Kε)
, when we substitute Φ from Theorem 9.6.4 and the value of τ from

(9.67).

δ2

4π(Kε)
≥

∫

Kε
(fτ (x)− Eρfτ )2ρ(x)dλ(x)

≥

(∫
Kε

(fτ (x)− Eρfτ )ρ(x)dλ(x)
)2

∫
Kε
ρ(x)dλ(x)

=
(P[xτ ∈ Kε]− π(Kε))

2

π(Kε)
.

which together with (9.71) implies that P[xτ ∈ Kε] . δ and completes the proof.
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The following generalization of Theorem 9.3.1 was proved in [62].

Theorem 9.6.3 (Lovász-Vempala). Let S1 and S2 be measurable subsets of K and µ a

measure supported on K that possesses a density whose logarithm is concave. Then,

µ(K \ S1 \ S2)µ(K) ≥ σ(S1, S2)µ(S1)µ(S2).

The proof of the following lemma is along the lines of Lemma 9.3.1 and is provided below.

Lemma 9.6.2. Let x, y be points such that σ(x, y) ≤ 3
400
√
mn

. Then, the overlap

∫

Rn
min

(
vol(Dx)Px, vol(Dy)Py

)
dλ(x)

between vol(Dx)Px and vol(Dy)Py in algorithm Dikin is greater than ( 9
100 − o(1)) vol(Dx).

Proof. If x→ w is one step of Dikin ,

∫

Rn
min

(
vol(Dx)Px, vol(Dy)Py

)
dλ(x) =

Ew
[
min

(
vol(Dx), vol(Dy)

dPy
dPx

(w)

)]
.

Ew
[
min

(
vol(Dx), vol(Dy)

dPy
dPx

(w)

)]
=

vol(Dx)P
[
(y ∈ Dw) ∧ (w ∈ Dy \ {x})

]
.

Let Ex denote the event that

0 < max
(
‖x− w‖2w, ‖x− w‖2x

)
≤ r2

(
1− 1

n

)
and

Ey denote the event that max
(
‖y − w‖w, ‖y − w‖y

)
≤ r. The probability of Ey when x→ w

is a transition of Dikin is greater or equal to
P[Ey∧Ex]

2 when w is chosen uniformly at random
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from Dx. Thus, using Lemmas 9.3.5, 9.3.6 and 9.3.7,

∫

Rn
min

(
vol(Dx)Px, vol(Dy)Py

)
dλ(x) ≥

vol(Dx)
P
[
Ey

∣∣∣Ex
]

P [Ex]

2
≥

vol(Dx)(1− 3
√

2r − 8r2 − erfc(2)− erfc(3
2)− o(1))

4
√
e

.

When r = 3/40, this evaluates to more than

vol(Dx)( 9
100 − o(1)).

The proof of the following theorem closely follows that of Theorem 9.3.2.

Theorem 9.6.4. If K is a bounded polytope, the conductance of the Markov chain in Algo-

rithm Dikin is bounded below by 8
105
√
mn

.

Proof. For any x 6= y ∈ K, vol(Dy)
dPy
dλ (x) =

vol(Dx)dPxdλ (y), and therefore

ρ(x) :=
vol(Dx)∫

K vol(Dx)dλ(x)

is the stationary density. Let δ = 3
400
√
mn

and ε = 9
100 . Theorem 9.6.3 is applicable in our

situation because by Lemma 9.3.13, the stationary density ρ is log-concave. The proof of

Theorem 9.3.2 now applies verbatim apart from using Lemma 9.6.2 instead of Lemma 9.3.1,

and Theorem 9.6.3 instead of Theorem 9.3.1. This gives us

∫

S1

Px(S2)dρ(x) ≥
(

(1− δ)2εδ

8

)
min(π(S1), π(S2)).

Thus we are done.
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CHAPTER 10

LOW DENSITY SEPARATION, SPECTRAL CLUSTERING

AND GRAPH CUTS

10.1 Introduction

Figure 10.1: A likely cut and a less likely cut.

In this chapter we propose a formal measure on the complexity of the boundary, which

intuitively corresponds to the Low Density Separation assumption. We will show that given

a class boundary, this measure can be computed from a finite sample from the probability

distribution p. The number of samples used is exponential in the dimension. We do not
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provide theorems in this setting, but if the distribution has support on a low-dimensional

submanifold the number of samples would be exponential in the intrinsic dimension rather

than the ambient dimension. Moreover, we show that it is closely related to a cut of a certain

standard adjacency graph, defined on that sample. We will also point out some interesting

connections to spectral clustering. We propose the weighted area of the boundary, represented

by the contour integral along the boundary
∫

cut p(s)ds to measure the complexity of a cut.

It is clear that the boundary in the left panel has a considerably lower weighted length than

the boundary in the right panel of our Fig. 10.1.

To formalize this notion further consider a (marginal) probability distribution with den-

sity p(x) supported on some domain or manifold M . This domain is partitioned in two

disjoint clusters/parts. Assuming that the boundary S is a smooth hypersurface we define

the weighted volume of the cut to be

∫

S
p(s)ds, (10.1)

where ds ranges over all d − 1−dimensional infinitesimal volume elements tangent to the

hypersurface. Note that just as in the example above, the

We will show how this quantity can be approximated given empirical data and establish

connections with some popular graph-based methods.

10.2 Connections and related work

10.2.1 Spectral Clustering

Over the last two decades there has been considerable interest in various spectral clustering

techniques . The idea of spectral clustering can be expressed very simply. Given a graph we

would like to construct a balanced partitioning of the vertices, such that this partitioning

153



minimizes the number (or total weight) of edges across the cut. This is generally an NP-hard

optimization problem. However a simple real valued relaxation can be used to reduce it to

standard linear algebra, typically to finding eigenvectors of a certain graph Laplacian. We

note that the quality of partition is typically measured in terms of the corresponding cut

size.

10.2.2 Graph-based semi-supervised learning

Similarly to spectral clustering, graph-based semi-supervised learning constructs a graph

from the data. In contrast to clustering, however, some of the data is labeled. The problem

is typically to either label the unlabeled points (transduction) or, more generally, to build

a classifier defined on the whole space. This may be done trying to find the minimum cut,

which respects the labeled data, or, using graph Laplacian as a penalty functional.

One of the important intuitions of semi-supervised learning is the cluster assumption

or, more specifically, the low density separation assumption suggested in [15], which states

that the class boundary passes through a low density region. We will modify that intuition

slightly by suggesting that cutting through a high density region may be acceptable as long

as the length of the cut is very short. For example imagine two high-density round clusters

connected by a very thin high-density thread. Cutting the thread is appropriate as long as

the width of the thread is much smaller than the radius of the clusters.

The goal of this chapter is to take a step toward making a theoretical connection between

cuts of data adjacency graphs and the underlying probability distributions. We will show

that as more and more data is sampled from a probability distribution the (weighted) size of

a fixed cut for the data adjacency graph converges to the (weighted) volume of the boundary

for the partition of the underlying distribution.
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Figure 10.2: Curves of small and high condition number respectively

10.3 Summary of Main Results

Let ρ be a probability density function on a domain M ⊆ Rd.

Let S be a smooth hypersurface that separates M into two parts, S1 and S2. The

smoothness of S will be quantified by a condition number 1/τ . A formal definition of the

condition number appears in Definition 6.3.1.

Definition 10.3.1. Let Gt(x, y) be the heat kernel in Rd given by

Gt(x, y) :=
1

(4πt)d/2
e−‖x−y‖

2/4t.

Let Mt := Gt(x, x) = 1
(4πt)d/2

.

Let X := {x1, . . . , xN} be a set of N points chosen independently at random from ρ.

Consider the complete graph whose vertices are associated with the points in X, and where
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the weight of the edge between xi and xj is given by

Wij =





Gt(xi, xj) if i 6= j

0 otherwise

Let W be the matrix {Wij}i,j . Let X1 = X ∩ S1 and X2 = X ∩ S2. Let D be the

(diagonal) matrix whose entries are given by

Dij =





∑
k
wik if i = j

0 otherwise

Let di be the weighted degree of the vertex corresponding to xi. The normalized Laplacian

is the random matrix L̃(t,X) := I−D−1/2WD−1/2. Let f be the vector (f1, . . . , fN ) where

fi =





1 if xi ∈ X1

0 otherwise

10.3.1 Regularity conditions on ρ and S

We make the following assumptions about ρ:

1. ρ can be extended to a function ρ′ that is L−Lipshitz and which is bounded above by

ρmax.

2. For 0 < t < t0,

min

(
ρ(x),

∫
Gt(x, y)ρ(y)dy

)
≥ ρmin.

Note that this is a property of both of the boundary ∂M and ρ.

We note that since ρ′ is L−Lipshitz over Rd, so is
∫
M Gt(x, z)ρ′(z)dz.
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We assume that S has condition number 1/τ . We also make the following assumption

about S:-

The volume of the set of points whose distance to both S and ∂M is ≤ R, is O(R2) as

R→ 0. This is reasonable, and is true if S ∩ ∂M is a manifold of codimension 2.

Under these conditions, our main theorem is

Theorem 10.3.1. Let the number of points, |X| = N tend to infinity and {tN}∞0 , be a

sequence of values of t that tend to zero such that tN > 1

N
1

2d+2

. Then with probability 1,

√
π

N
√
t
fT L̃(tN , X)f →

∫

S
ρ(s)ds.

Further, for any δ ∈ (0, 1) and any ε ∈ (0, 1/2), there exists a positive constant C and an

integer N0(depending on ρ, ε, δ and S) such that with probability 1− δ,

(∀N > N0),

∣∣∣∣
√
π

N
√
t
fT L̃(tN , X)f −

∫

S
ρ(s)ds

∣∣∣∣ < CtεN .

This theorem is proved by first relating the empirical quantity
√
π

N
√
t
fT L̃(tN , X)f to a

heat flow across the relevant cut (on the continuous domain), and then relating the heat flow

to the measure of the cut. In order to state these results, we need the following notation.

Definition 10.3.2. Let

ψt(x) =
ρ(x)√∫

M Gt(x, z)ρ(z)dz
.

Let

β(t,X) :=

√
π

N
√
t
fT L̃(t,X)f

and

α(t) :=

√
π

t

∫

S1

∫

S2

Gt(x, y)ψt(x)ψt(y)dxdy.
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S

1/2t

S1 S2

Figure 10.3: Heat flow α tends to
∫
S ρ(s)ds

Where t and X are clear from context, we shall abbreviate β(t,X) to β and α(t) to α.

In theorem 10.3.2 we show that as the number of points |X| = N tends to infinity, with

probability 1, β tends to α.

In theorem 10.3.3 we show that α(t) can be made arbitrarily close to the weighted volume

of the boundary by making t tend to 0.

Theorem 10.3.2. Let 0 < µ < 1. Let u := 1/
√
t2d+1N1−µ. Then, there exist positive

constants C1, C2 depending only on ρ and S such that with probability greater than 1 −

exp (−C1N
µ)

|β(t,X)− α(t)| < C2

(
1 + t

d+1
2

)
uα(t). (10.2)

Theorem 10.3.3. For any ε ∈ (0, 1
2), there exists a constant C such that for all t such that
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0 < t < τ(2d)−
e

e−1 ,

∣∣∣∣
√
π

t

∫

S2

∫

S1

Gt(x, y)ψt(x)ψt(y)dxdy −
∫

S
ρ(s)ds

∣∣∣∣ < C tε. (10.3)

By letting N → ∞ and tN → 0 at suitable rates and putting together theorems 10.3.2

and 10.3.3, we obtain the following theorem:

Theorem 10.3.4. Let the number of random data points N → ∞, and tN → 0, at rates

so that u := 1/
√
t2d+1N1−µ → 0. Then, for any ε ∈ (0, 1/2), there exist positive constants

C1, C2, such that for any N > 1 with probability greater than 1− exp (−C1(Nµ)),

∣∣∣∣β (tN , X)−
∫

S
ρ(s)ds

∣∣∣∣ < C2 (tε + u) (10.4)

10.4 Outline of Proofs

Theorem 10.3.1 is a corollary of Theorem 10.3.4, obtained by setting u to be tε, and making

µ as close to 0 as necessary. Theorem 10.3.4 is a direct consequence of Theorem 10.3.2 and

Theorem 10.3.3.

Proof of Theorem 10.3.2:

We prove theorem 10.3.2 using a generalization of McDiarmid’s inequality from [49, 50].

McDiarmid’s inequality asserts that a function of a large number of independent random

variables, that is not very influenced by the value of any one of these, takes a value close to

its mean. In the generalization that we use, it is permitted that over a bad set that has a

small probability mass, the function is highly influenced by some of the random variables.

In our setting, it can be shown that our measure of a cut, fT L̃f is such a function of

the independent random points in X, and so the result is applicable. There is another

step involved, since the mean of fT L̃f is not α, the quantity to which we wish to prove

convergence. Therefore we need to prove that the mean E[
√
π

N
√
t
fT L̃(t,X)f ] tends to α(t) as
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N tends to infinity. Now,

√
π

N
√
t
fT L̃(t,X)f = 1/N

√
π/t

∑

x∈X1

∑

y∈X2

Gt(x, y)

{(∑z 6=xGt(x, z))(
∑
z 6=y Gt(y, z))}1/2

.

If, instead, we had in the denominator of the right side

√√√√
∫

M

ρ(z)Gt(x, z)dz

∫

M

ρ(z)Gt(y, z)dz,

using the linearity of Expectation,

E




1/N
√
π/t

∑

x∈X1

∑

y∈X2

Gt(x, y)√√√√
(
∫
M

ρ(z)Gt(x, z)dz

)(
∫
M

ρ(z)Gt(y, z)dz

)




= α.

Using Chernoff bounds, we can show that with high probability, for all x ∈ X,

∑
z 6=xG

t(x, z)

N − 1
≈
∫

M

ρ(z)Gt(x, z)dz.

Putting the last two facts together and using the Generalization of McDiarmid’s inequality

from [49, 50], the result follows. Since the exact details require fairly technical calculations,

we present them later.

Theorem 10.3.3:

The quantity

α :=

√
π

t

∫

S1

∫

S2

Gt(x, y)ψt(x)ψt(y)dxdy

is similar to the heat that would flow from one part to another if the first were heated

proportional to ρ in time t. Intuitively, the heat that would flow from one part to the other
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Figure 10.4: Comparing the total heat density at P with the portion due to diffusion from
B2 alone.

in a small interval ought to be related to the volume of the boundary between these two

parts, which in our setting is
∫
S ρ(s)ds. To prove this relationship, we bound α both above

and below in terms of the weighted volume and condition number of the boundary. These

bounds are obtained by making comparisons with the “worst case”, given condition number

1
τ , which is when S is a sphere of radius τ . In order to obtain a lower bound on α, we observe

that if B2 is the nearest ball of radius τ contained in S1 to a point P in S2 that is within τ

of S1, ∫

S1

Gt(x, P )ψt(x)ψt(P )dx ≥
∫

B2

Gt(x, P )ψt(x)ψt(P )dx,

as in Figure 4. Similarly, to obtain an upper bound on α, we observe that if B1 is a ball or

radius τ in S2, tangent to B2 at the point of S nearest to P ,

∫

S1

Gt(x, P )ψt(x)ψt(P )dx ≤
∫

Bc1

Gt(x, P )ψt(x)ψt(P )dx.

161



2B

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

P

H2

P

d

Figure 10.5: The integral over B2 ≈ that over H2

We now indicate how a lower bound is obtained for

∫

B2

Gt(x, P )ψt(x)ψt(P )dx.

A key observation is that for R =
√

2dt ln(1/t),
∫

‖x−P‖>R
Gt(x, P )dx << 1. For this reason,

only the portions of B2 near P contribute to the the integral

∫

B2

Gt(x, P )ψt(x)ψt(P )dx.

It turns out that a good lower bound can be obtained by considering the integral over H2

instead, where H2 is as in figure 10.4.

An upper bound for ∫

Bc1

Gt(x, P )ψt(x)ψt(P )dx

is obtained along similar lines.
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10.5 Proof of Theorem 10.3.1

This follows from Theorem 10.3.4 (which is proved in a later section), by setting µ to be

equal to 1−2ε
2d+2 .

10.6 Proof of Theorem 10.3.2

In the proof we will use a generalization of McDiarmid’s inequality from [49, 50]. We start

with the with the following

Definition 10.6.1. Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

1 Ωk and let Y be

a random variable on Ω. We say that Y is strongly difference-bounded by (b, c, δ) if the

following holds: there is a “bad” subset B ⊂ Ω, where δ = Pr(ω ∈ B). If ω, ω′ ∈ Ω differ

only in the kth coordinate, and ω 6∈ B, then

|Y (ω)− Y (ω′)| ≤ c.

Furthermore, for any ω and ω′ differing only in the kth coordinate,

|Y (ω)− Y (ω′)| ≤ b.

Theorem 10.6.1. ([49, 50]) Let Ω1, . . . ,Ωm be probability spaces. Let Ω =
∏m

1 Ωk and

let Y be a random variable on Ω which is strongly difference-bounded by (b, c, δ). Assume

b ≥ c > 0. Let µ = E(Y ). Then for any r > 0,

Pr(|Y − µ| ≥ r) ≤ 2

(
exp

( −r2

8mc2

)
+
mbδ

c

)
.
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By Hoeffding’s inequality

P [|
∑
z 6=xG

t(x, z)

N − 1
− E(Gt(x, z))| > ε1E(Gt(x, z))] < e

−2(N−1)E(Gt(x,z))2ε21
M2
t

≤ e
−2(N−1)ρ2

minε
2
1

M2
t .

We set ε1 to be Mt/N
1−δ

2 . Let e
−2(N−1)ρ2

minε
2
1

M2
t be δ/N . By the union bound, the probability

that the above event happens for some x ∈ X is ≤ δ. The set of all ω ∈ Ω for which this

occurs shall be denoted by B. Also, for any X, the largest possible value that

1/N
√
π/t

∑

x∈X1

∑

y∈X2

Gt(x, y)

{(∑z 6=xGt(x, z))(
∑
z 6=y Gt(y, z))}1/2

could take is
√
π/t(N − 1). Then,

|E[β]− α| < |1− (1− ε1)−1|α + δ
√
π/t(N − 1). (10.5)

Let q = (ρmin/Mt)
2. β is strongly difference-bounded by (b, c, δ) where c = O((qN

√
t)−1),

b = O(N/
√
t). We now apply the generalization of McDiarmid’s inequality in Theorem 10.6.1.

Using the notation of Theorem 10.6.1,

Pr[|β − E[β]| > r] ≤ 2

(
exp

( −r2

8mc2

)
+
Nbδ

c

)
(10.6)

≤ 2
(

exp
(
−O(Nr2q2t)

)
+O

(
N3q exp

(
−O(Nqε21)

)))
. (10.7)

Putting this together with the relation between E[β] and α in (10.5), the theorem is

proved. We note that in (10.5), the rate of convergence of E[β] to α is controlled by ε1,
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which is Mt/N
1−µ

2 , and in (10.6), the rate of convergence of β to E[β] depends on r, which

we set to be

M2
t /
√
tN1−µ.

We note that in (10.6), the dependence on r of the probability is exponential. Since we have

assumed that u = M2
t /
√

(tN1−µ) = o(1), Mt/N
1−µ

2 = O(t
d+1

2 u). Thus the result follows.

�

10.7 Proof of Theorem 10.3.3

We shall prove theorem 10.3.3 through a sequence of lemmas.

Without a loss of generality we can assume that τ = 1 by rescaling, if necessary.

Let R =
√

2dt ln(1/t) and ε =
∫
‖z‖>RG

t(0, z)dx. Using the inequality

∫

‖z‖>R
Gt(0, z)dx ≤

(
2td

R

)−d/2
e−

R2

4t +d
2 = (et ln(1/t))d/2 (10.8)

we know that ε ≤ (et ln(1/t))d/2. For any positive real t,

ln(1/t) ≤ t
−1
e .

Therefore the assumption that

t

τ
∈
(

0,
1

(2d)
e

e−1

)

implies that R ≤
√

2dt1−1/e < 1.

Let the point y (represented as A in figures 10.7 and 10.7) be at a distance r < R from

M . Let us choose a coordinate system where y = (r, 0, . . . , 0) and the point nearest to it on

M is the origin. There is a unique such point since r < R < 1. Let this point be C. Let
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Figure 10.6: A sphere of radius 1 outside S1 that is tangent to S
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Figure 10.7: A sphere of radius 1 inside S1 that is tangent to S
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D1 lie on the segment AC, at a distance R2/2 from C. Let D2 lie on the extended segment

AC, at a distance R2/2 from C. Thus C is the midpoint of D1D2.

Definition 10.7.1. 1. Denote the ball of radius 1 tangent to ∂M at C that is outside M

by B1.

2. Denote the ball of radius 1 tangent to ∂M at C which is inside M by B2.

3. Let H1 be the halfspace containing C bounded by the hyperplane perpendicular to AC

and passing through

D1.

4. Let H2 be the halfspace not containing C bounded by the hyperplane perpendicular to

AC and passing through D2.

5. Let H3 be the halfspace not containing A, bounded by the hyperplane tangent to ∂M at

C.

6. Let B′1 be the ball with center y = A, whose boundary contains the intersection of H1

and B1.

7. Let B′2 be the ball with center y = A, whose boundary contains the intersection of H2

and B2.

Definition 10.7.2. 1. h(r) :=
∫
H3

Gt(x, y)dx.

2. f(r) :=
∫
H2∩B′2 G

t(x, y)dx.

3. g(r) :=
∫
H1∩B′1 G

t(x, y)dx.

It follows that ∫

H1

Gt(x, y)dx = h(r −R2/2)
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and ∫

H2

Gt(x, y)dx = h(r +R2/2).

Observation 10.7.1. Although h(r) is defined by an d-dimensional integral, this can be

simplified to

h(r) =

∫

x1<0

e−(r−x1)2/4t
√

4πt
dx1,

by integrating out the coordinates x2, . . . , xd.

Lemma 10.7.1. If r > R2, the radius of B′1 is ≥ R.

Proof: By the similarity of triangles CF1D1 and CE1F1 in figure 10.7, it follows that

CF1
CE1

= CD1
CF1

. |CE1| = 2 and |CD1| = R2/2. Therefore CF1 = R. Since CD1F1 is right

angled at D1, and |CD1| = R2/2, this proves the claim. �

Lemma 10.7.2. The radius of B′2 is ≥ R.

Proof: By the similarity of triangles CF2E2 and CD2F2 in figure 10.7 |CF2| = R. However,

the distance of point y := A from F2 is ≥ |CF2|. Therefore, the radius of B′2 is ≥ R. �

Definition 10.7.3. Let the set of points x such that B(x, 10R) ⊆M be denoted by M0. Let

S1 ∩M0 be S0
1 and S2 ∩M0 be S0

2 . Let M −M0 = M1, S1 ∩M1 be S1
1 and S2 ∩M1 be S1

2 .

We shall denote (1 + L/ρmin)R) by `.
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Consider a point x ∈M0, Then,

∫

M
Gt(x, y)ρ(y)dy ≥

∫

‖y−x‖<R
Gt(x, y)ρ(y)dy

≥ (1− ε)(ρ(x)− LR)

≥ (1− ε)ρ(x)(1− LR/ρmin)

= ρ(x)(1−O(`))

On the other hand,

∫

M
Gt(x, y)ρ(y)dy ≤

∫

‖y−x‖≤2R
Gt(x, y)ρ(y)dy +

∫

‖y−x‖>2R
Gt(x, y)ρ(y)dy

≤ ρ(x)(1 + 2`) +Gt(0, 2R)

= ρ(x)(1 +O((1 + L/ρmin)R))

Therefore, ψt(x) =
√
ρ(x)(1±O((1 + L

ρmin
)R)).

Lemma 10.7.3. B(x, 5R) ⊆M implies that d
dx

∫
Gt(x, z)ρ(z)dy = O(L).

Proof: Consider the function ρ′, which is equal to ρ on M , but which has a larger sup-

port and is L−Lipshitz as a function on Rd.
∫
Gt(x, z)ρ′(z)dy is L−Lipshitz and on

points x where B(x, 5R) ⊆ M , the contribution of points z outside M , is o(1). There-

fore d
dx

∫
Gt(x, z)ρ(z)dy = O(L). �

This implies that on the set of points x such that B(x, 5R) ⊆M , ψt(X) is O(L)−Lipshitz.

We now estimate
∫
S1
Gt(y, z)ρ(z)dz for y ∈ S0

2 .
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Definition 10.7.4. For a point y ∈ S0
2 , such that d(y, S1) < R < τ = 1 let π(y) be the

nearest point to y in S.

Note that by the assumption that the condition number of S is 1, since R is smaller than

1, there is a unique candidate for π(y). Let y be as in Definition 10.7.4.

Lemma 10.7.4.

h(r +R2/2)− ε < f(r) ≤
∫

S1

Gt(y, z)dz.

Proof:

∫

S1

Gt(x, y)dx ≥
∫

H2∩B′2
Gt(x, y)dx(since H2 ∩B′2 ⊆ S1)

>

∫

H2

Gt(x, y)dx−
∫

B′c2

Gt(x, y)dx

> h(r +R2/2)− ε

The last inequality follows from Lemma 10.7.2. �

Lemma 10.7.5.
∫
S1
Gt(x, y)ψt(x)ψt(y)dx > ρ(π(y))(1−O(`))(h(r +R2/2)− ε).

Proof:

∫

S1

Gt(x, y)ψt(x)ψt(y)dx ≥
∫

H2∩B′2
Gt(x, y)ψt(x)ψt(y)dx(since H2 ∩B′2 ⊆ S1)

> ρ(π(y))(1−O(`))(h(r +R2/2)− ε).

�
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Lemma 10.7.6. Let r > R2. Then,

∫

S1

Gt(x, y)ψt(x)ψt(y)dx < (1 +O(`))(h(r −R2/2)ρ(π(y)) + ερmax).

Proof:

∫

S1

Gt(x, y)ψt(x)ψt(y)dx ≤
∫

Rd−B1

Gt(x, y)ψt(x)ψt(y)dx

≤
∫

H1∪Rd−B′1
Gt(x, y)ψt(x)ψt(y)dx

<

∫

H1∩B′1
Gt(x, y)ψt(x)ψt(y)dx+

∫

B′c1

Gt(x, y)ψt(x)ψt(y)dx

< h(r −R2/2)ρ(π(y))(1 +O(`)) + ερmax(1 +O(`))

< (1 +O(`))(h(r −R2/2)ρ(π(y)) + ερmax)

The last inequality follows from Lemma 10.7.1. �

Definition 10.7.5. Let [S1]r denote the set of points at a distance of ≤ r to [S1]. Let πr

be map from ∂[S1]r to ∂[S1] that takes a point P on ∂[S1]r to the foot of the perpendicular

from P to ∂S1. (This map is well-defined since r < τ = 1.)

Lemma 10.7.7. Let y ∈ ∂[S1]r. Let the Jacobian of a map f be denoted by Df .

(1− r)d−1 ≤ |Dπr(y)| ≤ (1 + r)d−1.

Proof: Let P̂Q be a geodesic arc of infinitesimal length ds on ∂S1 joining P and Q. Let

π−1
r (P ) = P ′ and π−1

r (Q) = Q′ (see Figure 10.7.) The radius of curvature of P̂Q is ≥ 1.

Therefore the distance between P ′ and Q′ is in the interval [ds(1 − r), ds(1 + r)]. This
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P

Q

P’

Q’

Figure 10.8: The correspondence between points on ∂S1 and ∂[S1]r

implies that the Jacobian of the map πr has a magnitude that is always in the interval

[(1 + r)1−d, (1− r)1−d]. �

Lemma 10.7.8.

∫

Rd\[S1]R

∫

S1

Gt(x, y)ψt(x)ψt(y)dxdy ≤ εvol S1ρmax(1 +O(`)).

Proof:

∫

Rd\[S1]R

∫

S1

Gt(x, y)ψt(x)ψt(y)dxdy =

∫

S1

∫

Rd\[S1]R
Gt(x, y)ψt(x)ψt(y)dydx

≤
∫

S1

∫

‖z‖>R
Gt(0, z)ρmax(1 +O(`))dzdx

< vol S1ρmax(1 +O(`)).
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≤ in line 2 holds because the distance between x and y in the double integral is always≥ R. �

Lemma 10.7.9.

(1− e−α
2/4t)

√
π/t ≤

∫ α

0
h(r)dr ≤

√
π/t.

Proof: Using observation 10.7.1,

∫ ∞

α
h(r)dr =

∫ ∞

α

∫ 0

−∞
e−(x1−y1)2/4t
√

4πt
dx1dy1.

Setting y1 − x1 := r, this becomes

∫ ∞

α

∫ r

α

e−r
2/4t

√
4πt

dy1dr =

∫ ∞

α

e−r
2/4t

√
4πt

(r − α)dr.

Making the substitution r − α := z, we have

∫ ∞

0

e−(z+α)2/4t
√

4πt
zdz ≤

∫ ∞

0

e−α
2/4te−z

2/4tzdz√
4πt

=

√
t

π
e−α

2/4t

Equality holds in the above calculation if and only if α = 0. Hence the proof is complete. �

Definition 10.7.6. Let [S2]0 ∩ ∂[S1]r be ∂Mr. Let [S2]1 ∩ ∂[S1]r be ∂M1
r and [S2]1 ∩ [S1]r

be M1
r .

We assume that vol(M1
R−S1) < C ′R2 for some absolute constant C ′. Since the thickness

of (M1
R − S1) is O(R) in two dimensions, this is a reasonable assumption to make. The

assumption that ∂M has a d− 1−dimensional volume implies that volS1
2 = O(R).

Proof of theorem 10.3.3:

173



∫

S1
2

∫

S1

Gt(x, y)ψt(x)ψt(y)dxdy =

∫ ∞

0

∫

∂M1
r

∫

S1

Gt(x, y)ψt(x)ψt(y)dxdydr

≤ O(ρ2
max/ρmin)

∫ ∞

0

∫

∂M1
r

∫

S1

Gt(x, y)dxdydr

≤ O(ρ2
max/ρmin)

(∫ R

0

∫

∂M1
r

∫

S1

Gt(x, y)dxdydr + volS1
2ε

)

≤ O(ρ2
max/ρmin)

(
vol (M1

R − S1) + εvolS1
2

)
.

≤ O(ρ2
max/ρmin)

(
C ′t1−µ +O(t1−µvol ∂M)

)

∫

S0
2

∫

S1

Gt(x, y)ψt(x)ψt(y)dxdy =

∫ ∞

0

∫

∂Mr

∫

S1

Gt(x, y)ψt(x)ψt(y)dxdydr

= (

∫ R

0

∫

∂Mr

∫

S1

Gt(x, y)ψt(x)ψt(y)dxdydr)

+ (

∫ ∞

R

∫

∂Mr

∫

S1

Gt(x, y)ψt(x)ψt(y)dxdydr)

≤ (

∫ R

0

∫

∂Mr

∫

S1

Gt(x, y)ψt(x)ψt(y)dxdydr)

+ εvol S1ρmax(1 +O(`))︸ ︷︷ ︸
E

.

(from lemma 10.7.8)

≤
∫ R2

0

∫

∂Mr

ρmax(1 +O(`))dydr

+

∫ R

R2

∫

∂Mr

(1 +O(`))(h(r −R2/2)ρ(π(y) + ερmax) + E
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The last line follows from Lemma 10.7.6.

≤ E +R2(1 +R2)d−1ρmax(1 +O(`))vol (∂M0)dr(from lemma 10.7.7)

+ (1 +R)d−1(1 +O(`))(

∫ R

0
h(r)dr

∫

∂M0

ρ(y)dy + ερmaxR).

≤ (1 +O(`))(
√
t/π

∫

∂M0

ρ(y)dy + ρmax((R2 + εR)vol (∂M0) + εvol S1)).

≤ (1 +O(`))(

∫

∂M0

ρ(y)dy(
√
t/π +

ρmax
ρmin

o(t1−µ)) + ρmaxεvol S1)

Similarly, we see that ∫

S0
2

∫

S1

Gt(x, y)ψt(x)ψt(y)dxdy

=

∫ ∞

0

∫

∂Mr

∫

S1

Gt(x, y)ψt(x)ψt(y)dxdydr

> (

∫ R

0

∫

∂Mr

∫

S1

Gt(x, y)ψt(x)ψt(y)dxdydr)

>

∫ R

0

∫

∂Mr

ρ(π(y))(1 +O(`))f(r)dxdr

>

∫ R

0
(1−R)d−1(1−O(`))(

∫

∂M0

ρ(y)dy)(h(r +R2/2)− ε)dr

> (1−R)d−1(1−O((1− L/ρmin)R))(

∫

∂M0

ρ(y)dy)((

∫ R

0
(h(r)dr)− εR−R2/2)

≥ (1−O(`))(

∫

∂M0

ρ(y)dy)((1− e−R
2/4t)

√
t/π − εR−R2/2)

≥ (1−O(`))(

∫

∂M0

ρ(y)dy)(
√
t/π − o(t1−µ)).

Noting only the dependence of the rate on t, and introducing the condition number τ ,

√
π

t

∫

S2

∫

S1

Gt(x, y)ψt(x)ψt(y)dxdy =
(

1 + o((t/τ2))
1−µ

2

)∫

S
ρ(s)ds.
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�

Proof of Theorem 10.3.4: This follows directly from Theorem 10.3.2 and Theo-

rem 10.3.3. The only change made was that the t
d+1

2 term was eliminated since it is domi-

nated by tε when t is small.
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CHAPTER 11

SAMPLE COMPLEXITY OF LEARNING SMOOTH CUTS ON

A MANIFOLD

11.1 Introduction

Over the last several years, manifold based methods have been developed and applied to a

variety of problems. Much of this work is empirically and algorithmically oriented and there

is a need to better understand the learning-theoretic foundations of this class of machine

learning problems. This chapter is a contribution in this direction with the hope that it will

better delineate the possibilities and limitations.

In the manifold setting, one is canonically interested in learning a function f :M→ R

(regression) or f : M → {0, 1} (classification/clustering). For regression therefore, the

natural objects of study are classes of real valued functions on the manifold leading one to

eventually consider functional analysis on the manifold. Thus, for example, the Laplace-

Beltrami operator and its eigenfunctions have been studied with a view to function learning

[6, 16].

Our interest in this chapter is the setting for classification or clustering where the function

is 0/1 valued and therefore divides the manifold into two disjoint pieces M1 and M2. A

natural class of such functions may be associated with smooth cuts on the manifold. We

will consider smooth cuts where each cut corresponds to a submanifold (say P ⊂ M) that

dividesM into two pieces. Since P is a submanifold ofM and hence Rm, one can associate

to it a measure of complexity given by its condition number 1/τ . The condition number is

defined as follows.

Definition 11.1.1 (Condition Number). Let M be a smooth

d−dimensional submanifold of Rm. We define the condition number c(M) to be 1
τ , where τ
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is the largest number to have the property that for any r < τ no two normals of length r that

are incident on M at different points intersect.

Given two linear subspaces V,W , let ^(V,W ) be the angle between V and W , defined as

^(V,W ) = arccos

(
sup
v∈V

inf
w∈W

v · w
‖v‖‖w‖

)
. (11.1)

For any manifold M,

c(M) = inf
x,y∈L

2 sin(
^(Tx,Ty)

2 )

‖x− y‖ , (11.2)

where the infimum is taken over distinct points x, y ∈ M and Tx and Ty are the tangent

spaces at x and y.

We can define the following function class (concept class in PAC terminology.)

Definition 11.1.2. Let

Sτ :=

{
S
∣∣S = S ⊆M and c(S ∩M \ S) ≤ 1

τ

}
,

where S is the closure of S. Let

Cτ :=
{
f
∣∣f :M→ {0, 1} and f−1(1) ∈ Sτ

}
.

Thus, the concept class Cτ is the collection of indicators of all closed sets in M whose

boundaries are 1/τ -conditioned d− 1 dimensional submanifolds of Rm.

Note that when τ = ∞, Cτ contains the indicators of all affine half-subspaces of dimen-

sion d that are contained in M. By letting τ vary, we obtain a structured family of cuts.

We now consider the following basic question.
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[Question:] Let M be a d-dimensional submanifold of Rm and let Cτ be a concept class

of 0/1 valued functions corresponding to a family of smooth cuts with condition number 1
τ .

Then what is the sample complexity of learning the elements of Cτ?

Our contributions in this chapter are as follows.

1. We show that distribution-free learning of Cτ is impossible in general since for some

M, it is a space of infinite VC dimension. We prove that this is the case for a natural

embedding in Rm of the d−dimensional sphere of radius κ > τ .

2. On the the other hand, it is possible to provide distribution-specific sample complexity

bounds that hold uniformly for a large class of probability measures on M. These

are the measures for which there exists a Radon Nikodym derivative with respect to

the uniform measure onM such that there is an upper bound ρmax on the associated

density function. The sample complexity is seen to depend on the intrinsic dimension

d, curvature bounds τ and κ, density bound ρmax, but is independent of the ambient

dimension m.

3. The proof technique used for obtaining these distribution specific bounds (Poissoniza-

tion etc.) may be useful to prove distribution specific learning in other settings.

Our sample complexity bounds depend on an upper bound ρmax ≥ 1 on the maximum

density of P with respect to the volume measure, (normalized to be a probability measure),

the curvatures and the intrinsic dimension of M and the class boundary P , but are inde-

pendent of the ambient dimension m. We also show that the dependence on the maximum

density ρmax of P is unavoidable by proving that for any fixed τ the VC-dimension of the

function class associated with cuts that are submanifolds with a condition number 1
τ is

infinite (Lemma 11.3.2) for certain compact submanifolds.
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11.2 Preliminaries

Suppose that P is a probability measure supported on a d-dimensional Riemannian sub-

manifold M of Rm having condition number ≤ 1
κ . Suppose that data samples {xi}i≥1 are

randomly drawn from P in an i.i.d fashion. Let each data point x be associated with a label

f(x) ∈ {0, 1}.

Definition 11.2.1 (Annealed Entropy). Let P be a probability measure supported on a

manifold M. Given a class of indicator functions Λ and a set of points Z = {z1, . . . , z`} ⊂

M, let N(Λ, Z) be the the number of ways of partitioning z1, . . . , z` into two sets using

indicators belonging to Λ . We define G(Λ,P , `) to be the expected value of N(Λ, Z). Thus

G(Λ,P , `) := EZ`P×`N(Λ, Z),

where expectation is with respect to Z and ` signifies that Z is drawn from the Cartesian

product of ` copies of P. The annealed entropy of Λ with respect to ` samples from P is

defined to be

Hann(Λ,P , `) := lnG(Λ,P , `).

Definition 11.2.2. The risk R(α) of a classifier α is defined as the probability that α mis-

classifies a random data point x drawn from P. Formally, R(α) := EP [α(x) 6= f(x)]. Given

a set of ` labeled data points (x1, f(x1)), . . . , (x`, f(x`)), the empirical risk is defined to be

Remp(α, `) :=
∑`
i=1 I[α(xi)6=f(xi)]

` , where I[·] denotes the indicator of the respective event and

f(x) is the label of point x.

Theorem 11.2.1 (Vapnik [100], Thm 4.2). For any ` the inequality

P

[
sup
α∈Λ

R(α)−Remp(α, `)√
R(α)

> ε

]
< 4e

(
Hann(Λ,P,2`)

` − ε24
)
`
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holds true, where random samples are drawn from the distribution P.

11.2.1 Remarks

Our setting is the natural generalization of halfspace learning applied to data on a d−dimensional

sphere. In fact, when the sphere has radius τ , Cτ corresponds to halfspaces, and the VC

dimension is d+ 2. However, when τ < κ, as we show in Lemma 11.3.2, on a d−dimensional

sphere of radius κ, the VC dimension of Cτ is infinite. Interestingly, for these spheres, if

τ > κ, Cτ contains only the function that always takes value 1 and the function that always

takes value 0, since there are normals of length κ from center of the sphere to any point of

a submanifold embedded in the sphere. In this case, the VC dimension is 1.

If the decision surface is not thin, but there is a margin within which misclassification is

not penalized, our results can be adapted to show that the VC dimension is finite.

Our results pertain to the sample complexity of classification of smooth cuts, and does not

address algorithmic issues. We are not aware of a way to generate arbitrary 1
τ−conditioned

cuts. One direction towards addressing algorithmic issues would be to prove bounds on

the annealed entropy of the family of linear classifiers in Gaussian Hilbert space. Since

the Hilbert space of Gaussians with a fixed width has infinite VC dimension, distribution

independent bounds cannot be found and annealed entropy could be a useful tool. Since

SVMs based on Gaussian kernels are frequently used for classification, such a result would

have algorithmic implications as well.

11.3 Learning Smooth Class Boundaries

Following Definition 11.1.2, let Cτ be the collection of indicators of all open sets inM whose

boundaries are 1/τ -conditioned submanifolds of Rm of dimension d− 1.

Our main theorem is the following.
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Definition 11.3.1 (Packing number). Let Np(εr) be the largest number N such that M

contains N disjoint balls BM(xi, εr), where BM(x, εr) is a geodesic ball in M around x of

radius εr.

Notation 11.3.1. Without loss of generality, let ρmax be greater or equal to 1. Let εr =

min(τ4 ,
κ
4 , 1)ε/(2ρmax). For some sufficiently large universal constant C, let

` := C

(
ln 1

δ +Np(εr/2)d ln(dρmax/ε)

ε2

)
.

Theorem 11.3.1. LetM be a d−dimensional submanifold of Rm whose condition number is

≤ 1
κ . Let P be a probability measure on M, whose density relative to the uniform probability

measure on M is bounded above by ρmax. Then the number of random samples needed

before the empirical risk and the true risk are close uniformly over Cτ can be bounded above

as follows. Let ` be defined as in Notation 11.3.1. then

P

[
sup
α∈Cτ

R(α)−Remp(α, `)√
R(α)

>
√
ε

]
< δ

Proof. The proof follows from Theorem 11.3.2 and Theorem 11.2.1. The former provides a

bound on the annealed entropy of Cτ with respect to samples from P . The latter relates the

sample complexity of learning an element of a class of indicators such as Cτ using random

samples drawn from a distribution P , to the annealed entropy of that class.

Lemma 11.3.1 provides a lower bound on the sample complexity that shows that some de-

pendence on the packing number cannot be avoided in Theorem 11.3.1. Further, Lemma 11.3.2

shows that it is impossible to learn an element of Cτ in a distribution-free setting in general.

Lemma 11.3.1. LetM be a d−dimensional sphere in Rm. Let the P have a uniform density
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Figure 11.1: This illustrates the distribution from Lemma 11.3.1. The intersections of
f−1(1) and f−1(0) with the support of P are respectively green and red.

over the disjoint union of Np(2τ) identical spherical caps

S = {BM(xi, τ)}1≤i≤Np(2τ)

of radius τ , whose mutual distances are all ≥ 2τ . Then, if s < (1− ε)Np(2τ),

P

[
sup
α∈Cτ

R(α)−Remp(α, s)√
R(α)

>
√
ε

]
= 1.

Proof. Suppose that the labels are given by f :M→ {0, 1}, such that f−1(1) is the union

of some of the caps in S as depicted in Figure 1. Suppose s random samples z1, . . . , zs are

chosen from P . Then at least εNp(2τ) of the caps in S do not contain any of the zi. Let

X be the union of these caps. Let α : M → {0, 1} satisfy α(x) = 1 − f(x) if x ∈ X and

α(x) = f(x) if x ∈ M \ X. Note that α ∈ Cτ . However, Remp(α, s) = 0 and R(α) ≥ ε.

Therefore
R(α)−Remp(α,s)√

R(α)
>
√
ε, which completes the proof.

Lemma 11.3.2. For any m > d ≥ 2, and τ > 0, there exist compact d−dimensional
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Figure 11.2: The 1−dimensional submanifold P of R2 traced out by all points (x, fS(x)).

manifolds on which the VC dimension of Cτ is infinite. In particular, this is true for the

standard d−dimensional Euclidean sphere of radius κ embedded in Rm, where m > d ≥ 2

and κ > τ .

Proof. First consider the two dimensional plane R2. Suppose that for i = 0 to n − 1,

xi = (iτ/n, 0). If there is no bound on the condition number, we make the following claim.

Claim 11.3.1. For every subset S ⊆ [n] there exists a boundary given by a graph (x, fS(x)),

fS : R→ R such that the following hold.

1. fS(xi) > 0 if i ∈ S (see Figure 2) and fS(xi) < 0 if i ∈ [n] \ S.

2. f is thrice continuously differentiable.

3. For all x ∈ R, |f ′′S(x)| < 1
γ := 1

2Mτ for some large constant M >> 1 and for all x such

that |x| ≥ τ , fS(x) = 0.

It is clear that for any S a function gS exists that satisfy the first two conditions. We

will use gS to obtain fS .

To see this, note that the radius of curvature at any point (x, gS(x)) is given by
(1+g′S(x)2)

3
2

|g′′S(x)| .

Now, let

α = sup
S⊆[n],x∈[−τ,τ ]

max(|g′S(x)|, |g′′S(x)|).

Let fS(x) =
gS(x)
γα . The 1−dimensional submanifold P of R2 traced out by all points

(x, fS(x)) has curvature ≤ 1
γ because for all x ∈ [−τ, τ ], for all S,

αγ

(
1 +

(
g′S(x)
αγ

)2
)3/2

|g′′S(x)| ≥ Ω(γ).
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Let S2
κ = {(x, y, z)

∣∣x2 + y2 + (z− κ)2 = κ2} be the 2−sphere of radius κ > τ tangent to the

(x, y) plane at the origin. Consider the stereographic projection υκ of S2
κ \ {0, 0, 2κ} onto

R2 (embedded in R3), defined by

υκ(x, y, z) :=

(
2κx

2κ− z ,
2κy

2κ− z , 0
)
.

LetB be the ball of radius 1 centered at the origin in the image of υκ. AsM →∞, υ−1
κ (B∩P )

tends uniformly to a great circle, and its tangent spaces (see (11.1) tend uniformly to the

corresponding tangent spaces of the great circle in terms of the angle. Therefore, (by (11.2))

for sufficiently large M , the condition number of υ−1
κ (P ) is less than 1

τ , completing the

proof. This argument carries over to when S2
κ ∈ Rm for m > 3. Now, we may extend the

copy of R2 that we considered to Rd by taking the canonical embedding R2 → R2 × Rd−2.

The 1−dimensional manifold P can be similarly extended to obtain a m − 1−dimensional

submanifold P ×Rd−2. We can then consider as we did in the case of R2, the stereographic

projection that maps the d−sphere

Sdκ = {(x, y, z1, z2, . . . , zd−1)
∣∣

x2 + y2 + z2
1 + . . .+ (zd−1 − κ)2 = κ2}

onto Rd by the map

υκ(x, y, z1, . . . , zd−1) :=

(
2κx

2κ− zd−1
,

2κy

2κ− zd−1
,

2κz1
2κ− zd−1

, . . . ,
2κzd−2

2κ− zd−1
, 0

)
,

and the same argument carries through.

We shall nonetheless uniformly bound from above, the annealed entropy of Cτ with

respect to any distribution P onM, whose density (with respect to the uniform probability
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measure) on M is bounded above by ρmax. The number of samples that need to be taken

before the empirical risk is within ε of the true risk, uniformly over Cτ with probability 1− δ

is determined by the annealed entropy of Cτ w.r.t P . We have the following theorem that

bounds the annealed entropy from above.

Theorem 11.3.2. LetM be a d−dimensional submanifold of Rm whose condition number is

≤ 1
κ . Let P be a probability measure on M, whose density relative to the uniform probability

measure on M is bounded above by ρmax. When the number n of random samples from

P is large, the annealed entropy of Cτ can be bounded from above as follows. Let εr =

min(τ4 , fracκ4, 1)ε/(2ρmax). Suppose

n ≥ Np(εr/2)
d ln(2

√
dρ2
max/ε)

ε2
,

then,

Hann(Cτ ,P , bn−
√
n ln(2πn)c) ≤ 4εn+ 1.

11.3.1 Overview of the Proof of Theorem 11.3.2

Our strategy is as follows.

1. Cut the manifold into small pieces Mi that are almost Euclidean, such that the re-

strictions of any cut hypersurface is almost linear.

2. Let the probability measure
P|Mi
P(Mi)

be denoted Pi for each i. Lemma 11.3.7 allows us

to show, roughly, that

Hann(Cτ ,P , n)

n
. sup

i

Hann(Cτ ,Pi, bnP(Mi)c)
bnP(Mi)c

,

thereby allowing us to focus on a single piece Mi.
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3. We use a projection πi, to map Mi orthogonally onto the tangent space to Mi at

a point xi ∈ Mi and then reduce the question to a sphere inscribed in a cube � of

Euclidean space.

4. We cover Cτ
∣∣
� by the union of classes of functions that are constant outside a thin

slab (see Definition 11.3.5 and Figure 3).

5. Finally, we bound the annealed entropy of each of these classes using Lemma 11.3.8.

The rest of this chapter is devoted to a detailed treatment of the proof of Theorem 11.3.2.

11.3.2 Volumes of balls in a manifold

Let M ⊆ Rm be a d-dimensional Riemannian manifold and let P be a d − 1−dimensional

submanifold of M. Let VMx (r) be defined to be the volume of a ball of radius r (in the

intrinsic metric) around a point x ∈ M. The sectional curvature of a manifold at a point

x depends on a two-dimensional plane in the tangent space at x. A formal definition of

sectional curvature can be found in most textbooks of differential geometry (for example,

[46]). The volumes of balls can be estimated using sectional curvatures. The Bishop-Günther

inequalities tell us that if the sectional curvatureKM is upper bounded by λ, then the volume

of the ball of radius r around x, VMx is bounded from below as follows (section 3.5, [28]).

VMx (r) ≥ 2πd/2

Γ(d2)

∫ r

0

(
sin(t
√
λ)√

λ

)d−1

dt,

where Γ(x) is Euler’s Γ function.

This allows us to get an explicit upper bound on the packing number Np(εr/2), namely

Np(εr/2) ≤ volM
2πd/2
Γ(d2 )

∫ εr/2
0

(
sin(t
√
λ)√

λ

)d−1
dt

.
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11.3.3 Partitioning the Manifold

The next step is to partition the manifoldM into disjoint pieces {Mi} such that each piece

Mi is contained in the geodesic ball BM(xi, εr). Such a partition can be constructed by the

following natural greedy procedure.

• Choose Np(εr/2) disjoint balls BM(xi, εr/2), 1 ≤ i ≤ Np(εr/2) where Np(εr/2) is the

packing number as in Definition 11.3.1.

• Let M1 := BM(x1, εr).

• Iteratively, for each i ≥ 2, let Mi := BM(xi, εr) \ {∪i−1
k=1Mk}.

11.3.4 Constructing charts by projecting onto Euclidean Balls

In this section, we show how the question can be reduced to Euclidean space using a family

of charts. The strategy is the following. Let εr be as defined in Notation 11.3.1. Choose a

set of points X = {x1, . . . , xN} belonging to M such that the union of geodesic balls in M

(measured in the intrinsic Riemannian metric) of radius εr centered at these points in M

covers all of M.
⋃

i∈[N ]

BM(xi, εr) =M.

Definition 11.3.2. For each i ∈ [Np(εr/2)], let the d−dimensional affine subspace of Rm

tangent to M at xi be denoted Ai, and let the d-dimensional ball of radius εr contained in

Ai, centered at xi be BAi(xi, εr). Let the orthogonal projection from Rm onto Ai be denoted

πi.

Lemma 11.3.3. The image of BM(xi, εr) under the projection πi is contained in the cor-

responding ball BM(xi, εr) in Ai.

πi(BM(xi, εr)) ⊆ BAi(xi, εr).
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Proof. This follows from the fact that the length of a geodesic segment on BM(xi, εr) is

greater or equal to the length of its image under a projection.

Let P be a smooth 1/τ -conditioned boundary (i. e. c(P ) ≤ 1
τ ) separating M into two

parts. and c(M) ≤ 1
κ .

Lemma 11.3.4. Let εr ≤ min(1, τ/4, κ/4). Let πi(BM(xi, εr) ∩ P ) be the image of P re-

stricted to BM(xi, εr) under the projection πi. Then, the condition number of πi(BM(xi, εr)∩

P ) is bounded above by 2
τ .

Proof. Let Tπi(x) and Tπi(y) be the spaces tangent to L at πi(x) and πi(y) respectively.

Then, for any x, y ∈ BM(xi, εr) ∩ P , because the kernel of πi is nearly orthogonal to Tπi(x)

and Tπi(y),

^(Tπi(x), Tπi(y)) ≤
√

2^(Tx, Ty). (11.3)

BM(xi, εr)∩P is contained in a neighborhood of the affine space tangent to BM(xi, εr)∩P

at xi, which is orthogonal to the kernel of πi. After some calculation, this can be used to

show that for all x, y ∈ BM(xi, εr) ∩ P ,

1√
2
≤ ‖πi(x)− πi(y)‖

‖x− y‖ ≤ 1. (11.4)

The lemma follows from (11.2).

11.3.5 Proof of Theorem 11.3.2

We shall organize this proof into several Lemmas, which will be proved immediately after

their respective statements. The following Lemma allows us to work with a random rather

than deterministic number of samples. The purpose of allowing the number of samples to
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be a Poisson random variable is that we are able make the set of numbers of samples {νi}

from different Mi, a collection of independent random variables.

Lemma 11.3.5 (Poissonization). Let ν be a Poisson random variable with mean λ, where

λ > 0. Then, for any ε > 0 the expected value of the annealed entropy of a class of indicators

with respect to ν random samples from a distribution P is asymptotically greater or equal to

the annealed entropy of b(1− ε)λc random samples from the distribution P. More precisely,

for any ε > 0, ln EνG(Λ,P , ν) ≥ lnG(Λ,P , bλ(1− ε)c)− exp
(
−ε2λ+

ln(2πλ)
2

)
.

Proof.

ln EνG(Λ,P , ν) = ln
∑

n∈N
P[ν = n]Hann(Λ,P , n)

≥ ln
∑

n≥bλ(1−ε)c
P[ν = n]G(Λ,P , n).

G(Λ,P , n) is monotonically increasing as a function of n. Therefore the above expression

can be lower bounded by ln P[ν ≥ bλ(1− ε)c]G(Λ,P , ν) ≥ Hann(Λ,P , bλ(1− ε)c)

− exp
(
−ε2λ+

ln(2πλ)
2

)
.

Definition 11.3.3. For each i ∈ [Np(εr/2)], let Pi be the restriction of P to Mi. Let |Pi|

denote the total measure of Pi. Let λi denote λ|Pi|. Let {νi} be a collection of independent

Poisson random variables such that for each i ∈ [Np(εr/2)], the mean of νi is λi.

The following Lemma allows us to focus our attention to small pieces Mi which are

almost Euclidean.

Lemma 11.3.6 (Factorization). The quantity ln EνG(Cτ ,P , ν) is less or equal to the sum

over i of the corresponding quantities Cτ with respect to νi random samples from Pi. i. e.

ln EνG(Cτ ,P , ν) ≤
∑

i∈Np(εr/2)

ln EνiG(Cτ ,Pi, νi).
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Proof.

G(Cτ ,P , `) := ln EX`P×`N(Cτ , X),

where expectation is with respect to X and ` signifies that X is drawn from the Cartesian

product of ` copies of P . The number of ways of splitting X = {x1, . . . , xk, . . . , x`} using

elements of Cτ , N(Cτ , X) satisfies a sub-multiplicative property, namely

N(Cτ , {x1, . . . , x`}) ≤

N(Cτ , {x1, . . . , xk})N(Cτ , {xk+1, . . . , x`}).

This can be iterated to generate inequalities where the right side involves a partition with

any integer number of parts. Note that P is a mixture of the Pi, and can be expressed as

P =
∑

i

λi
λ
Pi.

A draw from P of a Poisson number of samples can be decomposed as the union of indepen-

dently chosen sets of samples. The ith set is a draw of size νi from Pi, νi being a Poisson

random variable having mean λi. These facts imply that

ln EνG(Cτ ,P , ν) ≤∑i∈Np(εr/2) ln EνiG(Cτ ,Pi, νi).

Lemma 11.3.6 can be used together with an upper bound on annealed entropy based on

the number of samples to obtain

Lemma 11.3.7 (Localization). For any ε′ > 0

ln EνG(Cτ ,P , ν)

λ
≤ sup
i s.t |Pi|≥ ε′

Np(εr/2)

ln EνiG(Cτ ,Pi, νi)
λi

+ ε′.
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Proof. Lemma 11.3.7 allows us to reduce the question to a single Mi in the following way.

ln EνG(Cτ ,P , ν)

λ
≤

∑

i∈Np(εr/2)

λi
λ

ln EνiG(Cτ ,Pi, νi)
λi

Allowing all summations to be over i s.t |Pi| ≥ ε′
Np(εr/2) , the right side can be split into

∑

i

λi
λ

ln EνiG(Cτ ,Pi, νi)
λi

+
∑

i

ln EνiG(Cτ ,Pi, νi).

G(Cτ ,Pi, νi) must be less or equal to the expression obtained in the case of complete shatter-

ing, which is 2νi . Therefore the second term in the above expression can be bounded above

as follows,

∑

i

ln EνiG(Cτ ,Pi, νi) ≤
∑

i

ln Eνi2
νi

=
∑

i

λi

≤ ε′.

Therefore,

ln EνG(Cτ ,P , ν)

λ
≤

∑

i

λi
λ

ln EνiG(Cτ ,Pi, νi)
λi

+ ε′

≤ sup
i

ln EνiG(Cτ ,Pi, νi)
λi

+ ε′.

As mentioned earlier, Lemma 11.3.7 allows us to reduce the proof to a question concerning

a single piece Mi. This is more convenient because Mi can be projected onto a single

Euclidean ball in the way described in Section 11.3.4 without incurring significant distortion.
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By Lemmas 11.3.3 and 11.3.4, the question can be transferred to one about the annealed

entropy of the induced function class Cτ ◦π−1
i on chart BAi(xi, εr) with respect to νi random

samples from the projected probability distribution πi(νi). Cτ ◦π−1
i is contained in Cτ/2(Ai)

which is the analogue of Cτ/2 on Ai. For simplicity, henceworth we shall abbreviate Cτ/2(Ai)

as Cτ/2. Then,

ln EνiG(Cτ ,Pi, νi)
λi

=
ln EνiG(Cτ ◦ π−1

i , πi(Pi), νi)
λi

≤
ln EνiG(Cτ/2, πi(Pi), νi)

λi
.

We inscribe BAi(xi, εr) in a cube of side 2εr for convenience, and proceed to find the desired

upper bound on

G(Cτ/2, πi(Pi), νi). We shall indicate how to achieve this using covers. For convenience, let

this cube be dilated until we have the cube of side 2. The measure πi(Pi) assigns to it

must be scaled to a probability measure that we call P◦, which is actually supported on

the inscribed ball. We shall normalize all quantities appropriately when the calculations are

over. The τ� that we shall work with below is a rescaled version of the original, τ� = τ/εr.

Let Bd∞ be the cube of side 2 centered at the origin and ιd∞ be its indicator. Let Bd2 be the

unit ball inscribed in Bd∞.

Definition 11.3.4. Let ˜Cτ� be defined to be the set of all indicators of the form ιd∞ · ι, where

ι is the indicator of some set in Cτ�.

In other words, C̃τ� is the collection of all functions that are indicators of sets that can

be expressed as the intersection of the unit cube and an element of Cτ� .

C̃τ� = {f | ∃c ∈ Cτ� , for which f = Ic · ιd∞}, (11.5)

where Ic is the indicator of c.
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x · v < (t− εs
2
√

d
)‖v‖ x · v > (t + εs

2
√

d
)‖v‖

εs√
d
‖v‖

v

Figure 11.3: Each class of the form C̃(v,t)
εs contains a subset of the set of indicators of the

form Ic · ιd∞

Definition 11.3.5. For every v ∈ Rd where ‖v‖ = 1, t ∈ R and ε > 0 and εs = ε2/ρmax.

Let C̃(v,t)
εs be a class of indicator functions consisting of all those measurable indicators ι that

satisfy the following.

1. x · v < (t− εs
2
√
d
)‖v‖ or x 6∈ Bd∞ ⇒ ι(x) = 0 and

2. x · v > (t+ εs
2
√
d
)‖v‖ and x ∈ Bd∞ ⇒ ι(x) = 1.

The VC dimension of the above class is clearly infinite since any samples lying within the

slab of thickness εs/
√
d get shattered. However if a distribution is sufficiently uniform, most

samples would lie outside the slab and so the annealed entropy can be bounded from above.

We shall construct a finite set W of tuples (v, t) such that the union of the corresponding

classes C̃
(v,t)
εs contains C̃τ� . Let tv take values in an τ�

2 -grid contained in Bd∞, i. e. tv ∈
εs

2
√
d
Zd ∩ Bd∞. It is then the case (see Figure 3) that any indicator in C̃τ� agrees over Bd2
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with a member in some class C̃
(v,t)
εs , if εs ≥ 2

τ�
, i. e.

C̃τ� ⊆
⋃

tv∈ εs
2
√
d
Zd∩Bd∞

C̃
(v,t)
εs .

A bound on the volume of the band where (t − εs
2
√
d
)‖v‖ < x · v < (t + εs

2
√
d
)‖v‖ in Bd2

follows from the fact that the maximum volume hyperplane section is a bisecting hyperplane,

whose volume is < 2
√
d vol(Bd2).

This allows us to bound the annealed entropy of a single class C̃
(v,t)
εs in the following

lemma, where ρmax is the same maximum density with respect to the uniform density on

Bd2 . (Re-scaling was unnecessary because that was with respect to the Lebesgue measure

normalized to be a probability measure).

Lemma 11.3.8. The logarithm of the expected growth function of a class C̃
(v,t)
εs with respect

to ν◦ random samples from P◦, is < 2εsρmaxλ◦, where ν◦ is a Poisson random variable of

mean λ◦; i. e.

ln Eν◦G(Cτ� ,P◦, ν◦) < 2εsρmaxλ◦.

Proof. A bound on the volume of the band where (t− εs
2
√
d
)‖v‖ < x · v < (t+ εs

2
√
d
)‖v‖ in Bd2

follows from the fact that the maximum volume hyperplane section is a bisecting hyperplane,

whose d − 1-dimensional volume is < 2
√
d vol(Bd2). Therefore, the number of samples that

fall in this band is a Poisson random variable whose mean is less than 2εsρmaxλ◦. This

implies the Lemma.

Therefore the expected annealed entropy of

⋃

tv∈ εs
2
√
d
Zd∩Bd∞

C̃
(v,t)
εs

with respect to ν◦ random samples from P◦ is bounded above by 2εsρmaxλ◦ + ln | ε
2
√
d
Zd ∩
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Bd∞|. Putting these observations together,

ln EνG (Cτ ,P , ν) /λ ≤ ln Eν◦G(Cτ� ,P◦, ν◦)
λ◦

+ ε

≤ 2εsρmax +
d ln(2

√
d/εs)

λ◦
+ ε

We know that λ◦Np(εr/2) ≥ ελ. Then,

2εsρmax +
d ln(2

√
d/εs)

λ◦
+ ε ≤

2ε+Np(εr/2)
d ln(2

√
dρmax/εs)

ελ
+ ε,

which is

≤ 2ε+Np(εr/2)
d ln(2

√
dρ2
max/ε)

ελ
+ ε.

Therefore, if λ ≥ Np(εr/2)
d ln(2

√
dρ2
max/ε)

ε2
, then,

ln EνG (Cτ ,P , ν) /λ ≤ 4ε.

Together with Lemma 11.3.5, this shows that for any ε1 > 0,

if

λ ≥ Np(εr/2)
d ln(2

√
dρ2
max/ε)

ε2
,

then

Hann(Λ,P , bλ(1− ε1)c) ≤ ln EνG(Λ,P , ν)

+ exp

(
−ε21λ+

ln(2πλ)

2

)

≤ 4ελ+ exp

(
−ε21λ+

ln(2πλ)

2

)
.
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Setting ε1 to

√
ln(2πλ)

λ , exp
(
−ε21λ+

ln(2πλ)
2

)
is less than 1. Therefore,

Hann(Λ,P , bλ−
√
λ ln(2πλ)c) ≤ 4ελ+ 1.

This completes the proof of Theorem 11.3.2.
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CHAPTER 12

CONCLUDING REMARKS

In this thesis, the dual interpretations of diffusion as an evolution of densities satisfying a

version of the heat equation on the one hand, and as the aggregate effect of a multitude of

random walks on the other, were systematically used in a number of settings.

In Chapter 2, a model of language evolution was considered in which a network of in-

teracting agents each of which, at each time step, produces a word based on its belief and

updates its belief on the basis of the words produced by its neighbors. In our analysis, we

interpreted the belief of an agent as a weighted linear combination of all the words it had

heard over time. Then, we studied the evolution of beliefs by tracing backward in time, the

trajectory of the words that influenced the beliefs.

In Chapter 4, we used the electrical flows in a network with unit resistors to construct

a multicommodity flow. When a unit current is injected in into a node v in an electrical

network with unit resistors and extracted out of a node u, the currents can be as follows

[23]. Suppose a negatively charged electron does a random walk from u until it hits v. For

any edge e = (a, b), let iab be the expected number of times the electron traverses e from

b to a minus the expected number of times it traverses e from a to b. Then iab is the

current in the edge e flowing from a to b. This fact was used to relate the competitive ratio

(Definition 4.3.2) of this routing scheme to the mixing time of the graph.

In Chapter 5, we interpreted the amount of heat leaving a uniformly heated convex body

K in time t in terms of the probability that a Brownian particle, whose initial position is

chosen uniformly at random inside K is outside K after time t. This probability was then

estimated by making repeated trials.

In Chapter 6, we traced Brownian particles whose initial positions were chosen indepen-

dently and uniformly at random, approximated their trajectories by straight line segments,

and in the event that they exited the body, output the intersection of the line segment with
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the boundary as an approximately random sample from the surface.

Chapter 7 investigated halfplane capacity of a hull in the upper half plane,and related

it to the area of a neighborhood of the hull. The halfplane capacity can be interpreted in

terms of harmonic functions or Brownian motion. The proof used properties of Brownian

motion in the upper half plane.

Markov Chain Monte Carlo methods are algorithms for sampling from probability distri-

butions by designing a Markov chain whose stationary distribution is the desired distribution.

In Chapter 8 and Chapter 9, we constructed such Markov Chains for sampling from Rieman-

nian manifolds defined using charts and polytopes respectively. In Chapter 9, we also used

a random walk on polytopes to design an interior point algorithm for linear programming.

This random walk had a drift that guided it towards the optimal point. While a determin-

istic analogue of this algorithm due to Dikin [22] does not have polynomial time guarantees,

our randomized version did.

In Chapter 3, we designed a distributed algorithm for averaging the values held by nodes

in a graph motivated by a diffusion taking place on two scales. Chapter 10 and Chapter 11

are discussed in Section 12.4 below.

Finally, we discuss directions for future work and mention some open questions based on

the results of this thesis.

12.1 Sampling manifolds

While there is a large body of work devoted to sampling convex sets from log-concave den-

sities, much less is known about sampling manifolds. It would be interesting to attempt to

extend the existing framework for sampling convex sets to more general settings. We made

some progress towards this goal in Chapter 8 where we presented a class of Markov chains

that could be interpreted as approximations to Brownian motion with drift. Algorithms

for sampling manifolds have a number of interesting applications, including Goodness-of-Fit
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tests in statistics. Another interesting application of sampling manifolds could be to sample

compact Lie groups from the Haar measure. Random matrices have a number of applica-

tions in statistics, and more recently in wireless technology, and their distributions in several

important cases (such as random matrices from the orthogonal group) are, in fact, from

the Haar measure of some compact Lie group. Thus, this question is of more than purely

theoretical interest.

12.2 Randomized interior point methods for convex optimization

Self concordant barriers are real valued functions defined on a convex set, that “blow up” as

one approaches the boundary of the set. These functions have been used to develop interior

point algorithms for convex optimization. Their role is to ensure that the path taken by the

algorithm does not approach too close to the boundary. The algorithm in Chapter 9 may be

interpreted as a discretization of Brownian motion with drift, on a manifold whose metric

tensor is derived from the Hessian of a barrier function. It would be interesting to study

global aspects of its geometry such as its isoperimetric constant. A better understanding of

global aspects of the geometry of these manifolds could lead to better average case analysis

of interior point methods (which are frequently used in practice).

12.3 Sampling polytopes and computing volumes

One of the most basic quantities that can be associated with a polytope is its volume. It

can be shown ([27], [2]) that any deterministic algorithm to approximate the volume of a

convex body given by a membership oracle, within a constant factor in Rn, needs time

that is exponential in the dimension n. Remarkably, randomized algorithms turn out to

be more powerful. In their path breaking paper [25] Dyer, Frieze and Kannan gave the

first randomized polynomial time algorithm to approximate the volume of a convex body to
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arbitrary accuracy. Since then a considerable body of work has been devoted to improving

the complexity of volume computation culminating with the recent best of O∗(n4) due to

Lovász and Vempala [61]. In the case of n−dimensional polytopes defined by m constraints,

in Chapter 9, we developed a Markov Chain whose mixing time was O(mn) from a starting

density that was upper bounded by a constant with respect to the uniform density, i. e. from

a warm start. When m = O(n1.62), the number of arithmetic operations taken to produce

an almost uniform sample by the algorithm that uses this chain is less than that for other

algorithms. There seem to be some avenues for improvement. The mixing time we obtained

was O(mn2) from a fixed point and O(mn) from a warm start. It may be possible to bridge

this gap if instead of using L2 bounds, we could use Log-Sobolev inequalities. Secondly, in

some important applications, such as sampling contingency tables, m = n+ o(n). It may be

possible to improve the mixing time from a warm start to O((m− n)n) by proving a better

isoperimetric inequality.

It would be interesting to obtain an algorithm to compute the volume of a polytope

that performs better under similar conditions. A natural way to proceed would be to devise

an efficient annealing strategy starting from a simple polytope whose volume can easily be

estimated, ending with the polytope we are interested in, along the lines of [25, 61].

12.4 Learning on manifolds

Manifold learning has emerged as a new important paradigm for modeling high dimensional

data. The underlying intuition is that while modern data often lie in very high dimensions,

the number of degrees of true freedom is usually much less. An example of this is the

case of human speech, where the waveforms lie in an infinite dimensional space, but the

undulations of our vocal chords have, in essence, far fewer degrees of freedom. Many basic

questions on learning over manifolds remain open. It would be interesting to develop a

clustering algorithm that finds a cut that minimizes the total amount of heat diffusing out of
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it interpreted appropriately. Diffusion maps and random projections onto low dimensional

vector spaces seem to be natural tools in this context. Concepts from functional analysis, in

particular reproducing kernel Hilbert spaces are likely to be useful in tackling this question.

Chapter 10 was an attempt to address the sample complexity of learning the Cheeger cut of

a probability density on Rn. Towards this end, we proved that for any fixed hypersurface

satisfying appropriate smoothness conditions, its weighted surface area (Equation 10.1) is

the limit of the weights of the induced cuts, on the data dependent graphs of Theorem 10.3.1,

as the number of samples tends to ∞. In order to take the results of Chapter 10 to their

natural conclusion, we would need to prove a uniform bound over all sufficiently smooth

hypersurfaces, relating the weighted surface area of the hypersurfaces to the normalized

weights of the corresponding cuts, i. e. a uniform analogue of Theorem 10.3.1. Then, we

would be able to claim that the Cheeger cut can be obtained by structural risk minimization

[100] over the class of all smooth cuts, where the class of cuts is made progressively richer

by gradually increasing the permissible condition number (see Definition 6.3.1).

In Chapter 11, we proved a bound on the number of samples needed to learn a smooth

partition on a manifold separating data into two classes. Our results were based on a quantity

known as annealed entropy, that measures the complexity of a class of indicator functions

with respect to a probability measure. In our setting, the more commonly used notion known

as VC dimension could not be bounded, since it is potentially infinite. The bounds that we

obtain are not optimal, and to prove better bounds is a subject for future research.
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[2] I. Bárány and Z. Furedi, “Computing the Volume is Difficult,” Discrete and Computa-
tional Geometry 2, 1987, pp. 319-326. 60, 200

[3] Y. Bartal and S. Leonardi, “On-line routing in all optimal networks,” Theoretical Com-
puter Science, 1997, 516-526. 41

[4] W. Baur and V. Strassen, “The Complexity of Partial Derivatives,” Theoretical Com-
puter Science, 22 (1983) pp. 317-330 120

[5] M. Belkin, H. Narayanan and P. Niyogi, “Heat Flow and a Faster Algorithm to Compute
the Surface Area of a Convex Body,” Proc. of the 44th IEEE Foundations of Computer
Science (FOCS) ’06, pp. 47-56 6, 82, 83

[6] M. Belkin, P. Niyogi, “Laplacian Eigenmaps for Dimensionality Reduction and Data
Representation,” Neural Computation, June 2003, pp. 1373-1396. 177

[7] A. Belloni and R. Freund, “Projective re-normalization for improving the behavior of
a homogeneous conic linear system,” Mathematical Programming, 118(2), pp. 279-299
115

[8] D. Bertsekas and J. Tsitsiklis, “Parallel and Distributed Computation: Numerical Meth-
ods,” Prentice-Hall, 1989; republished in 1997 by Athena Scientific. 4, 17, 19, 30, 32

[9] D. Bertsimas and S. Vempala, “Solving convex programs by random walks,” Journal of
the ACM (JACM), 2004, 51(4). 61, 78

[10] B. de Boer, “Evolution of Speech and its Acquisition,” Adaptive Behavior, 13(4), pp.
281-292 15

[11] C. Borell, “The Brunn-Minkowski inequality in Gauss space,” Inventiones Math., 1975
30, pp. 205-216 88

[12] V. S. Borkar, “Stochastic approximation with two time-scales,” Systems and Control
letters, 29(5), February 1997, pp. 291 - 294. 30

[13] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “ Gossip algorithms : Design, analysis
and applications,” Proceedings of the 24th Conference of the IEEE Communications
Society (INFOCOM 2005), 2005, pp. 1653-1664. 4, 30, 32

[14] J. Bybee, “Word frequency and context of use in the lexical diffusion of phonetically
conditioned sound change,” Language Variation and Change 14, pp. 261-290. 19

203



[15] O. Chapelle and A. Zein,“Semi-supervised Classification by Low Density Separation,”
Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics
(AISTATS 2005), pp. 57-64 154

[16] R.R. Coifman, S. Lafon, “Diffusion maps,” Applied and Computational Harmonic Anal-
ysis: Special issue on Diffusion Maps and Wavelets, 21, July 2006, pp 5-30. 177

[17] F. Cucker, S. Smale, “Emergent behavior in flocks,” IEEE transactions on Automatic
Control, May 2007, 52(5), pp. 852-862. 19

[18] F. Cucker, S. Smale, D. X. Zhou, “Modelling Language evolution,” Foundations of
Computational Mathematics, July 2004, 4(3), pp. 315-343. 20

[19] P. Diaconis, “Generating random points on a Manifold,” Berkeley Probability Seminar,
2008 (Talk based on joint work with S. Holmes and M. Shahshahani) 10, 103

[20] P. Diaconis and B. Efron, “Testing for independence in a two-way table: new inter-
pretations of the chi-square statistic,” Annals of Statistics, 1995, 13, pp. 845-913. 11,
115

[21] P. Diaconis and D. Stroock, “Geometric bounds for eigenvalues of Markov Chain,”
Annals of Applied Probability, 1991, 1, pp. 36-61. 57

[22] I. I. Dikin, “Iterative solutions of problems of linear and quadratic programming,” Soviet
Math. Dokl, 1967, 8, pp. 674-675. 112, 115, 118, 199

[23] P. G. Doyle and J. L. Snell, “Random Walks and Electric Networks,” Mathematical
Association of America, 1984. 55, 198

[24] B. Duplantier, “Brownian Motion”, “Diverse and Undulating ”, in Einstein, 1905-
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