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In recent times, there has been an increased interest in theories of
language evolution that have an applicability to the study of dialect
formation, linguistic change, creolization, the origin of language, and
animal and robot communication systems in general. One particular
question that has attracted some interest has the following general
form: how might a group of linguistic agents arrive at a shared com-
munication system purely through local patterns of interaction and
without any global agency enforcing uniformity? In this paper, we
consider a natural model of language evolution, prove several theo-
retical properties, and establish connections to related phenomena
in biology, social sciences, and physics.
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In recent times, there has been an increased interest in
theories of language evolution that have an applicability to
the study of dialect formation, linguistic change, creolization,
the origin of language, and animal and robot communication
systems in general. (see [14, 22, 11] and references therein).
One particular question that has attracted some interest has
the following general form: how might a group of linguis-
tic agents arrive at a shared communication system purely
through local patterns of interaction and without any global
agency enforcing uniformity? The linguistic agents in ques-
tion might be humans, animals, or machines in a multi-agent
society. For an example of interesting simulations that sug-
gest how a shared vocabulary might emerge in a population ,
see Liberman (2005) (other simulations are also provided by
[1, 2, 27, 8, 28] among others). In this paper, we consider a
generalization of Liberman’s model, prove several theoretical
properties, and establish connections to related phenomena in
biology, social sciences, and physics.

Our model is as follows. For simplicity, we consider how a
common word for a particular concept might emerge through
local interactions even though the agents had different initial
beliefs about the word for this concept. For example agents
might use the phonological forms “dog”,“kukur”, “farama”
etc. to describe the concept of a canine animal. Thus we
imagine a situation where every time an event in the world
occurs that requires the agents to use a word to describe this
event, they may start out by using different words based on
their initial belief about the word for this event or object.
By observing the linguistic behavior of their neighbors agents
might update their beliefs. The question is - will they even-
tually arrive at a common word and if so how fast.

Model.

1. Let W be a set of words (phonological forms, codes, sig-
nals, etc.) that may be used to denote a certain concept
(meaning or message).

2. Let each agent hold a belief that is a probability measure

on W. At time t, we denote the belief of agent i to be b
(t)
i .

3. Agents are on a communication network which we model
as a directed weighted directed graph where vertices cor-
respond to agents. We further assume that the weight of

each directed edge is positive and that there exists a di-
rected path from any node to any other. An agent (say i)
can only observe the linguistic actions of its out-neighbors,
i. e.nodes to which a directed edge points from i. We denote
weight of the edge from i to j by Aij .

4. The update protocol for the b
(t)
i as a function of time is as

follows:

(a) At each time t, each agent i chooses a word w = w
(t)
i ∈

W (randomly from to its current belief b
(t)
i ) and pro-

duces it. Let X
(t)
i , denote the probability measure con-

centrated at w
(t)
i . Since w

(t)
i is a random word, X

(t)
i is

correspondingly a random measure.

(b) At every point in time, each agent can observe the words
that their neighbors produce but they have no access to
the private beliefs of these same neighbors.

(c) Let P be the matrix whose ijth entry satisfies

Pij =
Aij∑n
k=1 Aij

.

At every time step, every agent updates its belief by a
weighted combination of its current belief and the words
it has just heard, i.e.,

b
(t+1)
i = (1− α)b

(t)
i + α

n∑
j=1

PijX
(t)
j ,

where α is a fixed real number in the interval (0, 1).

At a time t, let the beliefs of the agents be represented by
a vector

b(t) := (b
(t)
1 , . . . , b(t)

n )T .

Similarly, let the point measures on words X
(t)
i be organized

into a vector
X(t) := (X

(t)
1 , . . . , X(t)

n )T .

Then the reassignment of beliefs can be expressed succinctly
in matrix form where the entries in the vectors involved are
measures rather than numbers as

b(t+1) = (1− α)b(t) + αPX(t). [1]
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Remarks:.

1. If beliefs were directly observable and agents updated based
on a weighted combination of their beliefs and that of their
neighbors,

b(t+1) = (1− α)b(t) + αPb(t), [2]

the system has a simple linear dynamics, where all beliefs
converge to a weighted average of the initial beliefs. Thus
eventually, everyone has the same belief (see [4] for pioneer-
ing work and [12] for a recent elaboration in an economic
context.)

2. Our focus in this paper is on the situation where the be-

liefs are not observable but only the linguistic actions X
(t)
i

are (and only to the immediate neighbors). Therefore, the
corresponding dynamics follows a Markov chain. The state
space of this chain (defined by Equation 1) is the set of all
n-tuples of belief vectors. Since this is continuous, the stan-
dard mixing results with finite state spaces do not apply
directly.

3. Note that in our setting we have assumed that the com-
munication matrix Aij does not change with time. If this
matrix changes with time the evolution is not Markovian
in the usual sense but the arguments in this paper when
combined with results in [5] would lead to a proof of con-
vergence under suitable conditions. We omit this analysis
for ease of exposition.

Results:.Our main results are summarized below.

1. With probability 1 (w.p.1), as time tends to infinity, the
belief of each agent converges in variation distance to one
supported on a single word, common to all agents.

2. w.p.1, there is a finite time T such that for all times t > T ,
all agents produce the same fixed word.

3. The rate at which beliefs converge depends upon the mix-
ing properties of the Markov chain whose transition matrix
is P .

4. The rate of convergence is independent of the size of W.
One might think that a population where every agent has
one of two words for the concept would arrive at a shared
word faster than one in which every agent had a differ-
ent word for the concept. This intuition turns out to be
incorrect.

5. The proof of these results exposes a natural connection
with coalescent processes and has a parallel in population
genetics.

6. Our analysis brings out two different interpretations of the
behavior of a linguistic agent. In the most direct inter-
pretation, the agent’s linguistic knowledge of the word is
internally encoded in terms of a belief vector. This belief
vector is updated with experience. In a second interpreta-
tion an agent’s representation of its linguistic knowledge is
in terms of a memory stack in which it literally stores every
single word it has heard weighted by how long ago it heard
it and the importance of the person it heard it from. Such
an interpretation is consistent with exemplar theory (see
[9]). An external observer looking at this agent’s linguistic
actions will not be able to distinguish between these two
different internal representations that the agent may have.

Connections to other fields.The general theme of predicting
the macroscopic behavior of a system from the local behavior
of its microscopic components arises in many different areas
of physics, biology, and the social sciences. It is also a funda-

mental issue in the analysis of distributed systems in computer
science.

In Spin systems, which originated as models for Ferro-
magnets, atoms are pictured to be in a 2-Dimensional square
array, each possessing a spin “up” or “down.” The effect that
an atom has on the spin of a neighbor is a function of temper-
ature. Typically, coherence is observed at low temperatures,
while at high temperatures atoms tend not to align, which
is in agreement with the demagnetization that ferromagnets
undergo at high temperatures. The model we consider, involv-
ing the convergence in beliefs has many high level similarities
though we do not address the question of what might be the
analog of temperature in our model, how to take the thermo-
dynamic limit, and if and how phase transitions may arise.

Another closely related model is the voter model studied
in probability theory with its origins in the social sciences.
Each agent lives on the vertex of the graph, has a belief which
is a discrete variable, and is observable to its neighbors. Each
agent changes its belief with a certain probability based on
the observed beliefs of its neighbors. Another kind of belief
propagation model is that described by Jackson (2007). In
both cases, the beliefs are observable in contrast to our set-
ting. Our communication graphs model the pattern of local
interaction among agents and may arise through modes of so-
cial network formation studied in the field of social network
theory [26, 15].

Linear update rules are often used in distributed systems,
to achieve coherence among different agents or to share knowl-
edge gathered individually. In a model that has been inten-
sively studied, a number of sensors form a network, each of
which measures a quantity such as temperature [4]. Neighbors
communicate during each time step and make linear updates
in a synchronous or asynchronous manner. The rate at which
consensus is attained is studied. There is also a related body
of work on Coordination and Distributed Control. A model
of flocking has been considered in [6], where a group of birds,
have a certain initial velocity, and the evolution of their veloc-
ities is governed by a differential equation wherein each bird
modifies its velocity to bring it closer to that of its neighbors.
The update rule involves a graph Laplacian. Some results are
derived concerning the initial conditions that result in flocking
behavior.

There are two connections to evolutionary theory that are
worth mentioning. First, our proof of convergence exposes a
natural coalescent process over words. Coalescent processes
are, of course, widely used in modeling and making inferences
about genetic evolution [16, 17]. Second, researchers have
considered game-theoretic models of evolution [20] and more
recent research in this tradition has addressed evolutionary
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Fig. 1. A coalescent process obtained by tracing the origin of words backwards in

time, and the associated memory stacks of agents 1 to 4 for time steps t to t+ 2.
Each agent produces α at time t+2 due to coalescence to a single word α produced

by agent 2 at time t.
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games on graphs [24]. The question of how agents may learn
an appropriate strategy for a coordination game on a graph
has many high level similarities to the problem studied in this
paper.

Finally, there have been a large number of models on
achieving coherence in a linguistic population. Many of
these rely on simulations. Among mathematical studies, two
strands are worth noting. The model of language evolution
proposed in [7] has many similarities with languages of agents
evolving on a graph. But it is worth noting that in that model,
if at each time step, the number of linguistic examples (ob-
servations) collected by each agent is bounded from above
by a constant (independent of time), the community fails to
achieve a consensus language. A second strand is the collec-
tion of results obtained in [23, 14]. While there are many
synergies with that body of work, there is nothing that is
directly comparable.

Convergence to a Shared Belief: Quantitative results

Let P̃ be the transition matrix on the state space S̃ = S ∪ Ŝ,

where for i, j ∈ S := {1, . . . , n} and Ŝ = {1̂, . . . , n̂}.

P̃ (i → j) = P̃ (̂i → j) = αPij ,

P̃ (i → î) = P̃ (̂i → î) = 1− α.

Def inition 1. Let Tmix(ϵ) denote the mixing time of P̃ , defined

as the smallest t for which, for each specific choice of v, w ∈ S̃,∑
u∈S̃

|P̃ (t)(v → u)− P̃ (t)(w → u)| < ϵ.

Here P̃ (t)(b → c) denotes the probability that a Markov Chain

governed by P̃ starting in b lands in c at the tth time step.

The following is the main result of this paper.
Theorem 1:

1. The probability that all agents produce the same word at
times T, T + 1, . . . tends to 1 as T tends to ∞. More pre-
cisely, if

τ = (4n/α2)Tmix(
α

4
) ln(4n/α2)

M = e,

then

P[∀t≥T
u∈S

Xt
u = XT

1 ] > 1− MnTe−
T
τ

1− e−
T
τ

. [3]

2. As time t → ∞ all produced words converge (almost
surely) to a word whose probability distribution is

n∑
i=1

πib
(0)
i ,

where (π1, . . . , πn) is the stationary distribution of the
Markov chain whose transition matrix is P .

A Model of Memory.The evolution of the B(t) is a Markov
chain. It can be seen that its only absorbing states are of the

form (b
(t)
1 , . . . , b

(t)
n )T , where ∀i, b(t)

i = δw, and δw is the point
measure concentrated on some word w ∈ W. Formally, δw is
the measure on W, which assigns to a measurable set A the
measure δw(A) according to the following rule.

δw(A) = 1 If w ∈ A

= 0 otherwise.

Therefore, if the Markov Chain were finite, a simple argu-
ment would suffice. In our case however, we have a Markov
Chain whose state space is uncountably infinite. Thus in prin-
ciple, its dynamics could be hard to analyze. Our proof is
based on coalescent processes, which have also been exten-
sively used to study biological evolution [16, 17]. In analyzing
the evolution of beliefs, we trace the origin of words back-
wards in time and find that all surviving words, are copies of
a single word produced at some point in time sufficiently far
in the past. Observe that if the process had begun at time 0,
the beliefs at time t+ 1 would be

Observation 1.

B(t+1) =

t∑
i=0

α(1− α)iPX(t−i) + (1− α)t+1B(0). [4]

X(t) = (X
(t)
1 , . . . , X

(t)
n )T is a random vector whose entries are

point measures, where X
(t)
i = δ(w

(t)
i ) and w

(t)
i is chosen from

the measure b
(t)
i on W, independent of the choice of other

coordinates of the vector X(t). This observation, motivates a
model of memory that we define in the following paragraph.

Let each agent’s memory be modeled as a stack. At the
top level of the stack of agent i are all the words heard at
time t. Below this are all words heard at time t − 1 and so
on tracing backwards in time until the first words heard at an
initial time 1. At the lowest level, corresponding to time 0, is

the initial belief b
(0)
i which is a probability distribution on the

set of words. We may imagine this to be a form of vestigial
memory.

Let agent j be adjacent to agent i. We shall describe the
process by which agent j produces word wj(t) and whereby
also generates or produces Xj(t) which is the point measure
supported on Xj(t). Let Sj be the stack held by agent j, and

S
(t)
j , . . . , S

(0)
j be the levels in its stack from top to bottom.

After j produces Xj(t), i places Xj(t), and all other Xj′(t)
produced by neighbors of i at time step t on the top of its
stack. In order to describe the mechanism by which Xj(t)
is generated, let us introduce a geometric random variable Y
where

P[Y = i] = α(1− α)i.

If Y ≤ t− 1, Xj(t) is chosen to be the word produced by j′ at
time t − 1 − Y (which is stored in St−1−Y ) with probability

Pjj′ . If Y ≥ t, Xj(t) is chosen from the distribution in b
(0)
j .

This process has been illustrated in Figure . Note that in this
model words are formal objects. While any two words present

in the stack positions S
(t)
j for t = 1, 2, . . . are considered dis-

tinct, there is a natural “parent-child” structure existing on
the set of words. Under this scheme, let the probability dis-

tribution of X
(t)
i be denoted b̃

(t)
i . Denoting by B̃(t) the vector

(b̃
(t)
1 ,b

(t)
2 , . . . , b

(t)
n ).

Observation 2. A direct computation shows that in the model
just described

B̃(t+1) =

t∑
i=0

α(1− α)iPX(t−i) + (1− α)t+1B̃(0). [5]

This along with the fact that the randomness used in the

generation of X
(t)
j is independent of the randomness in the
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generation of all other words, tells us that the model of mem-
ory just described results is a system with the same dynamics
as that introduced earlier. This particular model of memory
may be viewed as an implementation of the ideas implicit in
exemplar based accounts of linguistic behavior.
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