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Abstract

We present a Markov chain (Dikin walk) for sampling from a convex body equipped with
a self-concordant barrier, whose mixing time from a “central point” is strongly polynomial
in the description of the convex set. The mixing time of this chain is invariant under affine
transformations of the convex set, thus eliminating the need for first placing the body in an
isotropic position. This strengthens previous results of [11] for polytopes and generalizes these
results to arbitrary convex sets. In the case of a convex setK defined by a semidefinite constraint
of rank at most α and at most m additional linear constraints, our results specialize to the
following statement.

Let s ≥ |p|
|q| for any chord pq of K passing through a point x ∈ K. Then, after

t = O

(
n(m+ nα)

(
n ln((m+ nα)s) + ln

1

ε

))

steps are taken by a Dikin walk starting at x, the total variation distance and the L2 distance
of the density ρ(xt) of the point to the uniform density are less than ε.

On every convex set of dimension n, there exists a self-concordant barrier whose “complexity”
is polynomially bounded. Consequently, a rapidly mixing Markov chain of the kind we describe
can be defined on any convex set. We use these results to design an algorithm consisting of a
single random walk for optimizing a linear function on a convex set. We show that this random
walk reaches an approximately optimal point in polynomial time with high probability and
that the corresponding objective values converge with probability 1 to the optimal objective
value as the number of steps tends to infinity. One technical contribution is a family of lower
bounds for the isoperimetric constants of (weighted) Riemannian manifolds on which, interior
point methods perform a kind of steepest descent. Using results of Barthe [2] and Bobkov and
Houdré [5], on the isoperimetry of products of (weighted) Riemannian manifolds, we obtain
sharper upper bounds on the mixing time of Dikin walk on products of convex sets than the
bounds obtained from a direct application of the Localization Lemma, on which, the analyses
of all random walks on convex sets have relied since (Lovász and Simonovits, 1993).

1 Introduction

Sampling from a nearly uniform distribution on a high dimensional convex set is an important
ingredient in several computational tasks, including computing its volume [6, 17] and sampling
from lattice points in it [12]. The usual strategy for doing so is to design a rapidly mixing Markov
chain whose stationary distribution is the uniform distribution, and then run it for sufficiently long
and pick the final point as a sample. The mixing times of all known Markov chains for sampling
generic convex sets depend on the aspect ratio of the set, a measure of which is the ratio between
its diameter and width.

Generalizing prior work with Kannan on polytopes [11], we present a Markov chain for sampling
from a convex body defined using a combination of linear, hyperbolic and self-concordant constraints
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(by which we mean constraints corresponding to which there is a logarithmic, hyperbolic or self-
concordant barrier respectively). When restricted to the case of polytopes, the bounds we present
imply (upto universal constants), the bounds in (Kannan and Narayanan, [11]). The mixing time of
this chain is an affine invariant, thus eliminating the need for first placing the body in an isotropic
position. A self-concordant barrier F on a convex set K, is a convex function whose domain is the
interior of K, that tends to infinity as one approaches its boundary, and whose second derivative
at a point along any unit direction is large in a suitable sense compared to its first and third
derivatives along the same vector. In order to convey the basic idea, let D2F (x) be the Hessian
matrix of F at x. We define the transition measure Px corresponding to x to roughly be a Gaussian
whose covariance matrix is a fixed multiple of

(
D2F (x)

)−1
. The properties of the barrier function

cause the random walk to avoid the boundary, but at the same time take relatively large steps. For
example, let K be the 2-dimensional Euclidean ball {x : ‖x‖ ≤ R} and F (x) := − ln(R2 − ‖x‖2)
be a self-concordant barrier for it. Then, for x ∈ K, up to constants, the expected magnitude of
the component of a step in the radial direction is R− ‖x‖, while the expected magnitude of the
component in the transverse direction is roughly

√
R2 − ‖x‖2. We see that the mixing time from 0

is independent of the diameter 2R, and that the size and typical orientation of a step vary according
to the local geometry.

We use this random walk to design an algorithm for optimization, which essentially consists
of doing such a random walk on a projectively transformed version of K. This transformation
preferentially dilates regions corresponding to a larger objective value, causing them to occupy
more space and hence become the target of a random walk. In the case of polytopes, a slightly
different version of this appeared in [11]. The Markov chain considered in [11] was ergodic, while
the one we use here is not. The analysis of the non-ergodic Markov chain hinges upon the fact that
it can be viewed as a limit of ergodic Markov chains.

1.1 Barrier oracle model for convex sets

There are two standard information models for convex sets in the operations research literature, the
separation model and the (self-concordant) barrier model (See Freund [7], page 2). Existing work
on sampling convex sets, with the exception of (Kannan and Narayanan [11]) has focussed on the
separation model and a weaker model known as the membership oracle model. The self-concordant
barrier model we will consider is the following.

1. We are guaranteed that the origin belongs to K and that K has a self-concordant barrier F
with parameter ν (see Section 2).

2. We are given a real number s such that for any chord pq of K through the origin, |p|
|q| ≤ s.

3. On querying a point x ∈ Rn, we are returned a positive semidefinite matrix corresponding to
the Hessian of F if x ∈ K and returned “No” if x 6∈ K.

1.2 Implementing the barrier oracle in the linear and semidefinite cases

The most frequently encountered barrier functions encountered are the logarithmic barrier for poly-
topes and the log det barrier for convex sets defined by semidefinite constraints (See Section 2). We
discuss the implementation of the barrier oracle for the logarithmic barrier below, in the case where
x is in the set. Let K` be the set of points satisfying the system of inequalities Ax ≤ 1. Then,
H(x) = ATD(x)2A where D(x) is the diagonal matrix whose ith diagonal entry dii(x) =

1
1−aTi x

.

By results of Baur and Strassen [3], the complexity of solving linear equations and of computing
the determinant of an n×n matrix is O(nγ). The computation of ATD(x)2A can be achieved using
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mnγ−1 arithmetic operations, by partitioning a padded extension of ATD into ≤ m+n−1
n square

matrices. Thus, the complexity of the barrier oracle is O(mnγ−1) arithmetic operations where
γ < 2.377 is the exponent for matrix multiplication.

In the case of a semidefinite constraint of rank ν, the number of arithmetic steps needed for
computing the Hessian of the log det barrier is O(n2ν2 + nνγ), (see Section 11.3, [25]. We have
replaced an exponent 3 in [25] with γ). Given the Hessian, it can be inverted in (nγ) arithmetic
steps. This is needed to implement one step of the Dikin walk.

1.3 Presentation of the convex set K

For the definitions of logarithmic, hyperbolic and self-concordant barriers, we refer to Section 2.
We will assume that the convex set K is specified as the set of points that satisfy a family of
constraints

K :=

m⋂

i=1

{Fi(x) < ∞}

where the Fi are either logarithmic, hyperbolic or arbitrary self-concordant functions. Without
loss of generality, we may aggregate these barriers and may assume that K := K` ∩ Kh ∩ Ks,
where K` is a polytope with m faces accompanied by the logarithmic barrier F̄ , Kh is a convex set
accompanied with a hyperbolic barrier F̆ with parameter νh, and Ks is a convex set accompanied
by a νs−self-concordant barrier F̃ . Although their intersection is bounded, each of these convex
sets may be unbounded. Define the self-concordant barrier function

F := F̄ + nF̆ + n2F̃ ,

and define

ν := m+ nνh + (nνs)
2 (1)

to be the complexity parameter of F (which is different from its self-concordance parameter; this
being m+

√
nνh + nνs ). Let C be a sufficiently large universal constant. We define the radius of

a Dikin step, r to be 1/C. For a point x ∈ K and v ∈ Rn, we define

‖v‖2x := D2F (x)[v, v].

The random walk we use here is a variation of the Dikin walk defined in [11], in which instead of
picking the next point from a Dikin ellipsoid, one picks it from a Gaussian having that covariance.

1.4 Related Work

Let B(x, τ) be defined to be the n−dimensional Euclidean ball of radius τ centered at x and suppose
K is a n-dimensional convex set such that B(0, r) ⊆ K ⊆ B(0, R). The Markov chain known as
the “Ball walk” [17, 10] is defined as follows. If the random walker is at a point xi in a convex
body K at time step i, a random point z is picked in B(xi, O( 1√

n
)), and xi+1 is set to z if it lies

in K, otherwise the move is rejected and xi+1 is set to xi. The mixing time of this walk from a
warm start (i. e. a density that is bounded above by O(1) times the stationary density) in order

to achieve a constant total variation distance to stationarity is O∗
(
n2R2

r2

)
. However, for no single

pre-specified point (such as the center of mass, as opposed to a random one) is it known to mix in
polynomial time. More recently, a random walk known as Hit-and-Run, was analyzed in [16, 18].
If the random walker is at a point xi in a convex body K at time step i, a vector is picked from the
uniform distribution on the sphere and through xi, and xi+1 is chosen from the uniform measure
on the chord {xi+λv

∣∣λ ∈ R}∩K. Unlike the Ball walk, this walk provably mixes rapidly from any
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interior point, with a weak (logarithmic) dependence on the distance of the starting point from the

boundary. From a warm start, the mixing time of Hit-and-Run is O
(
n2R2

r2

)
, and its mixing time

from a fixed point at a distance d from the boundary is O
(
n3(Rr )

2 ln R
d

)
. The mixing time of the

Dikin walk in two cases of interest are as follows (details are provided in Theorem 2). Let x ∈ K

and for all chords pq passing through x, |p−x|
|q−x| ≤ s. We will call such a point x s−central. Suppose

K is

(S) a slice of the semidefinite cone Sν×ν of ν × ν matrices endowed with the hyperbolic barrier
F (x) = − ln detx or

(Q) the intersection of m = ν
2 ellipsoids, A1B ∩ A2B ∩ · · · ∩ AmB where Ai are non-singular

affine transformations and B is the Euclidean Ball. In this case, the hyperbolic barrier is
F (x) = −∑

ln(1− ‖A−1
i (x)‖2).

Then the mixing time starting at x is O(n2ν(n ln(νs) + ln 1
ε )). Whether or not the bodies are

in isotropic position, in the above cases (S) and (Q) corresponding to semidefinite and quadratic
programs, when ν = O(n1−ε), the mixing time bounds are an improvement over the existing bounds
for Hit-and-Run [18].

If K is defined by semidefinite constraints, from a point x ∈ K, one step for Hit-and-Run
requires Ω(log(R/d)) membership operations, each of which requires testing the semidefiniteness of
a ν×ν matrix (which takes O(νγ) arithmetic steps), where R is the radius of a circumscribing ball,
and d is the distance of x to the boundary of K. Convex sets defined by semidefinite programs
can be very ill-conditioned, and the best possible a priori upper bound on log R

d is not less than eL

where L is the total bit-length of rational data defining K and the point [28]. In the general setting,
the number of arithmetic operations needed for implementing a Dikin step would be independent
of R/r, but would depend on two affine-invariant quantities - the parameter associated with the
barrier and log s, where the starting point is s−central. In ill-conditioned semidefinite programs,
log s can be exponential in the bitlength, but for special points it can be much smaller; for example,
for the center of mass and or the analytic center, it is O(logn) and O(log ν) respectively.

Lovász [16] proved a lower bound of Ω(n2p2) on the mixing time of Hit-and-Run in a cylinder
Bn × [−p, p] from a warm start, where Bn is the unit ball in n−dimensions. Dikin walk has a
mixing time of O(n2) from a warm start. Thus for a cylinder with p = ω(1), the lower bound on
the number of steps needed for Hit-and-Run to mix (without rescaling the body) is larger than the
upper bound on the number of steps for Dikin walk.

More generally, we can compare the upper bounds on the number of (barrier) oracle calls needed
to generate a point from an convex set K whose total variation distance from the uniform is ε,
when the starting point is at a distance η from the boundary. We assume that the barrier F whose
complexity parameter is ν. For Hit-and-Run, the number of oracle calls is

O

(
n3R

2

r2
ln

(
n

ηε

))
.

For Dikin walk, this is

O

(
nν

(
n ln(

nν

η
) + ln

1

ε

))
.

The ratio between the bounds for number of oracle calls for Dikin walk and the number of oracle
calls for Hit-and-Run is O∗

(
νr2

nR2

)
.

In the specific case where the constraints are either semidefinite or linear, we can compare the
upper bounds on the number of arithmetic operations needed in Hit-and-Run and Dikin walk.
Suppose K as above that K is an convex set and the starting point is at a distance η from the
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boundary, and that it is defined by m linear constraints and additionally, semidefinite constraints
of total rank α (which can be as low as O(1), e. g. for the intersection of a constant number of
ellipsoids). Then, the number of arithmetic steps for implementing one Dikin step is

O
(
mnγ−1 + n2α2 + nαγ

)
,

by the discussion in Subsection 1.2. For Hit-and-Run, the number of arithmetic steps needed to
make one move in a naive implementation is O∗ (log(R/r)(mn+ nα2 + αγ)

)
, (since the natural way

of certifying positive semidefiniteness is to take a Cholesky factorization, which has a complexity
O(αγ), computing the new semidefinite matrix after one step has a complexity n(α2) (Section 11.3,
[25]) and testing containment in the region defined by linear constraints takes O(nm) operations).
We see that

1. If m < nα2+αγ , then the ratio between the number of arithmetic steps for one move of Dikin
walk and one move of Hit-and-Run is not more than O∗(n).

2. If m ≥ nα2+αγ , then the ratio between the number of arithmetic steps for one move of Dikin
walk and one move of Hit-and-Run is not more than O∗(nγ−2) < O∗(n0.38).

Combining the arithmetic complexity of implementing one step of Hit-and-Run with the mixing
time, the ratio between the number of arithmetic steps needed to produce one random point using
Dikin walk to the number of arithmetic steps needed for producing one random point using Hit-

and-Run is O∗
(
(m+αn)r2

R2

)
if m < nα2 + αγ and O∗

(
(m+αn)r2

R2n0.62

)
if m ≥ nα2 + αγ .

2 Self-concordant barriers

Let K be a convex subset of Rn that is not contained in any n− 1-dimensional affine subspace and
int(K) denote its interior. For any function F on int(K) having continuous derivatives of order k,
for vectors h1, . . . , hk ∈ Rn and x ∈ int(K), for k ≥ 1, we recursively define

DkF (x)[h1, . . . , hk] := lim
ε→0

Dk−1(x+ εhk)[h1, . . . , hk−1]−Dk−1(x)[h1, . . . , hk−1]

ε
,

where D0F (x) := F (x). Following Nesterov and Nemirovskii, we call a real-valued function F :
int(K) → R, a regular self-concordant barrier if it satisfies the conditions stated below. For
convenience, if x 6∈ int(K), we define F (x) = ∞.

1. (Convex, Smooth) F is a convex thrice continuously differentiable function on int(K).

2. (Barrier) For every sequence of points {xi} ∈ int(K) converging to a point x 6∈ int(K),
limi→∞ f(xi) = ∞.

3. (Differential Inequalities) For all h ∈ Rn and all x ∈ int(K), the following inequalities hold.

(a) D2F (x)[h, h] is 2-Lipschitz continuous with respect to the local norm, which is equivalent
to

D3F (x)[h, h, h] ≤ 2(D2F (x)[h, h])
3
2 .

4. F (x) is ν-Lipschitz continuous with respect to the local norm defined by F ,

|D[F ](x)[h]|2 ≤ νD2[F ](x)[h, h].

We call the smallest positive integer ν for which this holds the self-concordance parameter of
the barrier.
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It follows from these conditions that if F is a self-concordant barrier for K and A is a non-singular
affine transformation, then FA(x) := F (A−1x) is a self-concordant barrier for AK. This fact is
responsible for the affine-invariance of Dikin walk. Some examples of convex sets for which explicit
barriers are known are

1. Convex sets defined by hyperbolic constraints. This set includes sections of semidefinite cones.
Polytopes and the intersections of ellipsoids can be expressed as sections of semidefinite cones.

2. Sections of `p balls.

3. Convex sets defined by the epigraphs of matrix norms (see page 199 of [23]).

For other examples and methods of constructing barriers for new convex sets by combining existing
barriers, see Chapter 5 of [23].

2.1 Hyperbolic barriers

We refer the reader to [9] for the definition of a hyperbolic barrier. For the concrete applications in
this paper, it suffices to note that on the semidefinite cone Sm×m, − ln detx is a hyperbolic barrier
with parameter m, and that on the intersection of ellipsoids, A1B ∩ A2B ∩ · · · ∩ AmB where Ai

are non-singular affine transformations and B is the Euclidean Ball, −∑
ln(1 − ‖A−1

i (x)‖2) is a
hyperbolic barrier with parameter 2m.

Lemma 1 (Theorem 4.2, Güler [9]). If F is a hyperbolic barrier,

|D4F (x)[h, h, h, h]| ≤ 6
(
D2F (x)[h, h]

)2
.

2.2 Logarithmic barrier of a polytope

Given any set of linear constraints {aTi x ≤ 1}mi=1, the logarithmic barrier is a real valued function
defined on the intersection of the halfspaces defined by these constraints, and is given by

F (x) = −
m∑

i=1

ln
(
1− aTi x

)
.

2.3 Dikin Ellipsoids

Around any point x ∈ K, the Dikin ellipsoid (of radius r) is defined to be

Dx := {y : D2F (x)[x− y, x− y] ≤ r2}.
Fact 1. Dikin ellipsoids are affine invariants in that, if the Dikin ellipsoid of radius r around
a point x ∈ K is Dr

x and T is a non-singular affine transformation of K, the Dikin ellipsoid of
radius r centered at the point Tx for T (K) is T (Dr

x), as long as the new barrier that is used is
G(y) := F (T−1y).

Fact 2. For any y such that
D2F (x)[x− y, x− y] = r2 < 1,

for any vector h ∈ Rn,

(1− r)2D2F (x)[h, h] ≤ D2F (y)[h, h] ≤ 1

(1− r)2
D2F (x)[h, h]. (2)

Also, the Dikin ellipsoid centered at x, having radius 1, is contained in K. This has been shown in
Theorem 2.1.1 of Nesterov and Nemirovskii [23].
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The following was proved in a more general context by Nesterov and Todd in Theorem 4.1, [26].

Theorem 1 (Nesterov-Todd). Let pq be a chord of a polytope P and x, y be interior points on it
so that p, x, y, q are in order. Let Dx be the Dikin ellipsoid of unit radius at x with respect to a
point x. Then z ∈ Dy implies that p+ |p−x|

|p−y| (z − p) ∈ Dx.

3 The Dikin walk

For x ∈ int(K), let Gx denote the Gaussian density function given by

Gx(y) :=
( n

2πr2

)n
2
exp

(
−n‖x− y‖2x

r2
+ V (x)

)
,

where

V (x) =

(
1

2

)
ln detD2F (x).

3.1 Algorithm 1

Let 0 = x0 ∈ int(K). For i ≥ 1, given xi−1,

1. Toss a fair coin. If Heads let xi := xi−1.

2. Else

(a) Choose z from the density Gxi−1 .

(b) If z ∈ K, let

xi :=

{
z, with probability min

(
1, Gz(xi−1)

Gxi−1(z)

)

xi−1 otherwise.

(c) If z 6∈ K, let xi := xi−1.

Theorem 2 (Sampling). Let K 3 0 be an n−dimensional convex set accompanied by a barrier F

as in Subsection 1.3, with complexity parameter ν. Let s ≥ |p|
|q| for any chord pq of K containing

the origin. Then, the number of steps x1, . . . , xt that need to be taken before the total variation
distance and the L2 distance of the density ρ(xt) of xt to the uniform density is less than ε is
O
(
nν

(
n ln(νs) + ln 1

ε

))
. The number of steps needed from a warm start, i. e. when the L∞ norm

of ρ(x0)(vol(K)) is O(1), is O
(
nν ln 1

ε

)
.

In particular, if K is

(S) a slice of the semidefinite cone Sτ×τ of τ × τ matrices with F (x) = − ln detx or

(Q) the intersection of r ellipsoids, A1B ∩ A2B ∩ · · · ∩ AτB where Ai are non-singular affine
transformations and B is the Euclidean Ball. In this case, F (x) = −∑

ln(1− ‖A−1
i (x)‖2),

the mixing time from a fixed “s−central” point or a warm start, respectively, areO
(
n2τ

(
n ln(nτs) + ln 1

ε

))
and O

(
n2τ ln 1

ε

)
.

The mixing bounds in this paper are obtained by relating the Markov chain to the metric of
Riemannian manifold studied in operations research [22, 27], rather than the Hilbert metric [11, 16].
This metric possesses several potentially useful characteristics. For example, when the convex set
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Figure 1: Trajectory of a Dikin walk for optimizing a linear function on a convex set

is a direct product of polytopes, this metric factors in a natural way into a product of the metrics
corresponding to the individual convex sets, which is not the case for the Hilbert metric. Using
results of Barthe [2] and Bobkov and Houdré [5] on the isoperimetry on product manifolds, this
leads to an improved upper bound on the mixing time when K is a direct product of polytopes, and
opens up the future possibility of using differential-geometric techniques for proving isoperimetric
bounds, in addition to relying on the Localization Lemma, which underlies the analysis of all
Markov Chains on convex sets ever since it was introduced in (Lovász and Simonovits [17]). Even
if K is a direct product of polytopes, the Dikin Markov chain itself does not factor into a product of
Dikin Markov chains and Theorem 3 does not follow from a direct use of the Localization Lemma.

Theorem 3. If an n−dimensional convex set K := K1×· · ·×Kh is the direct product of polytopes
Ki, each of which individually has a function Fi with a complexity parameter (defined in Equation 1)
at most κ, then, the mixing time of Dikin walk from a warm start on K defined using the function∑h

i=1 Fi is O(κn).

When there are Ω(n) factors, each of which is a polytope with κ faces, the total number of
faces of K is Ω(nκ). In this case, the results of [11] using the logarithmic barrier, give a bound of
O(κn2) while Theorem 3 gives a bound of O(κn).

4 Convex programming

The mixing results can be adapted to give a random walk based polynomial-time Las Vegas al-
gorithm for optimizing a linear function cTx on certain convex sets K. The complexity of this
algorithm is roughly the same as that of the sampling algorithm.

Unlike other random walk based algorithms ([4]) this algorithm does not proceed in phases, but
consists of a single random walk x0, x1, . . . on K. The algorithm here is a Las Vegas algorithm
rather than a Monte Carlo algorithm as was the case in [11]. It is also different in that the Markov
chain used here does not depend on ε, the error tolerance.

We will consider convex programs specified as follows. Suppose we are given a convex set K
containing the origin as an interior point, and a linear objective c such that

Q := K ∩ {y : cT y ≤ 1}

is bounded, for any chord pq of Q passing through the origin, |p|
|q| ≤ s and ε,> 0 (if B(0, r) ⊆ K ⊆

B(0, R), then s ≤ R
r ). Then, the algorithm is required to do the following.
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• If ∃x ∈ K such that cTx ≥ 1,

• Output x′ ∈ K such that cTx′ ≥ 1− ε.

Let T : Q → Rn be defined by

T (x) =
cTx

1− cTx
,

and let F̂ be a barrier for K̂ := T (Q). Such a barrier can be easily constructed from F ; details
follow Theorem 4.

Our algorithm for convex programming consists simply of doing a modified Dikin walk on K̂
for a sufficient number of steps that depends on the desired accuracy ε and confidence 1 − δ. We
define Ĝt using F̂ in the same way that Gt was defined using F ; details appear below.

4.1 Algorithm 2

Let x0 = 0. While cTxi−1 < 1− ε,

1. Toss a fair coin. If Heads, set xi := xi−1.

2. Else,

(a) Choose z from the density ĜT (xi−1).

(b) If z ∈ K̂, let

xi :=





T−1(z), with probability min

(
1, Ĝz(T (xi−1))

ĜT (xi−1)
(z)

)

xi−1 otherwise.

(c) If z 6∈ K̂, let xi := xi−1.

Theorem 4 (Las Vegas algorithm for optimization). Let K,F , s and r be as in Theorem 2. In
the cases where F is a ν-barrier or a hyperbolic barrier with parameter ν, let τ(ε, δ) be set to
O
(
nν

(
ln 1

δ +
(
n ln sν

ε

)))
. If {cTx ≥ 1} ∩K is nonempty and x0, x1, . . . is the modified Dikin walk

in Algorithm 2, then

P
[∀i > τ(ε, δ), cTxi ≥ 1− ε

] ≥ 1− δ. (3)

Corollary 1. For any κ > 0, with probability 1,

lim
i→∞

ei
1−κ

(1− cTxi) = 0.

4.2 Constructing barriers

The construction in [21], provides us with a barrier F̂s on K̂, given by

F̂s(y) :=

(
8

3
√
3
+

1

2
√
νs

(
7

3

) 3
2

)2(
F̃

(
y

1 + cT y

)
+ 2νs ln(1 + cT y)

)
,
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whose self-concordance parameter is ≤ (3.08
√
ν + 3.57)2. If F̃ = − ln p(x) where p is a hyperbolic

polynomial of degree ν, F̂h is defined simply by

F̂h(y) := F̃

(
y

1 + cT y

)
+ νs ln(1 + cT y),

and has the same self-concordance parameter ν. This applies to the special case of the Logarithmic
barrier as well. For any point x ∈ int(K̂), we use the Hessian matrix D2F̂ to define a norm

ˆ‖v‖x := (vTD2F̂ v)
1
2 .

Ĝx(y) :=
( n

2πr2

)n
2
exp

(
−n ˆ‖x− y‖2x

r2
+ V̂ (x)

)
,

where

V̂ (x) =

(
1

2

)
ln detD2F̂ (x).

For x 6∈ int(K̂), for any y 6= x, Ĝx(y) := 0. Let

s := sup
pq3O

|p|
|q| ,

where the supremum is taken over all chords of K containing the origin.

5 Metric defined by a barrier

For any smooth strictly convex function G, the Hessian D2G is positive definite. Given the barrier
F , for every x ∈ supp(F ) and u, v ∈ Rn,

< u, v >x:= D2F (x)[u, v]

is bilinear, and ‖u‖x =
√
< u, u >x is a norm. In addition, we define

1. <̆u, v >x:= D2F̆ (x)[u, v] and ‖̆u‖x :=
√

<̆u, u >x.

2. <̃u, v >x:= D2F̃ (x)[u, v] and ‖̃u‖x :=
√

<̃u, u >x and

3. <̄u, v >x:= D2F̄ (x)[u, v] and ‖̄u‖x :=
√
<̄u, u >x.

We define

d(x, y) = inf
Γ

∫

z
‖dΓ‖z

where the infimum is taken over all rectifiable paths Γ from x to y. Let M be the metric space
whose point set is K and metric is d. d`, dh and ds are defined analogously in terms of the respective
norms ‖̄ · ‖, ‖̆ · ‖ and ‖̃ · ‖.
Lemma 2 (Nesterov-Todd (Lemma 3.1 [27])). If ‖x− y‖x < 1 then,

‖x− y‖x − ‖x− y‖2x ≤ d(x, y) ≤ − ln(1− ‖x− y‖x).
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While some of the presented bounds can be obtained from the isoperimetric bounds for the
“Hilbert metric” (Theorem 6) proved by Lovász, we can prove stronger results for sampling certain
classes of convex sets such as the direct product of a number of polytopes, by using results of
Barthe [2] and Bobkov and Houdré [5] on the isoperimetry of product spaces. In particular, for a
direct product of an arbitrary number of polytopes, each defined by O(κ) constraints, this allows
us to show a upper bound on the mixing time from a warm start of O(κn). The bound obtained
using the Hilbert metric in the obvious way is O(κn2), since the Hilbert metric on a direct product
does not decompose conveniently into factors as does the Riemannian metric.

Riemannian metrics defined in this way have been studied because of their importance in convex
optimization, for example, by Nesterov and Todd in [27] and by Nesterov and Nemirovski in [22],
and Karmarkar studied the properties of a related metric [14] that underlay his celebrated algorithm
[13]. For other work on sampling Riemannian manifolds motivated by statistical applications, see
[15, 20], Chapter 8 [19].

5.1 Isoperimetry

Let M be a metric space endowed with distance function d and µ be a probability measure on it.
We term (S1,M\ S1 \ S2, S2) a δ-partition of M, if

δ ≤ dM(S1, S2) := inf
x∈S1,y∈S2

dM(x, y),

where S1, S2 are measurable subsets of M. Let Pδ be the set of all δ-partitions of M. The
isoperimetric constant βfat(δ,M, µ) is defined as

inf
Pδ

µ(M\ S1 \ S2)

µ(S1)µ(S2)
.

Given interior points x, y in int(K), suppose p, q are the ends of the chord in K containing x, y
and p, x, y, q lie in that order. Denote by dH the Hilbert (projective) metric defined by

dH(x, y) := ln

(
1 +

|x− y||p− q|
|p− x||q − y|

)
.

Let βfat := βfat(δ,M, µ), where δ = 1√
n
.

Theorem 5. If F is the self-concordant barrier of K with complexity parameter ν, presented in
the format of Subsection 1.3,

βfat = Ω

(
1√
nν

)
.

Proof.

Lemma 3. 1. ds(x, y) ≤ 2(1 + 3νs)ndH(x, y).

2. dh(x, y) ≤ √
nνhdH(x, y).

3. d`(x, y) ≤
√
mdH(x, y)

Proof. For any z on the segment xy, dH(x, z) + dH(z, y) = dH(x, y). Therefore it suffices to prove
the result infinitesimally. By Lemma 2

lim
y→x

d(x, y)

‖x− y‖x = 1,

11



and a direct computation shows that

lim
y→x

dH(x, y)

|x− y|x ≥ 1.

Lemma 3 follows from Theorems 7 and 8.

Theorem 5 follows from Theorem 6 and Lemma 3.

Theorem 6 (Lovász, [16]). Let S1 and S2 be measurable subsets of K. Then,

vol(K \ S1 \ S2)vol(K) ≥
(
edH(S1,S2) − 1

)
vol(S1)vol(S2).

For x ∈ K and a vector v, |v|x is defined to be supα{x± αv ∈ K}.
Theorem 7 (Theorem 2.3.2 (iii), [23]). Let F be a self-concordant barrier whose self-concordance
parameter is νs as defined in Section 2. Then, for all h ∈ Rn and x ∈ int(K)

|h|x ≤ ‖h‖x ≤ 2(1 + 3νs)|h|x.

The following result is implicit in [9].

Theorem 8 (Güler, [9]). Let − ln p(x) be a hyperbolic barrier for K, where p has degree νh. Then,
for all h ∈ Rn and x ∈ int(K),

|h|x ≤
√

D2F̆ (x)[h, h] ≤ √
νh|h|x.

6 Analysis of the mixing time

We denote the marginal distribution of xi+1 given xi = x by Px. Lemma 4 is a statement about the
concentration of derivatives of odd order in high dimension. It will be used in the proof of Lemma
6. Lemma 5 states that if the unit Dikin ellipsoid around a point contains the unit ball, then
the points at which a random line through x chosen from the distribution induced by the uniform
measure on the unit sphere intersects the boundary are, with high probability, at a distance Ω∗(

√
n)

from x. This Lemma is used in the proof of Claim 3.

Lemma 4 (Concentration bound). Let h be chosen uniformly at random from the unit sphere
Sn = {v | ‖v‖ = 1}. Then, for any odd k,

P

[
DkF (x)[h, . . . , h] > kε sup

‖v‖x≤1
DkF (x)[v, . . . , v]

]
≤ exp

(−nε2

2

)
.

If F is a self-concordant barrier, and

∀v, ‖v‖2 ≥ D2F (x)[v, v]

when k = 3, this simplifies to

P
[
D3F (x)[h, h, h] > 3ε

] ≤ exp

(−nε2

2

)
.

12



Proof. The “Bernstein inequality” of Gromov (Section 8.5, [8]) which applies to multivariate poly-
nomials restricted to Sn, states that for any polynomial p on Sn of degree k,

sup
h∈Sn

‖grad p(h)‖ ≤ k sup
h∈Sn

|p(h)|.

For any fixed x, DkF (x)[h, . . . , h] is a polynomial in h of degree k. Therefore

DkF (x)[h, . . . , h]

k sup‖v‖x≤1

∣∣DkF (x)[v, . . . , v]
∣∣

is 1-Lipschitz on Sn. If k is odd, DkF (x)[h, . . . , h] = −DkF (x)[−h, . . . ,−h], and therefore its
median with respect to the uniform measure σ on the unit sphere is 0. The first part of the lemma
follows from the measure concentration properties of Lipschitz functions on the sphere (page 44 in
[1]); namely, if f is an 1-Lipschitz function on the unit sphere and M is its median, then

σ (p > M + ε) ≤ e−
nε2

2 . (4)

When F is a self-concordant barrier, the second claim in the lemma follows because

sup
‖v‖≤1

D3F (x)[v, v, v] ≤ sup
‖v‖x≤1

D3F (x)[v, v, v] ≤ 1.

Lemma 5. Let P be a polytope and x a point in it. Let the Dikin ellipsoid at x with respect to the
logarithmic barrier at x contain the unit ball. Let v be chosen uniformly at random from the unit
ball centered at x and ` be the line through x and v, and p and q be the two points of intersection
of ` with the boundary ∂P . Then, for any constant α ≥ 0,

P
[
min(‖p‖, ‖q‖) ≤

√
n

2(α+ 2 lnn)

]
≤ 2e−α. (5)

Proof. Without loss of generality, we may assume x to be the origin. The unit ball is contained in
the Dikin ellipsoid and so P can be expressed as

⋂m
i=1{aTi x ≤ 1}, where

I º
∑

i

aia
T
i . (6)

Examining the trace and the norm on both sides of (6), we obtain

∀i, ‖ai‖ ≤ 1

and
m∑

i=1

‖ai‖2 ≤ n.

We note that

min(‖p‖, ‖q‖) =
(
min
i

|aTi x|
)−1

. (7)

Thus, it is sufficient to show that

P
[
∃i(aTi v)2 ≥

2(α+ 2 lnn)

n

]
≤ 2e−α, (8)

13



which we proceed to do. Let S be the subset of [m] := {1, . . . ,m}, consisting of those i for which

‖ai‖ ≥ 1√
n
. Clearly, if for some i, (aTi v)

2 ≥ 2(α+2 lnn)
n , then i ∈ S. By (6), |S| ≤ n2. Thus, by the

union bound,

P
[
∃i(aTi v)2 ≥

2(α+ 2 lnn)

n

]
≤ n2 sup

i
P
[
(aTi v)

2 ≥ 2(α+ 2 lnn)

n

]
. (9)

We note that, by (4), for any vector w with norm less or equal to 1,

P

[
aTi w ≥

√
2(α+ 2 lnn)

n

]
≤ e−α

n2
, (10)

and so

P
[
∃i(aTi v)2 ≥

2(α+ 2 lnn)

n

]
≤ 2e−α. (11)

Proof of Theorem 2. In order to obtain mixing time bounds, we will first prove that if two points
x and y are nearby in that d(x, y) ≤ O( 1√

n
), then the total variation distance between the corre-

sponding marginals Px and Py is < 1− Ω(1).
Without loss of generality, let x be the origin 0 (which is achievable by translation), and for

any v, let D2F (0)[v, v] = ‖v‖2 (which is achievable by an affine transformation of K).
For x 6= y,

1− dTV (Px, Py) = Ez

[
min

(
1,

Gy(z)

Gx(z)
,
Gz(x)

Gx(z)
,
Gz(y)

Gx(z)

)]
, (12)

where the expectation is taken over a random point z from the density Gx and

min

(
1,

Gy(z)

Gx(z)
,
Gz(x)

Gx(z)
,
Gz(y)

Gx(z)

)

is defined to be 0 if z 6∈ K.
We will use the following fact (see Section 2.2, [25]) with DkF in the place of M .

Fact 1. Let M [h1, . . . , hk] be a symmetric k-linear form on Rn. Then,

M [h1, . . . , hk] ≤ ‖h1‖‖h2‖ . . . ‖hk‖ sup
‖v‖≤1

M [v, . . . , v].

Fact 2. Let the eigenvalues of the covariance matrix of a an n−dimensional Gaussian g be bounded
above by λ. Let < ·, · > be an inner product and v ∈ Rn Then, E[< v, g >2] ≤ λ < v, v >.

6.1 Relating the Markov Chain to the manifold

We will frequently make statements of the form

P[g(x) > O(f(x))] ≤ c.

By this we mean, there exists a universal constant C such that

P[g(x) > Cf(x)] ≤ c.

We will use the following fact repeatedly:
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Fact 3. Suppose x → z is a transition of the Dikin walk, then,

P
[
‖x− z‖ ≤ 1

2

]
≥ 1− 10−3.

This can be ensured by setting the value of r to be a sufficiently small constant.

Finally, we will frequently make use of the facts from (Theorem 2.1.1, [23]) stated below that
Dikin ellipsoids vary smoothly, and that they are contained in the convex set.

• Given any self-concordant barrier F , for any y such that

D2F (x)[x− y, x− y] = r2 < 1,

for any vector h ∈ Rn,

(1− r)2D2F (x)[h, h] ≤ D2F (y)[h, h] ≤ 1

(1− r)2
D2F (x)[h, h]. (13)

• The Dikin ellipsoid centered at x, having radius 1, is contained in K.

For two probability distributions Px and Py, let dTV (Px, Py) represent the total variation distance
between them.

Lemma 6 (Relating d to Markov Chain). If x, y ∈ K and d(x, y) ≤ 1
C
√
n
, then dTV (Px, Py) =

1− Ω(1).

Proof. Without loss of generality, we may assume that F̆ , F̄ and F̃ are strictly convex. In case any
one is not, we can add the strictly convex logarithmic barrier of a sufficiently large cube, thereby
making an arbitrarily small change to its second, third and (if it is not F̃ ,) fourth order derivatives
uniformly over K. Due to affine invariance, without loss of generality, let < u, v >x:=< u, v >, the
usual dot product. As defined in Section 3, for any z ∈ K,

V (z) =
1

2
detD2F.

By Lemma 2, it suffices to prove that there is an absolute constant C such that if x, y ∈ K and
‖x−y‖x ≤ 1

C
√
n
, then dTV (Px, Py) = 1−Ω(1). Without loss of generality, we assume x is the origin

and we drop this subscript at times to simplify notation.

1− dTV (Px, Py) = Ez

[
min

(
1,

Gy(z)

Gx(z)
,
Gz(x)

Gx(z)
,
Gz(y)

Gx(z)

)]
, (14)

where the expectation is taken over a random point z having density Gx. Thus, it suffices to prove
the existence of some absolute constant c such that

P
[
min

(
Gy(z)

Gx(z)
,
Gz(x)

Gx(z)
,
Gz(y)

Gx(z)

)
> c

]
= Ω(1).

This translates to

P
[
max

(
n‖y − z‖2y − r2V (y), n‖z‖2z − r2V (z), n‖z − y‖2z − r2V (z)

)− n‖z‖2 < O(r2)
]
= Ω(1).

We will prove the following lemmas.

Lemma 7. −V (y) < O(1)
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Lemma 8.

P [−V (z) < O(1)] >
9

10
. (15)

Next, we will prove the following probabilistic upper bound, thereby completing the proof.

Proposition 1.

P
[
max

(‖y − z‖2y, ‖z‖2z, ‖z − y‖2z
)− ‖z‖2 < O(

1

n
)

]
>

199

1000
. (16)

Proof. Since ‖y‖ < O( 1√
n
) and ‖z‖ < 1

3 with probability greater than 1− 10−3, ‖y‖y and ‖y‖z are

O( 1√
n
). So it suffices to show that

P
[
max

(‖z‖2y − ‖z‖2, < y, z >y, ‖z‖2z − ‖z‖2, < y, z >z

)
< O(

1

n
)

]
>

2

10
. (17)

This fact follows from the following three lemmas and the union bound. The proof of Lemma 9
would go through if 4

10 were replaced by 1
2 − Ω(1).

Lemma 9.

P
[
max

(‖̄z‖2y − ‖̄z‖2, <̄y, z >y, ‖̄z‖2z − ‖̄z‖2, <̄y, z >z

)
< O(

1

n
)

]
>

4

10
. (18)

Lemma 10.

P
[
max

(
‖̆z‖2y − ‖̆z‖2, <̆y, z >y, ‖̆z‖2z − ‖̆z‖2, <̆y, z >z

)
< O(

1

n2
)

]
>

9

10
. (19)

Lemma 11.

P
[
max

(
‖̃z‖2y − ‖̃z‖2, <̃y, z >y, ‖̃z‖2z − ‖̃z‖2, <̃y, z >z

)
< O(

1

n3
)

]
>

9

10
. (20)

Proof of Lemma 7. Let ˘̃F := F − F̄ . For w ∈ K, let X(w) := D2F̄ (w)−D2F̄ (0). By Lemma 12 in
[11], for any point w ∈ K, the gradient of TrX(w) measured using ‖̄ · ‖w is ≤ 2

√
n. Therefore, the

gradient of TrX(w) measured using ‖̄·‖ is ≤ O(
√
n). X(0) = 0, therefore, |TrX(y)| ≤ O(‖y‖√n) =

O(1).
‖y‖ = O(1/

√
n), therefore, ‖X‖ = O(‖y‖ sup‖w‖≤‖y‖ ‖D3F̄ (w)‖) = O(1/

√
n).

For w ∈ K, let Y (w) := D2 ˘̃F (w)−D2 ˘̃F (0).
Then

‖Y (y)‖ = D2 ˘̃F (y)−D2 ˘̃F (0) = O(‖y‖ sup
‖w‖≤‖y‖

‖D3 ˘̃F (w)‖) = O(1/n).

Therefore, |TrY (y)| = O(1).

− V (y) = − ln det(I +X + Y ) (21)

= −Tr(X + Y +R), (22)

where R is a matrix whose ‖·‖ → ‖·‖ norm ‖R‖ is bounded above by O(max(‖X‖2, ‖Y ‖2)) = O(1).
Thus, |V (y)| = O(1), and Lemma 7 is proved.
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Proof of Lemma 8. Let ˘̃F := F − F̄ . For w ∈ K, let W (w) := D2F̄ (w), and let Z(w) := D2 ˘̃F (w).

V (z) =
1

2
ln det(W (z) + Z(z))

=
1

2
(Tr ln(W (z) + Z(z))) with probability ≥ 1− 10−3 (i. e. if ‖W (z) + Z(z)− I‖ < 1)

= −1

2
(Tr(W (z)−W (0)) +Tr(Z(z)− Z(0))) (23)

+
1

4

(
Tr (W (z) + Z(z)− I)2

)
(24)

− O
(∣∣Tr (I − (W (z) + Z(z)))3

∣∣
)

with probability ≥ 1− 10−3 . (25)

The lemma will follow from the following claims:

Claim 1.

P [Tr(Z(z)− Z(0)) ≤ O(1)] ≥ 99

100
.

Claim 2.

P [Tr(W (z)−W (0)) ≤ O(1)] ≥ 99

100
.

Claim 3.

P
[∣∣Tr (I − (W (z) + Z(z)))3

∣∣ ≤ O(1)
]
≥ 99

100
. (26)

Proof of Claim 1. Let Zh(w) := D2F̆ (w) and Zs = D2F̃ (w). Then, Z(w) = nZh + n2Zs. Next,

TrZh(z)−TrZh(0) = DTrZh(0)[z] +
D2TrZh(z

′)[z, z]
2

, (27)

for some z′ ∈ [0, z].

|DTrZh(0)[z]| ≤ O

(
n

(
sup
‖v‖=1

|D3F̆ [v, v, v]|
))

with probability ≥ 1− 10−3 (28)

≤ O

(
n

(
sup

‖̆v‖=1/
√
n

|D3F̆ [v, v, v]|
))

with probability ≥ 1− 10−3 (29)

≤ O(1/
√
n) with probability ≥ 1− 10−3 , (30)

which is at most O(
√
n). Applying Lemma 4, we see that

P[−DTrZh(0)[z] < O(1/n)] >
998

1000
. (31)

D2TrZ(z′)[z, z] = D2TrD2F̆ (z′)[z, z] (32)

In order to bound the above quantity, let A be an invertible matrix such that Z(z′) = ATZ(0)A.

Such a matrix A exists for which ‖A− I‖ = O(1/
√
n) with probability ≥ 1− 10−3 because ‖̆z′‖ =

O(1/
√
n) with probability ≥ 1 − 10−3 . Let DA be the differential operator whose action on a

function G is determined by the relation

∀v ∈ Rn, DAG(w)[v] := DG(w)[Av].
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Thus D2
AF̆ (z′) = Zh(0). Now,

‖̆u‖ = O(1) ⇒ ∀‖̆v‖ = 1, D4F̆ (z′)[u, u, v, v] ≤ O(1). (33)

D2
(
TrZh(z

′)
)
[z, z] = D2

(
TrD2

AF̆ (0)
)
[z, z]

≤ n sup
‖Av‖=1

O(D4F (z′)[v, v, z, z]) with probability ≥ 1− 10−3

≤ n2 sup
‖̆v‖=1/

√
n

D4[v, v, v, v]‖̆z‖2 (by Fact 1)

= O(1/n) with probability ≥ 1− 10−3 . (34)

Therefore, by Equations 27, 31 and 34, we have

P [− (TrZh(z)−TrZh(0)) < O(1/n)] >
997

1000
.

with probability ≥ 1− 10−3 , ‖̃z‖ = O(1/n), therefore with probability ≥ 1− 10−3 ,

TrZs(z)−TrZs(0) = O(TrZs(0)‖̃z‖) (35)

= O(1/n2). (36)

The claim follows from the last two sentences, since Z = nZh + n2Zs.

Proof of Claim 2.

TrW (z)−TrW (0) = DTrW (0)[z] +
D2TrW (z′)

2
, (37)

for some z′ ∈ [0, z]. Lemma 12 in (Kannan and Narayanan, [11]) shows that ‖̄∇TrW‖ ≤ 2
√
n.

Since for all vectors v, ‖v‖ ≥ ‖̄v‖, this implies that ‖∇TrW‖ ≤ 2
√
n. By Lemma 4, this implies

that

P [DTrW (0)[z] < O(1)] ≥ 1− 10−3. (38)

By Lemma 13 in (Kannan and Narayanan, [11]), D2TrW (z′)
2 ≤ 0, thereby completing the proof.

Proof of Claim 3. In order to prove that

P
[∣∣Tr (I − (W (z) + Z(z)))3

∣∣ ≤ O(1)
]
≥ 99

100
,

it suffices to show that

P
[
‖(W (z)−W (0))‖ ≤ O(n−1/3)

]
≥ 1− 10−3 (39)

and that

P
[
‖(Z(z)− Z(0))‖ ≤ O(n−1/3)

]
≥ 1− 10−3. (40)

From Lemma 5 and Theorem 1, we obtain (39). We obtain (40) from (13).
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6.2 Regularity of the metric defined by the Logarithmic barrier

Proof of Lemma 9. Let F̄ (w) := −∑m
i=1 ln(1− < ai, v >), for any v ∈ K. Thus

(
m∑

i=1

< v, ai >
2

)
= ‖̄v‖2 ≤ ‖v‖2.

Fixing an orthonormal basis with respect to < ·, · >,

m∑

i=1

aia
T
i ¹ I,

where X ¹ Y signifies that Y dominates X in the semidefinite cone.
Recall that for any v such that ‖v‖ = 1, E(< v, z >2) = r2 < 1/C for some sufficiently large

constant C. It suffices to prove the following two inequalities.

Lemma 12.

P
[
max

(‖̄z‖2y − ‖̄z‖2, <̄y, z >y, <̄y, z >z

)
< O(

1

n
)

]
>

19

20
. (41)

Lemma 13.

P
[
‖̄z‖2z − ‖̄z‖2 < O(

1

n
)

]
>

9

20
. (42)

Proof of Lemma 12.

‖̄z‖2y − ‖̄z‖2 = D2F̄ (y)[z, z]−D2F̄ (0)[z, z]

= D3F̄ (w)[y, z, z],

for some w ∈ [0, y] and consequently ‖̄w‖ = O(1/
√
n) and hence

D3F̄ (w)[y, z, z] = (1 + o(1))D3F̄ (0)[y, z, z]. (43)

E



(

m∑

i=1

(yTaia
T
i z)(a

T
i z)

)2

 ≤ E

[(
m∑

i=1

(yTaia
T
i z)

2

)(∑

i

(aTi z)
2

)]

= E

[
‖y(

∑

i

aia
T
i )‖2‖z‖4/n

]

= O(1/n2). (44)

Therefore,

P
[
D3F̄ (0)[y, z, z] < O(1/n)

]
= P

[
−2

m∑

i=1

(aTi y)(a
T
i z)

2 < 1/n)

]

≥ 1−O


n2E



(

m∑

i=1

(yTaia
T
i z)(a

T
i z)

)2





≥ 1− 10−3 By (44).
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Proceeding to the next term,

P [<̄y, z >y= O(1/n)] = P [<̄y, z > +(<̄y, z >y −<̄y, z >) = O(1/n)]

<̄y, z >y −<̄y, z >= O(‖z‖/n)
by (13), and

E[<̄y, z >2] ≤ O(1/n2), (45)

so we obtain

P [<̄y, z >y= O(1/n)] > 1− 10−3. (46)

Finally,

<̄y, z >z −<̄y, z >= D3F̄ (w)[y, z, z] (47)

for some w ∈ [0, y] (and hence ‖̄w‖ = O(1/
√
n)).

From Equations (47), (45) and (45), it follows that

P [<̄y, z >z= O(1/n)] > 1− 2(10−3). (48)

Lemma 12 follows from Equations (45), (46) and (48).

Proof of Lemma 13. In order to prove that

P
[
‖̄z‖2z − ‖̄z‖2 < O(

1

n
)

]
>

9

20
,

it suffices to show that

P
[(‖̄z‖2z + ‖̄z‖2−z

)
/2 < ‖̄z‖2 +O(

1

n
)

]
>

9

10
,

because the distribution of z is symmetric about the origin.

∑

i

(
(aTi z)

2

2(1− aTi z)
2
+

(aTi z)
2

2(1 + aTi z)
2

)
=

∑

i

(aTi z)
2

(
1 + (aTi z)

2

(1− (aTi z)
2)2

)
(49)

=
∑

i

(
(aTi z)

2 +
3(aTi z)

4 − (aTi z)
6

(1− (aTi z)
2)2

)

= ‖̄z‖2 +
∑

i

3(aTi z)
4 − (aTi z)

6

(1− (aTi z)
2)2

. (50)

The probability that |aTi z| ≥ n− 1
4 is O(e−

√
n/2). |aTi z| is ≤ ‖aTi ‖r, which is less than 1

2 . This
allows us to write with probability ≥ 1− 10−3

E
[
3(aTi z)

4 − (aTi z)
6

(1− (aTi z)
2)2

]
= 3E[(aTi z)4](1 + o(1)), (51)

which is O(‖̄ai‖4/n2). Since
∑

i aia
T
i ¹ I, ∀i, ‖̄ai‖ ≤ 1 and

∑
i ‖̄ai‖2 ≤ n.

Therefore,

P
[(‖̄z‖2z + ‖̄z‖2−z

)
/2 < ‖̄z‖2 + 100

n
)

]
= P

[∑

i

3(aTi z)
4 − (aTi z)

6

(1− (aTi z)
2)2

< 102/n

]
(52)

≤ n
∑

i

‖̄ai‖4/(100n2) (53)

≤ ‖̄ai‖2/(100n) (54)

≤ 1/100. (55)
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6.3 Regularity of the metric defined by the Hyperbolic Barrier

Proof of Lemma 10. We will prove upper bounds on each of (a) ‖̆z‖2y − ‖̆z‖2, (b) < y, z >y, (c)

‖̆z‖2z − ‖̆z‖2 and (d) <̆y, z >z that hold with constant probability, and then use the union bound.
We will repeatedly use the observation (that holds from Fact 2) that for any point w such that

‖̆w‖ = o(1),

‖̆y‖w ≤ O(n−1/2‖y‖) ≤ O

(
1

n

)
(56)

and with probability ≥ 1− 10−3

‖̆z‖w ≤ O(n−1/2‖z‖) ≤ O(1/
√
n). (57)

(a)

‖̆z‖2y − ‖̆z‖2 = D2F̆ (y)[z, z]−D2F̆ (0)[z, z]

= D3F̆ [w][y, z, z],

for some w on the line segment [0, y].

By Fact 1,

P
[
D3F̆ (w)[y, z, z] < O(n−2)

]
≥ P

[
‖̆y‖w(‖̆z‖w)2 ≤ O(

1

n2
)

]
. (58)

Since ‖z‖2 = ‖̄z‖2 + n‖̆z‖2 + n2‖̃z‖2, we have

‖̆z‖w = O(‖z‖w/
√
n).

Also, ‖̆w‖ = O(‖y‖/√n) = O(1/n), and so with probability ≥ 1− 10−3 ,

O(‖̆z‖w) = O(‖z‖/√n) = O(1/
√
n).

Thus,

P
[
‖̆y‖w‖̆z‖w ≤ O(

1

n
√
n
)

]
≥ 1− 10−3 . (59)

and

P
[
‖̆y‖w(‖̆z‖w)2 ≤ O(

1

n2
)

]
≥ 1− 10−3 . (60)

(b)

<̆y, z >y = <̆y, z > +(<̆y, z >y −<̆y, z >)

= <̆y, z > +D3F̆ (w)[y, y, z] (for w ∈ [0, y]) (61)

= O(
‖̆y‖
n

) +O(‖̆y‖2w‖̆z‖w) with probability > 99/100. (62)

In going from (61) to (62), we used Fact 1 and Fact 2. In the above calculation, to ensure
that w is well-defined, we take it to be the candidate with the least norm. Thus by Equations
(59), (60) and (62),

P
[
(<̆y, z >y) < O(

1

n
)

]
≥ P

[
‖̆y‖‖̆z‖√

n
) + ‖̆y‖2w‖̆z‖w = O

(
1

n

)]
(63)

> 98/100.
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(c) For some w ∈ [0, z],

|‖̆z‖2z − ‖̆z‖2 −D3F̆ (0)[z, z, z]| ≤ sup
w∈[0,y]

∣∣D4F̆ (w)[z, z, z, z]

2

∣∣ (64)

By Lemma 4,

P


D3F̆ (0)[z, z, z] = O


sup‖̆v‖≤1

D3F̆ (0)[v, v, v]‖̆z‖3
√
n




 > 99/100.

P[‖̆z‖ = O(1/
√
n)] > 99/100, therefore, each term in (64) is O(1/n2) with probability 99

100 ,
and so

P
[
‖̆z‖2z − ‖̆z‖2 < O(

1

n2
)

]
>

98

100
.

(d)

<̆y, z >z = <̆y, z > +(<̆y, z >z −<̆y, z >)

≤ <̆y, z > + sup
w∈[0,z]

∣∣D3F̆ (w)[y, z, z]
∣∣

= O(
‖̆y‖
n

) + ‖̆y‖w‖̆z‖2w with probability > 99/100.

By Equations (65) and (66),

P

[
‖̆y‖
n

+ ‖̆y‖w‖̆z‖2w = O

(
1

n2

)]
> 99/100.

Therefore,

P
[
(<̆y, z >z) < O(

1

n2
)

]
>

98

100
.

6.4 Regularity of the metric defined by the self-concordant barrier

Proof of Lemma 11. We trace the same steps involved in the proof of the last lemma, the only
difference being that of scale. We proceed to prove upper bounds of O(1/n3) on each of the terms
(a) ‖̃z‖2y − ‖̃z‖2 (b) <̃y, z >y, (c) ‖̃z‖2z −‖z‖2 and (d) <̃y, z >z that hold with constant probability
separately, and then use the union bound. We will repeatedly use the observation (that holds from
Fact 2) that for any point w such that ‖̃w‖ = o(1),

‖̃y‖w ≤ O(n−1‖y‖) ≤ O

(
1

n
√
n

)
(65)

and with probability ≥ 1− 10−3

‖̃z‖w ≤ O(n−1‖z‖) ≤ O(1/n). (66)
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(a)

‖̃z‖2y − ‖̃z‖2 = D2F̃ (y)[z, z]−D2F̃ (0)[z, z]

= D3F̃ (w)[y, z, z],

for some w on the line segment [0, y].

D3F̃ (w)[y, z, z] ≤ ‖̃y‖w‖̃z‖2w by Fact 1 (67)

≤ (n−3/2)(n−1)2 with probability> 1− 10−3 (68)

(b)

<̃y, z >y = <̃y, z > +(<̃y, z >y −<̃y, z >) (69)

= <̃y, z > +D3F̃ (w)[y, y, z] (70)

= O

(
‖̃y‖
n
√
n

)
+O

(‖y‖2w‖z‖w
)

with probability > 99/100. (71)

In going from (61) to (62), we used Fact 1 and Fact 2. We see that

P

[
‖̃y‖
n
√
n
+ ‖̃y‖2w‖̃z‖w = O

(
1

n3

)]
> 99/100,

Therefore,

P
[
(<̃y, z >y) < O(

1

n3
)

]
>

98

100
.

(c)

‖̃z‖2z − ‖̃z‖2 = D2F̃ (z)[z, z]−D2F̃ (0)[z, z]

= D3F̃ (w)[z, z, z]

for some w on the line segment [0, z]. By Fact 1,

D3F̃ (w)[z, z, z] ≤ ‖̃z‖w‖̃z‖2w (72)

≤ O

(
1

n3

)
with probability ≥ 1− 10−3 . (73)

(d)

<̃y, z >z = <̃y, z > +(<̃y, z >z −<̃y, z >)

≤ <̃y, z > + sup
w∈[0,z]

D3F̃ (w)[y, z, z]

= O(
‖̃y‖
n
√
n
) + ‖̃y‖w‖̃z‖2w with probability > 99/100.

By Equations (65) and (66),

P

[
‖̃y‖‖̃z‖√

n
+ ‖̃y‖w‖̃z‖2w = O

(
1

n3

)]
> 99/100.

Therefore,

P
[
(<̃y, z >z) < O(

1

n3
)

]
>

98

100
.
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6.5 Bound on Conductance

Lemma 14 (Bound on Conductance). Let µ be the uniform distribution on K. The conductance

Φ := inf
µ(S1)≤ 1

2

∫
S1

Px(K \ S1)dµ(x)

µ(S1)

of the Markov Chain in Algorithm 1 is Ω(βfat).

Proof. Let S1 be a measurable subset ofK such that µ(S1) ≤ 1
2 and S2 := K\S1 be its complement.

For any x 6= y ∈ K,

dPy

dµ
(x) =

dPx

dµ
(y).

Let S′
1 = S1 ∩ {x∣∣Px(S2) = o(1)} and S′

2 = S2 ∩ {y∣∣ρ(y)Py(S1) = o(1)}. By the reversibility of the
chain, which is easily checked,

∫

S1

Px(S2)dµ(x) =

∫

S2

Py(S1)dµ(y).

If x ∈ S′
1 and y ∈ S′

2 then

dTV (Px, Py) := 1−
∫

K
min

(
dPx

dµ
(w),

dPy

dµ
(w)

)
dµ(w) = 1− o(1).

Lemma 6 implies that for an absolute constant C, if d(x, y) ≤ r
C
√
n
, then dTV (Px, Py) = 1− Ω(1).

Therefore Theorem 5 implies that

µ((K \ S′
1) \ S′

2) ≥ Ω(βfat)min(µ(S′
1), µ(S

′
2)).

First suppose µ(S′
1) ≥ (1− Ω(1))µ(S1) and µ(S′

2) ≥ (1− Ω(1))µ(S2). Then,

∫

S1

Px(S2)dµ(x) ≥ µ(K \ S′
1 \ S′

2)

≥ Ω(βfat)µ(S
′
1)

≥ Ω(βfat)min(µ(S′
1), µ(S

′
2))

and we are done. Otherwise, without loss of generality, suppose µ(S′
1) ≤ (1− Ω(1))µ(S1). Then

∫

S1

Px(S2)dµ(x) ≥ Ω(µ(S1))

and we are done.

6.6 Mixing Bounds

Let e be the first time the Markov chain escapes x0 = 0. Thus e is an integer valued random
variable defined by the event that ye is the first point in y1, . . . that is not equal to y0. Let the
density of ye be ρe. ∀t, we know that P[e ≥ t+ 1|e ≥ t] ≤ 1− Ω(1), therefore

sup
x

ρe(x)

G0(x)
= O(1). (74)

24



Therefore
∫

K
ρe(x)

2dx = O(

∫

Rn

Ge(x)
2dx) (75)

= exp (O(n ln(nν))) . (76)

Together with the following theorem, setting f(x) := ρ(xe) − (vol(K))−1 this completes the proof
of mixing from a fixed point. The proof of mixing from a warm start follows similarly.

Theorem 9 (Lovász-Simonovits [17]). Let µ0 be the initial distribution for a lazy reversible ergodic
Markov chain whose conductance is Φ and stationary measure is µ, and µk be the distribution of
the kth step. Let M := supS

µ0(S)
µ(S) where the supremum is over all measurable subsets S of K. For

every bounded f , let ‖f‖2,µ denote
√∫

K f(x)2dµ(x). For any fixed f , let Ef be the map that takes

x to
∫
K f(y)dPx(y). Then,

1. for all S,

|µk(S)− µ(S)| ≤
√
M

(
1− Φ2

2

)k

.

2. If
∫
K f(x)dµ(x) = 0,

‖Ekf‖2,µ ≤
(
1− Φ2

2

)k

‖f‖2,µ.

7 Mixing in a direct product of polytopes

Our analysis hinges upon a lower bound on the Cheeger constant βfat , which is obtained by com-
paring the isoperimetry of the weighted manifold M obtained by equipping K with the metric from
the Hessian of F , with the isoperimetry of the Dikin metric on the h−dimensional cube [−π

2 ,
π
2 ]

h,
with respect to the barrier F¤(x1, . . . , xh) := −∑

i ln cos(xi) (see Section 6.2, [27]).
For a manifold N equipped with a measure µ and metric d, let the Minkowski outer measure

of a (measurable) set A be defined as

µ+(A) := lim inf
ε→0+

µ(Aε)− µ(A)

ε
, (77)

where Aε := {x|dM(x,A) < ε}.
Definition 1. The (infinitesimal) Cheeger constant of the weighted manifold (N , µ) is

βN = inf
A⊂M,µ(A)≤ 1

2

µ+(A)

µ(A)
, (78)

where the infimum is taken over measurable subsets.
The isoperimetric function of µ is the largest function Iµ such that µ+(A) ≥ Iµ(µ(A)) holds for all
Borel sets.

Let the h−fold product space N × · · · × N be denoted N h, where the distance between points
(x1, . . . , xh) and (y1, . . . , yh) is

√∑
i d(xi, yi)

2.
We will need the following theorem of Bobkov and Houdré (Theorem 1.1 [5]).
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Theorem 1. For any triple (N , d, µ) as above,

Iµ⊗h ≥ 1

2
√
6
Iµ. (79)

We will also need the following theorem, which is a modification of Barthe (Theorem 10, [2]),
obtained by scaling the metric on R by 1√

ν
.

Theorem 2. Let k ≥ 2 be an integer. For i = 1, . . . , k, let (Xi, di, µi) be a Riemannian manifold,
with its geodesic distance and an absolutely continuous Borel measure of probability and let λi be a

probability measure on R with even log-concave density. If Iµi ≥
Iλi
η for i = 1, . . . , k, then

Iµ1⊗···⊗µk
≥ Iλ1⊗···⊗λk

η
.

The following lemma allows us to relate the “fat” Cheeger constant βfat with the infinitesimal
version βM.

Lemma 15. Let A,B ⊆ M and dM(A,B) ≥ δM. Then,

µ(M\ {A ∪B}) ≥ 2min(µ(A), µ(B))(e
βMδM

2 − 1). (80)

Proof. We will consider two cases.
First, suppose that max(µ(A), µ(B)) > 1

2 . Without loss of generality, we assume that µ(A) ≤
µ(B). Then, let

δ1 := sup
µ(Aδ)<

1
2

δ.

We proceed by contradiction. Suppose for some β < βM,

∃δ ∈ [0, δ1), µ(Aδ) < eβδµ(A). (81)

Let δ′ be the infimum of such δ. Note that since µ(Aδ) is a continuous, monotonically increasing
function of δ,

µ(Aδ′) = eβδ
′
µ(A).

However, we know that

µ+(∂Aδ′) := lim inf
ε→0+

µ(Aε)− µ(A)

ε
≥ βM, (82)

which contradicts the fact that in any right neighborhood of δ′, there is a δ for which (81) holds.
This proves that for all δ ∈ [0, δ1), µ(Aδ) ≥ eδβMµ(A). We note that Aδ1 ∩ BδM−δ1 = ∅, therefore
µ(δM − δ1) ≤ 1

2 . So the same argument tells us that

µ(BδM−δ1) ≥ eβM(δM−δ1)µ(B). (83)

Thus, µ(M\ {A ∪B}) ≥ µ(A)(eβM(δM−δ1) + eβMδ1 − 2). This implies that

µ(M\ {A ∪B}) ≥ 2µ(A)
(
e

βMδM
2 − 1

)
.

Next, suppose µ(B) ≥ 1
2 . We then set δ1 := δM, and see that the arguments from (81) to (83)

carry through verbatim. Thus, in this case, µ(M\ {A ∪B}) ≥ min(µ(A), µ(B))(eβMδM − 1).
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This immediately leads to the following corollary:

Corollary 1.

βfat = Ω

(
βM√
n

)
.

Nesterov and Todd show in (Lemma 4.1, [27]) that the Riemannian metric M on the direct
product of polytopes induced by

∑h
i=1 Fi is the same as the direct product of the Riemannian

metrics Mi induced by individual Fi on the respective convex sets Ki.

Proof of Theorem 3. By Corollary 1, it suffices to show that βM = Ω( 1√
ν
). We will show this using

Theorem 2 and Theorem 1. Consider the h−dimensional cube [−π
2 ,

π
2 ]

h, and the metric from the
Hessian of the barrier F¤(x1, . . . , xh) := −∑

i ln cos(xi) (see Section 6.2, [27]). The map

ψ : (x1, . . . , xh) 7→ (ln(sec(x1) + tan(x1)), . . . , ln(sec(xh) + tan(xh))),

maps the cube with the Hessian metric isometrically onto Euclidean space, and the push-forward
of the uniform density on the cube is a density φ⊗ · · · ⊗ φ on Rh, where

φ(x) =
cos

(
2 arctan

(
ex−1
ex+1

))

π
,

and
d2 lnφ

dx2
= − 4e2x

(1 + e2x)2
< 0,

and the density is even (thus meeting the conditions of Theorem 2). In the 1−dimensional case,
it is easy to check that the barrier is 1−self-concordant (Section 6.2 [27]). Therefore, in the
1−dimensional case, Iφ is bounded above and below by fixed constants. This, together with The-
orem 5 implies that for each Mi and the uniform measure µi (on Ki), the isoperimetric profile Iµi

of (Mi, µi) satisfies Iµi ≥ Ω( 1√
ν
)Iφ. Now applying Theorem 2 and Theorem 1 in succession, we see

that

Iµ1⊗···⊗µh
≥ Ω

(
1√
ν

)
Iφ⊗···⊗φ ≥ Ω

(
1√
ν

)
Iφ = Ω

(
1√
ν

)
1,

where 1 is the constant function taking the value 1. Therefore,

βM = Ω(
1√
ν
).

8 Analysis of Las Vegas Algorithm

Proof of Theorem 4. In contrast with the Markov chain used for linear programming in [11], this
Markov chain is not ergodic and has no stationary probability distribution. We will analyze its
behavior up to time t by relating this to the limiting behavior of Dikin walks on a family of convex
sets {K̂j}j≥1 each contained in the next, such that K̂j = K̂ ∩{x|cTx ≤ j}. Note that for any fixed
j, our mixing results from Theorem 2 apply since K̂j is bounded. Let F̂j = F̂ + ln(j − cTx). By
known properties of barriers ([23]), the self-concordance parameter of F̂j is at most 1 more than
that of F̂ . As j tends to ∞, D2F̂j converges uniformly to D2F̂ in the 2 → 2 operator norm on any
compact subset of K̂. Therefore, for any t, the distribution of the t-tuple (T (x0), T (x1), . . . , T (xt))
is the limit in total variation distance of the distributions of t-tuples (T (xj0), T (x

j
1), . . . , T (x

j
t )) where

(xj0, . . . , x
j
t ) is a random walk on K̂j starting at 0.
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We will now give an upper bound for P[cT (xi) ≤ 1− ε]. Let yi := T (xi). Let e be the first time
the Markov chain y0, y1, . . . escapes y0. Thus e is an integer valued random variable defined by the
event that ye is the first point in y1, . . . that is not equal to y0. Let the density of ye be ρe. ∀t, we
know from Lemma 6 that P[e ≥ t+ 1|e ≥ t] ≤ 1− Ω(1), therefore

sup
x

ρe(x)

Ĝ0(x)
= O(1). (84)

Without loss of generality, in the rest of this proof, we assume that for all v, D2F̂ (0)[v, v] = ‖v‖2.
Therefore

∫

K̂
ρe(x)

2dx = O(

∫

Rn

Ĝ0(x)
2dx) (85)

= exp (O(n ln(n))). (86)

Let ρt(x) be the density of xt. Then, by Theorem 2 and the fact that as far as total variation
distance is concerned, a random walk on K̂ can be viewed as the limit of random walks on the K̂j

as j → ∞,

∫
K̂ ρt(x)

2dx∫
K̂ ρe(x)2dx

= O((1− Φ2

2
)t). (87)

By Lemma 14, this is O
(
exp

(
− t(βfat )

2

2

))
.

Lemma 16. Let ρ be a density supported on K̂ such that

∫

K̂ε

ρ(x)dx ≥ δ.

Then,

∫

K̂
ρ(x)2dx ≥ δ2 exp

(
−O

(
n ln

(sν
ε

)))
. (88)

Proof. Let Kε be K ∩ {cTx ≤ 1} and K̂ε := TKε. Given four collinear points a, b, c, d, (a : b : c :

d) := (a−c)·(b−d)
(a−d)·(b−c) is called the the cross ratio. Let p′q′ 3 0 be a chord of K̂ε, and p = T−1(p′) and

q = T−1(q′). If cT p′ ≤ cT q′, then |p′|
|q′| ≤

|p|
|q| ≤ s. On the other hand, if cT p′ ≥ cT q′, let r be the

intersection of pq with {cTx ≤ 1}. By the projective invariance of the cross ratio (see for example,
Lemma 14 in [11])

(∞ : 0 : p′ : q′) = (r : 0 : p : q).

Therefore

|p′|
|q′| =

( |p|
|q|

)( |q − r|
|p− r|

)

≤ (s)

(
s+ 1

ε

)
.

Thus

sup
p′q′30

ln
|p′|
|q′| = O

(
ln

s

ε

)
, (89)

28



where the supremum is taken over all chords of K containing the origin. By (89) and Theorem 7
and Theorem 8, it follows that

sup
h∈K̂ε

ln ‖h‖ ≤ O
(
ln

(sν
ε

))
,

and therefore

ln volK̂ε ≤ O
(
n ln

(sν
ε

))
. (90)

Let ρ be a density supported on K̂ such that

∫

K̂ε

ρ(x)dx ≥ δ.

Then,

∫

K̂
ρ(x)2dx ≥

∫

K̂ε

ρ(x)2dx (91)

≥ δ2

volK̂ε

(92)

≥ δ2 exp
(
−O

(
n ln

(sν
ε

)))
. By (90). (93)

Using the above Lemma 16, if δ ≥ P [cTxt ≥ 1− ε
]
, we have

t(βfat)
2 ≤ O

(
n ln

(sν
ε

))
− lnP

[
cTxt ≥ 1− ε

]
.

Therefore,

P
[
cTxt ≤ 1− ε

] ≤ exp
(
O
(
n ln

(sν
ε

))
− t(βfat)

2
)
.

Therefore,

P
[
(∃t ≥ τ) cTxτ ≤ 1− ε

] ≤
∑

t≥τ

exp
(
O
(
n ln

(sν
ε

))
− t(βfat)

2
)

(94)

≤ exp
(
O
(
n ln

(
sν
ε

))− τ(βfat)
2
)

1− exp
(
− (βfat)

2
) . (95)

Therefore, for any δ, P
[
(∃t ≥ τ) cTxτ ≤ 1− ε

]
< δ for

τ = O

(
1

(βfat)2

(
ln

1

δ
+

(
n ln

sν

ε

)))
,

which together with Theorem 5 completes the proof.
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