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1. Strongly polynomial randomized approximation scheme
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2. For a semisimple Lie algebra G , assuming a mathematical

conjecture for which there is extensive experimental evidence,

algorithm for testing the positivity of all generalized LR

coefficients.
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Honeycomb and Hive models

http://www.math.ucla.edu/∼tao/java/Honeycomb.html



Complexity

Theorem (N’06)

LR coefficients for GLn are #P−complete.

Idea of Proof.

Reduce the computation of the number I (a, b) of 2× n tables with

given row and column sums a and b and positive integer entries (a

known #P−complete problem) to the computation of an LR

coefficient cνλµ via the Robinson-Schensted-Knuth correspondence

and a way of compressing an exponential number of tableaux into

a single tableau.



LRcone

Let eig(X ) be the eigenvalues of X listed in non-increasing order.

LR cone = cone of 3−tuples (eig(U), eig(V ), eig(W )) where

U,V ,W are symmetric positive definite and U + V = W .

λ, µ and ν are partitions with n parts whose sizes monotonically

decrease when G = GLn.

cνλµ > 0 ⇔ (λ, µ, ν) is a lattice point in the LR cone.



Approximating generic LR coefficients

Theorem (N’10)

There is a randomized strongly polynomial time algorithm for

approximating a 1− O(γ) fraction of all cνλµ corresponding to

integer points in

LRcone ∩
{
‖(λ, µ, ν)‖1 ≤

n5

γ

}
.



SPRAS for LR coefficients

(∆,∆,∆′)

α = Ω(1/ log n),

∆ = α(n3, n3 − n2, . . . , n2),

∆′ = α( 3n3

2
+ n2

2
, 3n3

2
− n2

2
, . . . , n3

2
+ 3n2

2
).

Theorem

If (λ, µ, ν) ∈ (∆,∆,∆′) + LRcone, then cνλµ can be approximated

in randomized strongly polynomial time.



If Pν
λµ is the hive polytope corresponding to (λ, µ, ν), the number

of lattice points in Pν
λµ ∩ Z(n2) is equal to the volume of

ζνλµ :=

x
∣∣ inf
y∈Pνλµ∩Z

(n2)
‖x − y‖∞ < 1

2

.



If Pν
λµ is the hive polytope corresponding to (λ, µ, ν), the number

of lattice points in Pν
λµ ∩ Z(n2) is equal to the volume of

ζνλµ :=
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∣∣ inf
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Algorithm

1. Compute the volume V of the the polytope Qν
λµ obtained by

adding a slack of 2 to each constraint of Pν
λµ.

2. Produce N =
eO(1/α) log 1

δ

ε2 random points from Qν
λµ, take the

nearest lattice point to each, and compute the proportion f of

the resulting points that lie in Pν
λµ.

3. Output fV (an estimate of vol ζνλµ).

P νλµ
ζνλµ

0

40

70

90 140

170

190

200
16512065

100

λ = (40, 30, 20, 10)

µ = (40, 30, 20, 10)

ν = (65, 55, 45, 35)

x

y

z

w

y + w ≥ x + z

125

100 150



Proof of correctness

α = Ω(1/ log n),

∆ = α(n3, n3 − n2, . . . , n2),

∆′ = α( 3n3

2
+ n2

2
, 3n3

2
− n2

2
, . . . , n3

2
+ 3n2

2
).

1. vol Qν
λµ = eO(1/α)volζνλµ if (λ, µ, ν) ∈ (∆,∆,∆′) + LRcone.

2. For a 1− O(γ) fraction of all integer points in

LRcone ∩
{
‖(λ, µ, ν)‖1 ≤ αn5

γ

}
, (λ, µ, ν) ∈ (∆,∆,∆′) + LR

cone holds.

3. In randomized strongly polynomial time, a nearly random

point can be produced from Qν
λµ, and the volume of Qν

λµ can

be approximated.
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Justifying step 1

The sum of two hives is a hive. Corresponding to (∆,∆,∆′), there

is a hive with a slack αn2

2 on each constraint. Therefore,

corresponding to (λ, µ, ν) in LRcone + (∆,∆,∆′), there is a hive

with a slack αn2

2 on each constraint, implying that the hive

polytope contains a ball of radius αn2

2 . So by (a slight modification

of) [Kannan-Vempala’97], the number of vertices in Pν
λµ is at least

e−O(1/α)volQν
λµ.
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Justifying step 2

If ‖λ+ δ1‖1 + ‖λ+ δ2‖1 = ‖λ+ δ3‖1 and 4‖(δ1, δ2, δ3)‖∞ < δα,

then (λ+ δ1, µ+ δ2, ν + δ3) ∈ LRcone + (1− δ)(∆,∆,∆′)

because the minimum norm Lipschitz extension (also called

∞−harmonic function) corresponding to (δ1, δ2, δ3) for the

equilateral triangle, violates no hive constraint by more than

4‖(δ1, δ2, δ3)‖∞. So on perturbing (λ, µ, ν) to

(λ+ δ1, µ+ δ2, ν + δ3), the radius of the largest ball in the

corresponding hive polytope changes by at most δ.
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Theorem

Suppose b is an arbitrary rational vector, A is m × d having

bitlength poly(m) and P := {Ax ≤ b}.
Then vol (P) can be computed in strongly polynomial time to

within 1± ε with probability > 1− δ using poly(mε ) log(1/δ)

random bits and poly(mε ) log(1/δ) arithmetic operations on

numbers with bitlength
∑

i | log bi |+ polylog( d
εδ ).



Proof:

For every constraint hyperplane, find a farthest vertex in strongly

polynomial time.

Compute the center of mass x0 of these points.



Lemma

“Dikin ellipsoid” D0 at x0 satisfies D0 ⊆ P ⊆ m
3
2 D0.

Perform a linear transformation T to make D0 the unit ball (in

strongly polytime).

T (P) contains the unit ball centered at T (x0) and is contained in

the ball of radius m
3
2 centered at T (x0).

Compute volT (P)/detT using any known O∗(md5) arithmetic

steps and O∗(d4) bits using Lovász-Vempala’03. �



Log concavity

Conjecture (Okounkov’00)

Viewed as a function from LRcone ∩ Z3n to Z, cνλµ is log-concave.

Theorem (Chindris-Derkson-Weyman’07)

This is false in general!



Approximate log concavity

∆ε = (n3, n3 − n2, . . . , n2)/ε,

∆′
ε = ( 3n3

2
+ n2

2
, 3n3

2
− n2

2
, . . . , n3

2
+ 3n2

2
)/ε.

Theorem

If (λi , µi , νi ) ∈ LRcone + (∆ε,∆ε,∆
′
ε), and

(λ2, µ2, ν2) = β(λ1, µ1, ν1) + (1− β)(λ3, µ3, ν3), then

ln cν2
λ2µ2
≥ β ln cν1

λ1µ1
+ (1− β) ln cν1

λ1µ1
− 2ε.

Proof.

Use Brunn-Minkowski inequality for the volumes of Hive polytopes

together with an argument relating the volumes to the number of

integer points in them.



GCT V

The failure of saturation has to be dealt with in testing the

positivity of the Kronecker and Plethysm coefficients central to

GCT. This issue also arises in testing the positivity of a generalized

LR coefficient for an arbitrary semisimple Lie algebra, making the

latter a useful prototype.

Theorem (GCT V (Mulmuley-N’07))

Assuming a mathematical conjecture, the positivity of a

generalized LR coefficient for an arbitrary semisimple Lie algebra G

can be tested in strongly polynomial time.



Classification of Simple Lie algebras

I A` SL(`+ 1)

I B` SO(2`+ 1)

I C` Sp(2`) (symplectic group)

I D` SO(2`)

I exceptionals E6,E7,E8,G2,F4

I Any semisimple Lie algebra splits into a direct sum of simple

Lie algebras.
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GCT V

I An LR coefficient for a semisimple algebra is a product of LR

coefficients corresponding to its simple factors so the question

reduces to testing positivity in the cases of simple Lie algebras.

I For type A, can be tested in polynomial time by linear

programming [Knutson-Tao’01], in fact strongly polynomial

time [Mulmuley-Sohoni’05].

I Suffices to handle types B,C ,D and exceptionals.



BZ polytopes

I For any semisimple Lie algebra and partitions λ, µ, ν,

Berenstein and Zelevinsky define a polytope Pν
λµ, the number

of integer points in which is cνλµ.

I Pkν
kλ kµ = kPν

λµ.

I “Stretching conjecture” of [Loera-McAllister’06] implies:

If G is of type B,C or D, and for some k ∈ 2N + 1 := M,

ckν
kλ kµ > 0, then cνλµ > 0.

I So Pν
λµ ∩ Z` 6= φ iff Pν

λµ ∩ Z`M 6= φ.

(As far as we are concerned, M can be any infinite multiplicatively

closed subset of N that may vary with λ, µ, ν.)



Lemma

I If Z` ∩ affine span(P) is nonempty, then

P ∩ Z` 6= φ.

I Reason: Let ZM denote the subset of rationals whose

denominators divide an element of M. If S := affine span(P)

is a rational affine subspace, either S ∩ Z` = φ or S ∩ Z`M is

dense in S .



Algorithm

I Compute the affine span of P using strongly polynomial linear

programming.

I Test if S ∩ Z` is empty in strongly polynomial time using the

Smith normal form (computed by Kannan-Bachem) as

follows.

I Suppose S := {Ax = b}, where A and b have integer entries.

I Compute the Smith normal form A = UDV , where U,V are

invertible integer matrices and

D = diag(d1, . . . , dn),

where di

∣∣di+1 are integers.

I Solution exists iff ∃y ∈ Z` such that Dy = U−1b, but D is

diagonal so determining this is easy.
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Exceptional Lie algebras

For exceptional simple algebras, the cone of 3−tuples (λ, µ, ν)

splits into a finite number of subcones, such that within each

subcone, cνλµ is a fixed quasi-polynomial function of (λ, µ, ν).

Therefore, the LR coefficient can be computed exactly using O(1)

arithmetic operations.



Thank You!
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