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Abstract

We study the task of uniformly minimizing all the
`p norms of the vector of edge loads in an undi-
rected graph while obliviously routing a multicom-
modity flow. Let G be an undirected graph hav-
ing m edges and n vertices. Let the performance
index π of an oblivious routing algorithm A (on
G) be the supremum of its competitive ratios over
all `p norms, where the adversarial adaptive rout-
ing scheme may vary both with norm and the set
of demands. We give a expression in closed form
for π(Harmonic ) for a certain oblivious algorithm
Harmonic that uses the “electrical flow”. We show
that π(Harmonic ) = O(Tmix) where Tmix(G) is the
mixing time of the canonical random walk on G and
by O(

√
m). These results lead to O(log n) upper

bounds on π(Harmonic ) for expanders. We inde-
pendently show that on N × M discrete tori where
N ≤ M , π(Harmonic ) = O(N).

Lastly, we can handle a larger class of norms
than `p, namely those norms that are invariant with
respect to all permutations of the canonical basis
vectors and reflections about any of them. Two novel
aspects of our proofs are the use of interpolation
theorems that relate different operator norms, and
connections between discrete harmonic functions and
random walks.

1 Introduction

Over the past three decades, there has been signif-
icant interest in the design and analysis of routing
schemes in networks of various kinds. A network is
typically modeled as a directed or undirected graph
G = (V, E), where E is a set of m edges representing
links and V is a set of n vertices representing loca-
tions or servers. Each link is associated with a cost
which is a function of the load that it carries. There
is a set of demands, which has the form

{(i, j, dij)
∣∣(i, j) ∈ V × V, dij ≥ 0}.
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A routing scheme that routes a commodity from its
source to its target independent of the demands at
other source-target pairs is termed oblivious. The
competitive ratio of an oblivious routing scheme
Obl is the maximum taken over all demands, of cost
that Obl incurs divided by the cost that the optimal
adaptive scheme Opt incurs. Work in this area was
initiated by Valiant and Brebner [18] who developed
an oblivious routing protocol for parallel routing in
the hypercube that routes any permutation in time
that is only a logarithmic factor away from optimal.
For the cost-measure of congestion (the maximum
load of a network link) in a virtual circuit routing
model, Räcke [11] proved the existence of an oblivi-
ous routing scheme with polylogarithmic competitive
ratio for any undirected network. This result was sub-
sequently made constructive by Harrelson, Hildrum
and Rao [5] and improved to a competitive ratio of
O(log2 n log log n).

Oblivious routing has largely been studied in the
context of minimizing the maximum congestion. A
series of papers [11, 5, 12] has culminated recently
in the development of an oblivious algorithm due to
Räecke [12] whose competitive ratio with respect to
congestion is O(log n). The algorithm Harmonic
that is studied in this paper was introduced in [7]
where it was shown to have a competitive ratio of
O(
√

log n) with respect to the `2 norm when demands
route to a single common target. We study the task
of uniformly minimizing all the `p norms of the vector
of edge loads in an undirected graph while routing a
multicommodity flow oblivious of the set of demands.
As a matter of fact our results hold under any norm
that transforms Rn into a Banach space symmetric
and “unconditional” with respect to the canonical
basis. These terms have been defined in section 3.

2 Our results

Let G = (V, E) denote an undirected graph with a
set V of n vertices and a set E of m edges. For
any oblivious algorithm A, let the competitive ratio
of A in the norm ‖ · ‖p be denoted κp(A). Let the
performance index π(A) of A be defined to be their



supremum as ‖·‖p ranges over the set of all `p norms.

π(A) := sup
p

κp(A).

Let Harmonic be the oblivious algorithm (formally
defined in the following section,) which routes a flow
from s to t in the (unique) way that minimizes the
`2 norm of edge loads of that flow, assuming all
other demands to be 0. The competitive ratio of this
algorithm with respect to the `2 norm was shown
in [7] to be O(

√
log n) over demands having single

common target. We show that Harmonic has an
index π(Harmonic ) that is equal to its competitive
ratio in the `1 norm, which is in turn bounded above
by min(

√
m,O(Tmix)) where Tmix is the mixing time

of the canonical random walk, We obtain O(log n)
upper bounds on π(Harmonic ) for expanders and
two dimension tori. The constant in O(·) may depend
on the family. Almost matching Ω( log n

log log n ) lower
bounds for expanders [6] and matching Ω(log n) lower
bounds for 2−dimensional discrete tori [2] are known
for the competitive ratio of an oblivious algorithm
with respect to congestion or `∞ norm. In particular,
for cost functions that are convex combinations of
bounded powers of the various `p norms, such as∑

e g(load(e)) where g is a polynomial with non-
negative coefficients, Harmonic has on these graphs
a polylogarithmic competitive ratio. We show that
there exist graphs for which no algorithm that is
adaptive with respect to the demands but not p can
simultaneously have a cost that is less than Ω(

√
m)

times the `p norm of the optimal adaptive algorithm
that is permitted to vary with p, even if p can only
take the values 1 and ∞. Lastly, we can handle a
larger class of norms than `p, namely those norms
that are invariant with respect to all permutations of
the canonical basis vectors and reflections about any
of them.

Theorem 2.1. For any graph G, with n vertices,
and m edges, on which the canonical random
walk has a mixing time Tmix, π(Harmonic ) ≤
min(

√
m,O(Tmix)).

Hajiaghayi et al have shown in [6] that if G belongs to
a family of expanders and A is any oblivious routing
algorithm, the competitive ratio κ∞(A) with respect
to congestion is bounded from below by Ω( log n

log log n ).
Therefore Theorem 2.1 is tight up to an O(log log n)
factor for expanders.

Theorem 2.2. If G is a two dimensional N × M
torus where N ≤ M ,

π(Harmonic )[G] = O(log N).

For 2-dimensional N×N grids, κ∞(A) was shown
to be bounded below by Ω(log N) by Bartal and
Leonardi. A minor variation of the same argument
gives an Ω(log N) lower bound for 2−dimensional
N × N tori as well. Therefore Theorem 2.2 is tight
up to a universal constant for square tori.

Theorem 2.3. For every m, there exists a graph G
with m edges, such that for any oblivious algorithm
A, π(A) ≥ b√m−1c

2 on G.

3 Definitions and Preliminaries

A network will be an undirected graph G = (V,E),
where V denotes a set of n vertices (or nodes)
{1, . . . , n} and E a set of m edges. If a traffic
vector t = (t1, . . . , tm) is transported across edges
e1, . . . , em, we shall consider costs that are `p norms
‖t‖p. In our setting, the network is undirected and
links are allowed to carry traffic in both directions
simultaneously. For book keeping, it will be conve-
nient to give each edge an orientation. For an edge e
of the form {v, w}, we will write e = (v, w) when we
want to emphasize that the edge is oriented from v
to w. The traffic on edge e will be a real number. If
this number is positive, it will represent traffic along
e from v to w; if it is negative, it will represent traffic
along e from w to v. Let In(v) be the edges of G
that are oriented into v and Out(v) be the edges of
G that are oriented away from v. A potential φ on
G is a function from V to R. The gradient ∇φ of a
potential φ is a function from E to R, whose value on
an oriented edge e := (u, v) is

∇φ(e) := φ(u)− φ(v).

A flow f on G is a function from E to R. The
divergence div f of a flow f is a function from V to
R whose value on a vertex v is given by

(div f)(v) :=
∑

e∈Out(v)

f(e)−
∑

e∈In(v)

f(e)

We shall denote by ∆ the Laplacian operator that
maps the space of real-valued functions on V to itself
as follows.

∆φ := −div (∇φ).

We call such f = 〈fij : i, j ∈ V (G)〉 a multi-
flow. We say that a multi-flow f meets the demand
〈dij : i, j ∈ V 〉, if for all i, j ∈ V ,

div fij = dijδi − dijδj ,

where δu(·) is the Kronecker Delta function that takes
a value 1 on u and 0 on all other vertices. If this is
the case, we say “f routes D” and write f ↘ D. For



a fixed i, j, we shall use ‖fij‖1 to denote
∑

e |fij(e)|.
The traffic on the edge e under f is given by

tf (e) =
∑

i,j

|fij(e)|.

We shall call the vector tf := (tf (e1), . . . , tf (em)) the
network traffic or network load, where (e1, . . . , em) is
a list of the edges of G. If for every edge e, the total
traffic on e under f is greater or equal to the total
traffic on e under f ′, we shall say that f ′ C f . i. e.

(∀e)tf (e) ≥ tf ′(e) ⇒ f ′ C f.

Definition 1. An oblivious algorithm (A), is a
multi-flow {aij} indexed by pairs of vertices i, j where
each aij is a flow satisfying

div aij = δi − δj .

Given a demand D, A routes D using D · a :=
〈dijaij : i, j ∈ V (G)〉.
Definition 2. For any oblivious algorithm A, for
every p ∈ [1,∞], we define its competitive ratio under
the `p norm ‖ · ‖p

κp(A) := sup
D

sup
f↘D

‖tD·a‖p

‖tf‖p
.

Let the performance index π(A) of A be defined to be
their supremum as ‖ · ‖p ranges over all possible `p

norms,
π(A) := sup

p∈[1,∞]

κp(A).

All results in this paper hold without modifica-
tion if the above definition of performance index, is
altered to be the supremum over all norms that sat-
isfy the symmetry and unconditionality conditions in
Definition 6.

Definition 3. We define Harmonic to be the
oblivious algorithm corresponding to the multi-flow
h = 〈hij : i, j ∈ V (G)〉, where hij is the unique flow
such that

1. div hij = δi − δj , and

2. There exists a potential φij such that ∇φij = hij .

These conditions uniquely determine {hij} and de-
termine the potential φij up to an additive con-
stant. The potential can be described in terms of
random walk on the graph. Suppose W0, W1, . . .
denotes simple random walk on the graph, and let
π̃(v) = deg(v)/[2#(E)] denotes its stationary distri-
bution.

Definition 4. (Hitting time) If S ⊆ V , let

HS = min{j ≥ 1 : Wj ∈ S}, HS = min{j ≥ 0 : Wj ∈ S}.
If S = {i, j}, we write Hij , Hij.

Note that HS ,HS agree if W0 6∈ S. The potential φij

with boundary condition φij(j) = 0 is given by

φij(v) = bij Pv{W (Hij) = i},
where we write Pv to denote probabilities assuming
W0 = v and the constant bij is given by

b−1
ij = Pj{W (Hij) = i}.

Definition 5. (Mixing time) Let W0,W1, . . . be
simple random walk on G. Let

ρ(t)
v (u) = Pv{Wt = u}.

The mixing time as a function of ε is

Tmix(ε) := sup
v∈V

inf
{

t : ‖π̃ − ρ(t)
v ‖1 ≤ 2ε

}
.

Definition 6. A Banach space X with a basis
{e1, . . . , em} is said to be symmetric and uncondi-
tional with respect to the basis if the following two
conditions hold for any x1, . . . , xm ∈ R .

S. For any permutation π, ‖∑m
i=1 xiei‖X =

‖∑m
i=1 xieπ(i)‖X .

U. For any ε1, . . . , εm ∈ {−1, 1}, ‖∑
xiei‖X =

‖∑
εixiei‖X .

3.1 Interpolation Theorems All `p norms sat-
isfy the above conditions. Given a linear operator
A : Rm 7→ Rm, we shall define its `p → `p norm

‖A‖p→p = sup
‖x‖p=1

‖Ax‖p

‖x‖p
.

More generally if Rm is endowed with a norm trans-
forming it into a Banach space X, we shall denote
its operator norm by ‖A‖X→X . We will need the fol-
lowing special cases of the theorems of Riesz-Thorin
[13, 16] and Mityagin [9].

Theorem 3.1. (Riesz-Thorin) For any 1 ≤ p ≤
r ≤ q ≤ ∞,

‖A‖r→r ≤ max(‖A‖p→p, ‖A‖q→q).

The following theorem is due to B. Mityagin.

Theorem 3.2. (Mityagin) Let Rm be endowed
with a norm transforming it into a Banach space X
that is symmetric and unconditional with respect to
the standard basis. Then,

‖A‖X→X ≤ max(‖A‖1→1, ‖A‖∞→∞).



3.2 Some facts about harmonic functions and
flows hij = ∇φij , where φij is up to addition by a
constant, the unique solution of the linear equation

∆φij = −δi + δj .

Therefore for every u, v and w, the following linear
relation is true.

Fact 3.1. huv + hvw = huw.

For e = (u, v), let he := huv and φe := φuv. More
generally, we have the following.

Lemma 3.1. Let gij be a flow such that div gij =
δi − δj. Then,

∑
e

gij(e)he = hij .

Proof. By linearity,

div
∑

e

gij(e)he =
∑

e

gij(e)div he

=
∑

e=(u,v)∈E

gij(e)(δu − δv),

which is

∑

v∈V


 ∑

e∈Out(v)

gij(e)−
∑

e∈In(v)

gij(e)


 δv = δi − δj .

Secondly,

∇(
∑

e

gij(e)φe) =
∑

e

gij(e)∇φe =
∑

e

gij(e)he.

According to the definition, hij is the unique flow
that satisfies the above properties, so we are done.

The following is a result from network theory [17].

Theorem 3.3. (Reciprocity Theorem) The
flows comprising Harmonic have the following
symmetry property. For each i, j ∈ V , let φij be
a potential such that ∇φij = hij . Then, for any
u, v ∈ V ,

φij(u)− φij(v) = φuv(i)− φuv(j).(3.1)

4 Using Interpolation to derive uniform
bounds

Proof. [Proof of Theorem 2.1] This Theorem follows
from Proposition 4.3, Proposition 4.1 and Proposi-
tion 4.2.

Proposition 4.1. For any graph G,

π(Harmonic ) = κ1(Harmonic )
= max

e∈G
‖he‖1,

where the maximum is taken over all edges of G.

Proof. [Proof of Proposition 4.1] Given a demand D,
let Dp be constructed as follows. Let Opt p(G,D) be
an optimal multi-flow routing D with respect to `p,
and opt p(G,D) be the corresponding `p norm. For
an edge e = (u,w), let (Dp)uw be the total amount
of traffic from u to v in Opt p(G, D) that routes D.
For any pair of vertices (u,w) that are not adjacent,
let (Dp)uw be defined to be 0. Let ‖D‖p be defined
in the natural way to be

‖D‖p :=


∑

ij

dp
ij




1
p

.

Lemma 4.1. opt p(G,D) = opt p(G,Dp) = ‖Dp‖p.

Proof. [Proof of Lemma 4.1] Any multi-flow f that
routes Dp can be converted to a multi-flow that
routes D having the same total cost, since Dp was
constructed from a multi-flow that routes D. There-
fore opt p(G,D) ≤ opt p(G,Dp). By the definition
of Dp, there exists an optimal solution to D that
can be used to route Dp. This establishes that
‖Dp‖p = opt p(G,D) ≥ opt p(G,Dp), and proves the
lemma.

Let D̄p represent the set of all demands of the
form Dp arising from some demand D by the above
conversion procedure. By Lemma 4.1,

∀Dp∈D̄p
sup
f↘D

1
‖tf‖p

=
1

‖Dp‖p
.

Using D · h to denote the multi-flow
〈dijhij : i, j ∈ V (G)〉, it is sufficient to prove
that for all p ∈ [1,∞].

sup
Dp∈D̄p

‖tDp·h‖p

‖Dp‖p
≤ sup

D1∈D̄1

‖tD1·h‖1
‖D1‖1 .(4.2)

Let e1, . . . , em be some enumeration of the edges
of G and let R be the m × m matrix whose ijth

entry, where ei = (u, v) is given by rij = |huv(ej)|.
For Dp ∈ D̄p, the “traffic vector” tDp·h can be
obtained by applying the linear transformation R
to dp, for each ei = (u, v), (dp)i = (Dp)uv and
dp = ((dp)1, . . . , (dp)m).




tDp·h(e1)
tDp·h(e2)

...
tDp·h(em)


 =




r11 . . . r1m

r21 . . . r2m

...
. . .

...
rm1 . . . rmm







(dp)1
(dp)2

...
(dp)m


 .

Given a linear operator A : Rm 7→ Rm, we define
its `p → `p norm

‖A‖p→p = sup
‖x‖p=1

‖Ax‖p

‖x‖p
.



With this notation, for p ∈ (1,∞],

sup
Dp∈D̄p

‖tDp·h‖p

‖Dp‖p
≤ ‖R‖p→p(4.3)

while for p = 1, because D̄1 is equal to {R+}m, we
can make the stronger assertion that

sup
D1∈D̄1

‖tD1·h‖1
‖D1‖1 = ‖R‖1→1.(4.4)

Lemma 4.2. ‖R‖1→1 = ‖R‖∞→∞.

Proof. [Proof of Lemma 4.2] Recall that R is an
m × m matrix whose ijth entry is |hei

(ej)|. By
the Reciprocity Theorem (Theorem 3.3), R is a
symmetric matrix. Let x1 ∈ Rm be a unit `1 normed
vector that achieves the maximum dilation in the
`1 norm when multiplied by R, i. e. ‖x1‖1 = 1 and
‖Rx1‖1 = ‖R‖1→1. We may assume without loss of
generality that all coordinates of x1 are non-negative,
because if we replace x1 by the vector x′1 obtained
by taking absolute values of the coordinates of x1,
‖Rx′1‖ ≥ ‖Rx1‖. Let u1, . . . , um be the standard
basis. We note that

‖R‖1→1 =
m∑

i=1

‖hei‖1x1i

≤ max
i
‖hei‖1

= max
i
‖Rui‖1

≤ ‖R‖1→1.

Therefore ‖R‖1→1 = maxi ‖hei‖1. Since R is a
symmetric matrix whose entries are non-negative,

sup
‖x‖∞=1

‖Rx‖∞ = ‖R(u1 + · · ·+ um)‖∞.

Therefore,

‖R‖∞→∞ = ‖R(u1 + · · ·+ um)‖∞
= max

i
‖hei‖1

= ‖R‖1→1.

By Lemma 4.2 and the Riesz-Thorin theorem (The-
orem 3.1), we conclude that

sup
Dp∈D̄p

‖tDp·h‖p

‖Dp‖p
≤ ‖R‖p→p

≤ max(‖R‖1→1, ‖R‖∞→∞)
= ‖R‖1→1(By Lemma 4.2)

= sup
D1∈D̄1

‖tD1·h‖1
‖D1‖1

which establishes Inequality 4.2 and thereby com-
pletes the proof.

Remark 1. One can repeat the above argument us-
ing Mityagin’s theorem (Theorem 3.2) instead of the
Riesz-Thorin theorem, and prove the stronger state-
ment that for any norm that transforms Rm into a
symmetric unconditional Banach space X with re-
spect to the standard basis,

κX(Harmonic ) ≤ κ1(Harmonic ),

where κX(Harmonic ) is the competitive ratio of
Harmonic with respect to the norm of X.

4.1 Bounding π(Harmonic ) by hitting and
mixing times

Proposition 4.2. For any vertices i, j ∈ V ,

‖hij‖1 ≤ 8Tmix(
1
4
).

Proof. [Proof of Proposition 4.2] It is always possible
to find a potential φij such that ∆φij = δj − δi, and

π̃({u|φij(u) ≤ 0}) ≥ 1
2

π̃({v|φij(v) ≥ 0}) ≥ 1
2
,

because adding an arbitrary constant does not change
the gradient of a potential. Let φij satisfy the above
conditions.

Recall that HS be the (hitting) time taken for
a random walk starting at v to hit the set S (Def-
inition 4). Let Ev[·] denote expectations assuming
W0 = v.

Lemma 4.3. Suppose ∆φij = δj − δi. Then,

‖∇φij‖1 ≤
∑

v

deg(v)|φij(v)|

Proof. [Proof of Lemma 4.3]

‖∇φij‖1 =
∑

(u,v)∈E

|φij(u)− φij(v)|

≤
∑

(u,v)∈E

(|φij(u)|+ |φij(v)|)

=
∑

v

deg(v)|φij(v)|

Lemma 4.4. Let ∆φij = δj − δi, S≤ := {v|φij(v) ≤
0} and S≥ := {v|φij(v) ≥ 0}. Then,

∑

v∈V

deg(v)|φij(v)| ≤ EHi
S≤ + EHj

S≥ .

Proof. [Proof of Lemma 4.4] Let W0,W1, . . . be a
random walk on G starting at i and ending the first
time it hits S≤. Given v ∈ V and a subset S of V , let
N i

S(v) be the number of times the walk exits v until

hitting S≤, and ψ(v) :=
ENi

S≤ (v)

deg(v) . Note that ψ(u) = 0
for all u ∈ S≤. We make the following claim.



Claim 1.

∆ψ(i) = −1
∆ψ(u) = 0 if u ∈ V \ {S≤ ∪ {i}}.

Proof. [Proof of Claim 1] To see why this is true, let
E(t, v) be the event that Wt = v. For any vertex u,
let ?(u) denote the set of vertices adjacent to u. We
see that for 1 ≤ t ≤ Ht

S≤ and u ∈ V \ {S≤ ∪ {i}},

P[E(t, v)] =
∑

u∈?(v)

P[E(t− 1, u)]
deg(u)

.

Summing up over time, this implies E[N i
S≤(v)] =

∑
u∈?(v)

E[Ni
S≤ (u)]

deg(u) . This translates to ψ(v) =
∑

u∈?(v)
ψ(u)

deg(v) . When v = i, a similar computation
yields

ψ(i) = 1 +
∑

u∈?(i)

ψ(u)
deg(i)

,

proving the claim.

It follows that ∆(ψ − φ) is 0 on all of V \ S≤.
This implies that the maximum of φ − ψ cannot be
achieved on V \S≤ (Maximum principle for Harmonic
functions). φ − ψ is ≤ 0 on S≤, therefore ψ − φ is a
non-negative function. It follows that

∑

v∈S≥

deg(v)φij(v) ≤ Ei
[
HS≤

]
.

An identical argument applied to −φij instead of φij

gives us the following.

∑

v∈S≤

deg(v)(−φij(v)) ≤ Ej
[
HS≥

]
.

Together, the last two inequalities complete the
proof.

Lemma 4.5. Let S be a subset of V whose stationary
measure is greater or equal to 1

2 . Let v ∈ V \S. Then

Ev[HS ] ≤ 4Tmix(1/4).

Proof. [Proof of Lemma 4.5] Let W0,W1, . . . be a
random walk on G starting at v. Recall that from
Definition 5,

Tmix(ε) = sup
v∈V

inf
{

T
∣∣∀t≥T ‖π̃ − ρ(t)

v ‖1 < ε
}

.

Let τ := Tmix(1/4) and P = Pv.

P[HS ≤ τ ] ≥ P[Wτ ∈ S]

= π̃(S)− (π̃(S)−
∑

u∈S

P[Wτ = u])

≥ 1
2
− |π̃(S)−

∑

u∈S

P[Wτ = u]|

≥ 1
2
− |

∑

u∈S

(π̃(u)− P[Wτ = u])| ≥ 1
4
.

In order to get a bound on the expected hitting
time from this bound on the hitting probability, we
observe that the distribution of hitting times has an
exponential tail. More precisely, using the Markovian
property of the random walk,

P[HS > kτ ] is less or equal to

P [Xτ 6∈ S]
k−1∏

i=1

sup
u 6∈S

P
[
X(i+1)τ 6∈ S

∣∣Xiτ = u
] ≤ 3k

4k
.

Finally,

Ev[HS ] ≤ τ

( ∞∑

i=0

P [Hv
S > iτ ]

)
≤ 4τ.

Proposition 4.3. For any edge e, ‖he‖1 ≤
√

m.

Proof. [Proof of Proposition 4.3] If e = (u, v), he is
by Thompson’s principle ([4]) the minimizer of ‖f‖2
among all flows f for which div f = δu − δv. Since
u and v are adjacent, ‖f‖2 = 1 if f is the “shortest-
path” flow defined by

f(e′) =
{

1 if e′ = e
0 otherwise.

Therefore ‖he‖2 ≤ 1. This implies that ‖he‖1 ≤
√

m,
since for any vector x ∈ Rm, ‖x‖1 ≤

√
m‖x‖2.

Proof. [Proof of Theorem 2.3]
Let G be a graph with n = m − b√m− 1c + 1

vertices and m edges constructed as follows (see
Figure 1). Let vertices labeled 1 and 2 be joined by
an edge e1, and also be connected by r := b√m− 1c
vertex disjoint paths of length h. We make the
remaining vertices and edges belong to a path from
vertex 3 to 2, such that there is no path from any of
these vertices to 1 which does not contain 2. We will
fix a specific set of demands D = {dij}; namely a unit
demand from 1 to 2, and 0 otherwise. Suppose that
an algorithm A uses a flow denoted a12 to achieve
this, where a12(e1) = α ∈ [0, 1]. Then,

‖aij‖1 ≥ α + (1− α)r,

and
‖aij‖∞ ≥ α.
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Figure 1: A graph on which the performance index π(A) of any oblivious algorithm A is ≥ b√m−1c
2

On the other hand a flow Opt 1 that uses only e1

incurs an `1 norm of 1. A flow Opt∞ that uses all
the r+1 edge disjoint paths from 1 to 2 equally incurs
an `∞ cost of 1

r+1 .

‖a12‖1
‖Opt 1‖1 ≥ (1− α)r + α,

and ‖a12‖∞
‖Opt∞‖∞ ≥ α(r + 1).

Therefore,

max(κ1(A), κ∞(A)) ≥ κ1(A) + κ∞(A)
2

≥ b√m− 1c
2

.

5 Random walks and π(Harmonic )
5.1 Random walk on the torus

Proof. [Proof of Theorem 2.2] We consider the ex-
ample of simple random walk W0,W1, . . . on the 2-
dimensional torus

TN = {(x1, x2) ∈ Z2 : xj ∈ {0, 1, . . . , N − 1},
with the usual periodic boundary condition. Note
that TN contains N2 vertices and 2N2 edges. The lo-
cal central limit theorem implies that Tmix is Θ(N2).

Let u denote a nearest neighbor of the origin, and
let φ = φ0u be the corresponding potential with the
additive constant chosen so that φ(0) = −φ(u). In
other words, for every vertex x,

φ(x) =
b

2
Px{W (H0u) = 0} − b

2
Px{W (H0u) = u}

= bPx{W (H0u) = 0} − b

2
,

where
1
b

= Pu{W (H0u) = 0} = P0{W (H0u) = u} ≥ 1
4
.

Proposition 5.1. As N →∞,

‖∇φ‖1 = O(log N).

Proof. [Proof of Proposition 5.1] We will prove the
stronger statement, that if e = (x, y) is an edge,

(5.5) |∇φ(e)| ≤ c |x|−2,

where the distance | · | is taken on the torus TN . In
order to prove this, it suffices to prove that

(5.6) |φ(x)| ≤ c |x|−1.

Indeed, if this holds then |φ(x)| ≤ 2c |x|−1 in the disk
of radius |x|/2 about x and then standard difference
estimates for discrete harmonic functions (see, e.g.,
[8, Theorem 1.7.1]) imply (5.5). Since b ≤ 2d, (5.6)
follows from

Px{W (H0,u) = 0} = Px{W (H0,u) = u}+ O(|x|−1),

which we now prove. Let C = Cx = {v : |v| < |x|/2},
∂C = {y 6∈ C : |v − y| = 1 for some v ∈ C},
S = ∂C ∪ {0, u}. By focusing at the last visit to
∂C before reaching {0, u}, we can see that

Px{W (H0,u) = 0} =
∑

y∈∂C

G(x, y)Py{W (HS) = 0}

=
∑

y∈∂C

G(x, y)P0{W (HS) = y},

where G = G0,u is the Green’s function for the
simple random walk killed when it reaches {0, u}.
The second inequality uses a symmetry argument. A
similar expression holds for Px{W (H0,u) = u}, so it
suffices to show for y ∈ ∂C,

P0{W (HS) = y} = Pu{W (HS) = y} [
1 + O(|x|−1)

]
.



This estimate follows from the following estimates:

P0{W (H∂C) = y} ≤ c

|x|P
v{W (HS) ∈ ∂C}

≤ c

log |x| , v ∈ {0, u},

Pv{W (HS) = y | W (HS) ∈ ∂C} =

P0{W (H∂C) = y}
[
1 + O

(
log |x|
|x|

)]
,

for v ∈ {0, u}, y ∈ ∂C. For proofs of these, see
Theorem 1.6.5, Lemma 1.7.4, and Theorem 2.1.3,
respectively, of [8].

The last proposition can be extended to the
skewed torus

T(N, M) = {(x1, x2) : x1 = 0, . . . , N−1; x2 = 0, . . . , M−1},

with N ≤ M to show that in this case

‖∇φ‖ ≤ c log N,

where c is independent of M . The proof is similar,
but one gives a coupling argument to show that for
|x| ≥ N ,

|φ(x)| ≤ cN−1 e−β|x|/N ,

for some constants c, β. The difference estimate on
the disk of radius N/2 about x, then yields

|∇φ(e)| ≤ c N−2 e−β|x|/N ,

for for any edge e that has x as an endpoint.

5.2 A Bound on the Spectral Gap using
flows of Harmonic A well known method method
due to Diaconis-Stroock [3] and Sinclair [15], of
bounding the spectral gap of a reversible Markov
chain involves the construction of canonical paths
from each node to every other. One may use flows
instead of paths, and derive better mixing bounds,
as was the case in the work of Morris-Sinclair [10]
on sampling knapsack solutions. Sinclair suggested
a natural way of constructing canonical flows using
random walks in [15]. This scheme gives a bound of
O(τ2), if τ is the true mixing time. In this section,
we observe that for a random walk on a graph, the
flows of Harmonic provide a certificate for rapid
mixing as well, and give the same O(τ2) bound on
the mixing time. Let the stationary distribution be
denoted π̃. ˜π(i) = deg(i)

2m . Let the capacity of an edge
e = (u, v), denoted Q(e) be defined to be π̃(u)puv,
where puv = 1

deg(u) is the transition probability from
u to v. Let the transition matrix be denoted P . In our
setting of (unweighted) random walks, ˜π(i) = deg(i)

2m
and for each edge e, Q(e) is 1

2m .

Definition 7. Let D be the demand 〈dij : i, j ∈ V 〉,
where dij = π̃(i)π̃(j). Given a multi-flow f , where
f ↘ D, let ρ(f) denote the maximum load on any
edge divided by its capacity i. e. ρ(f) = ‖tf‖∞

Q(e) .

Theorem 5.1. (Sinclair) Let f ↘ D as described
above. Then, the second eigenvalue λ1 of the transi-
tion matrix P satisfies

λ1 ≤ 1− 1
8ρ2

.

Let us denote Tmix(1/4) by τ . Let h · D be the
multi-flow obtained by re-scaling h so that it meets
D. Then, we have the following proposition.

Proposition 5.2.

1
2
√

2(1− λ1)
≤ ρ(h ·D) ≤ 16τ.

Proof. [Proof of Proposition 5.2] The lower bound on
ρ(h · D) follows from Theorem 5.1. We proceed to
show the upper bound. In the case of a random walk
on a graph with m edges, for every edge e, Q(e) = 1

2m .
Therefore

ρ(D · h) =
‖tD·h‖∞

Q(e)
= 2m‖tD·h‖∞.

Given an edge e = (u,w), let φe = φuw be a potential
such that huw = ∇φuw. For convenience, for any i,
let hii be defined to be the flow that is zero on all
edges. Let e = (u, w) be the edge that carries the
maximum load. Then,

ρ(D · h) =
∑

i,j

|deg(i) deg(j)hij(e)|
2m

=
∑

i,j

deg(i) deg(j)
2m

|φij(u)− φij(w)|

=
∑

i,j

deg(i) deg(j)
2m

|φe(i)− φe(j)| (Thm 3.3)

≤
∑

i,j

deg(i) deg(j)
2m

(|φe(i)|+ |φe(j)|)

= 2
∑

i

deg(i)|φe(i)|.

Adding an appropriate constant to φe is necessary,
we may assume that

π̃({u|φij(u) ≤ 0}) ≥ 1
2

π̃({v|φij(v) ≥ 0}) ≥ 1
2
.



Then, Lemma 4.4 and Lemma 4.5 together imply that

2
∑

i

deg(i)|φe(i)| ≤ 16τ,

completing the proof.
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and J. Radhakrishnan, Minimizing average la-
tency in Oblivious routing, (SODA), 2008.

[8] G. Lawler Intersections of Random Walks
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