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Abstract— Updating probabilistic belief matrices as new
observations arrive, in the presence of noise, is a critical part
of many algorithms for target tracking in sensor networks.
These updates have to be carried out while preserving sum
constraints, arising for example, from probabilities. This paper
addresses the problem of updating belief matrices to satisfy
sum constraints using scaling algorithms. We show that the
convergence behavior of the Sinkhorn scaling process, used
for scaling belief matrices, can vary dramatically depending
on whether the prior unscaled matrix is exactly scalable or
only almost scalable. We give an efficient polynomial-time algo-
rithm based on the maximum-flow algorithm that determines
whether a given matrix is exactly scalable, thus determining
the convergence properties of the Sinkhorn scaling process.
We prove that the Sinkhorn scaling processalways provides
a solution to the problem of minimizing the Kullback-Leibler
distance of the physically feasible scaled matrix from the prior
constraint-violating matrix, even when the matrices are not
exactly scalable. We pose the scaling process as a linearly
constrained convex optimization problem, and solve it using an
interior-point method. We prove that even in cases in which the
matrices are not exactly scalable, the problem can be solved to
ε−optimality in strongly polynomial time, improving the best
known bound for the problem of scaling arbitrary nonnegative
rectangular matrices to prescribed row and column sums.

I. I NTRODUCTION

Identity management refers to the probabilistic manage-
ment of the identities of multiple interacting objects. This
has become an important problem in control with the advent
of large scale networks of systems, such as sensor networks.
Our motivation for this work stems from distributed identity
management algorithms in air traffic control and sensor
networks [12].
The identity or belief matrix was proposed in [18] as a
possible method of integrating information available in the
system with external information which might be available
sporadically. The belief matrix is a matrixB, in which
elementsbij represent the probability of objectj having
identity i. Updating belief matrices as new information
is obtained is a crucial part of many algorithms in iden-
tity management. These require methods for constraining
matrices to prescribed row and column sums. While the
belief matrix of the entire system is doubly-stochastic (i.e.,
each row sum and column sum is 1), in distributed identity
management, in which a particular sensor might only detect
a subset of the objects in the system, the belief matrix
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might be constrained to some prespecified (but not doubly-
stochastic) row and column sums. This paper addresses the
problem of updating belief matrices by scaling in the face
of uncertainty in the system and the observations.
For example, consider the case of the belief matrix for a
system with three objects (labelled 1, 2 and 3). Suppose
that, at some instant, we are unsure about their identities
(tagged X, Y and Z) completely, and our belief matrix is
a 3 × 3 matrix with every element equal to 1/3. Let us
suppose the we receive additional information that object
3 is definitely Z. Then our prior, but constraint violating
matrix,
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Although the solution is simple in this case, it is not clear
how one would scale an arbitrary rectangular matrix to
prescribed row and column sums. A natural way is to
simply normalize alternately the rows and columns until
the constraints are met. This method of scaling by repeated
normalization is called the Sinkhorn scaling process [20].
However, it is not obvious that such a process would
always converge; and if it does, that it would converge
in a reasonable amount of time. It is also not clear what
the quality of the resulting solution is, whether the process
always maintains the quality of its solution, or whether there
might be faster methods of arriving at the same solution.
These are issues that we will address in this paper.
Sinkhorn iterations were first proposed as a method of scal-
ing matrices to make them doubly-stochastic. This method
was shown to converge for different classes of matrices,
in [21], [20] and [17]. Its properties were analyzed, for the
special case of matrices known asexactly scalablematrices,
in [3], [17] and [8]. This technique was analyzed further
and applied to the problem of identity management for Air
Traffic Control in [10], [11].
The convergence behavior of the Sinkhorn scaling process
for a nonnegative matrix depends greatly on the sparsity
structure of the matrix, and can fall into one of two regimes.
Most studies, such as those mentioned above, have been
restricted to only one of the two regimes, namely, the class
of exactly scalable matrices. Belief matrices in distributed
sensor networks are sparse matrices, since most interactions
between objects are local. In addition, the type of local
information that is most desirable from a practical point



of view is identity-type information,i.e., information that
determines the identity of one of the objects with certainty.
This is also the type of local information that is most
likely to make the prior matrixnot exactly scalable. In this
paper, we consider the general problem of scaling arbitrary
rectangular nonnegative matrices to prespecified row and
column sums.
The main contributions of this paper are as follows: We
prove that the Sinkhorn scaling processalwaysconverges
to the sum-constrained matrix that minimizes the Kullback-
Leibler distance from the unscaled prior matrix, even when
the matrices are not exactly scalable (Section II). This
property of the solution justifies the use of Sinkhorn scaling
in belief matrix updates. Because the convergence behavior
of the Sinkhorn scaling process can vary widely depending
on whether the matrix is exactly scalable or not, we give an
efficient polynomial time algorithm that determines whether
exact scalability is achievable, for an arbitrary nonnegative
rectangular matrix with prescribed row and column sums
(Section III). The key contribution of this paper is to
show that the Sinkhorn scaling process may be posed as
a linearly constrained convex optimization problem. We
show that, even when the matrix is not exactly scalable, an
interior-point, or barrier method is a strongly polynomial
approximation algorithm which attainsε−optimality with
complexityO(n6 log(n/ε)) for an n × n matrix.
Our approach to the problem is different from the only other
strongly polynomial approximation scheme for matrix bal-
ancing [13], which proposes a modified Sinkhorn algorithm;
we also compare the complexity of the two schemes and
show that for the class of square matrices, the algorithm
based on the barrier method has lower complexity. In
Section V, we present some examples.

II. SINKHORN SCALING

The Sinkhorn scaling procedure was proposed in [19] as
a method for scaling positive matrices to doubly stochastic
matrices. Since then, there have been several extensions to
treat the case of nonnegative matrices [21], to scaling pos-
itive rectangular matrices to prespecified row and column
sums [20], and to scaling nonnegative rectangular matrices
to prespecified row and column sums [17].
Unless otherwise specified, throughout this paper, the prior
sum-constraint violating matrix is denoted byA and the
sum-constrained belief matrix is denoted byB. The pre-
specified row and column sums to be achieved are denoted
by r and c respectively. Since the sum of all the elements
in the matrix is both the sum of the row sums and the sum
of the column sums,

∑

i ri =
∑

j cj .
We first formalize a few definitions. LetA be anm × n
matrix, andr ∈ R

m andc ∈ R
n be the prescribed row and

column sums. A zero minorZ × L of A is a matrix such
that for Z ⊆ {1, · · · ,m} and L ⊆ {1, · · · , n}, the matrix
AZL = 0. Then, following the definitions in [13], we define
the concepts ofexact scalabilityandalmost scalability.

Definition 1: [13] A nonnegative matrixA is exactly

scalable to row and column sumsr and c if and only if
for every zero minorZ × L of A,

1)
∑

i∈Zc ri ≥
∑

j∈L cj

(

or,
∑

i∈Z ri ≤
∑

j∈Lc cj

)

2) Equality in (1) holds if and only if theZc×Lc minor
is all zero as well.

A matrix A is almost scalableto r andc if (1) holds.
Almost scalabilityis a weaker condition thanexact scala-
bility. We sometimes refer to matrices that are almost but
not exactly scalable asonly almost scalable.
A. Sinkhorn Scaling Algorithm

Algorithm 1: (Sinkhorn Scaling Algorithm):
Given a nonnegative,m×n matrix A, and specified vectors
of the row sums (r ∈ R

m) and column sums (c ∈ R
n), we

iterate the following until convergence, with initial values
a
(0)
ij = aij , andk = 1:

1) Multiply every elementa(k−1)
ij by the ratio of the de-

sired row sumri to the actual row sum
∑n

j=1 a
(k−1)
ij

a
(k−)
ij = ria

(k−1)
ij /(

∑n
j=1 a

(k−1)
ij )

2) Multiply every element of the matrix from (1) by
the ratio of the desired column sumcj to the actual
column sum

∑m
i=1 a

(k−)
ij

a
(k)
ij = cja

(k−)
ij /(

∑m
i=1 a

(k−)
ij )

It can be shown that under the condition that the matrixA is
almost scalable, the Sinkhorn scaling process will converge
to a unique matrixB that satisfies the row and column sum
constraints. The following theorem is a unified statement
of the convergence of the Sinkhorn scaling process, from
various previous results in literature.

Theorem 1:([21], [20], [17], [13]): Consider A ∈
R

m×n, a nonnegative matrix, and desired row sumsr ∈ R
m

and column sumsc ∈ R
n. Then there exists a unique

matrix B ∈ R
m×n which satisfies these prescribed row

and column sums, whereB = D1AD2 for D1 ∈ R
m×m

andD2 ∈ R
n×n, D1 andD2 both diagonal, positive definite

matrices,if and only if A is exactly scalable. Furthermore, if
the above is true, the Sinkhorn scaling ofA will converge to
such a matrixB. If A is only almost scalable but not exactly
scalable, the Sinkhorn scaling would converge to a unique
limit of the form limk→∞ D

(k)
1 AD

(k)
2 which satisfies the

row and column constraints. However, the individual matrix
sequences,D(k)

1 andD
(k)
1 would not converge.

B. Exact scalability vs. Almost scalability

We briefly address the practical implications of exact vs.
almost scalability to the Sinkhorn scaling process. It can be
shown that while for exactly scalable matrices,bij = 0 ⇔
aij = 0, for almost scalable matrices it is only true that
aij = 0 ⇒ bij = 0. This implies that a matrix is almost but
not exactly scalable, if and only if there exists at least one
elementaij > 0 which has to be scaled to zero (bij = 0).
Since the Sinkhorn scaling process tries to achieve this by
multiplying repeatedly by a sequence of positive numbers,
this clearly cannot be done in a finite number of steps. In
practice, it could take a very long time to reach a desired



accuracy (bij < ε). In Section III we formulate an efficient
polynomial time algorithm that determines whether a matrix
is exactly or only almost scalable, which in turn determines
the convergence behavior of the Sinkhorn scaling process.
C. Kullback-Leibler distance as cost

Given a matrix which represents oura priori belief (A),
but violates physical constraints such as prespecified row
and column sums, we would like to compute the sum-
constrained (physically feasible) matrixB that represents
the closest distribution to the (infeasible) given distribution.
In determining a suitable measure for this “distance”, we
need to bear the following in mind: if the given distribution
A satisfies the constraints (row and column sums equal to
the prescribed values), then the scaled distributionB = A;
if there is noa priori distribution, no bias is introduced in
B; and finally,B uses all the information available fromA,
but scrupulous care is taken not to make any assumptions
not presented byA. Bearing all this in mind, a suitable
measure is the Kullback-Leibler measure (also known as
the KL-distance or the cross-entropy [5]) given by:

I(B : A) =
n
∑

j=1

m
∑

i=1

bij log
bij

aij

(1)

This is sometimes also called the directed divergence (since
it measures the divergence of distributionB from distribu-
tion A), and is denoted byD(B ‖ A).
Our problem therefore reduces to

minimize
∑m

i=1

∑n
j=1 bij log

bij

aij

subject to
∑n

j=1 bij = ri ∀ i = 1, · · · ,m
∑m

i=1 bij = cj ∀ j = 1, · · · , n
bij ≥ 0 ∀ i = 1, · · · ,m; j = 1, · · · , n

(2)

where r ∈ R
m and c ∈ R

n are the prescribed row and
column sums, the constraints on the matrixB. We use the
following convention throughout this paper:0 log 0 = 0,
0 log 0

0 = 0, anda log a
0 = ∞, if a > 0.

D. Sinkhorn scaling and the Kullback-Leibler distance

In this section, we prove that the Sinkhorn scaling process
always minimizes the KL-distance, irrespective of whether
the matrix is exactly scalable or only almost scalable.
Consider problem (2). We compute the Lagrangian dual of
this problem. The Lagrangian is given by

L(B, λ, µ) =

m
∑

i=1

n
∑

j=1

bij log
bij

aij

+
∑

i

λi(ri −
∑

j

bij)

+
∑

j

µj(cj −
∑

i

bij) (3)

where λi, µj ∈ R are the Lagrange multipliers. The
Lagrangian dual of this problem is

g(λ, µ) =

m
∑

i=1

λiri +

n
∑

j=1

µjcj −

m
∑

i=1

n
∑

j=1

1

e
eλiaije

µj (4)

Setting the derivatives ofL with respect tobij to zero, for
optimality, we get

arg inf
B

L(B, λ, µ) = bij =
1

e
eλiaije

µj (5)

We know that for an exactly scalable matrix, the Sinkhorn
process converges to a solutionB = D1AD2, or in other
words, bij = d1i

aijd2j
where D1 = diag(d11

, · · · , d1m
)

andD2 = diag(d21
, · · · , d2n

). Therefore,

bij = d1i
aijd2j

whered1i
= eλi−1, d2j

= eµj (6)

satisfies the condition (5) for optimality.
We also notice thatB satisfies the nonnegativity con-

straint. The second derivative ofL is ∂2L
∂b2

ij

= 1
bij

> 0 which
implies thatL is indeed minimized.B is therefore a scaled
matrix with row sums given by the vectorr and column
sums by the vectorc, which can be expressed asD1AD2,
whereD1 andD2 are diagonal, andA is exactly scalable.
Thus, from Theorem 1, the Sinkhorn iterations ofA will
converge toB.
SupposeA is almost scalable, but not exactly scalable.
Then, as before, the Lagrangian is given by (3) and the
dual by (4). Taking derivatives of (4), we get
∂g

∂λi

= ri −
1

e

n
∑

j=1

eλiaije
µj ,

∂g

∂µj

= cj −
1

e

m
∑

i=1

eλiaije
µj

Therefore, for optimality, we require that the derivatives
be equal to zero. SinceA is almost scalable, we know
from Theorem 1 that the Sinkhorn iterations converge to
a solution of the formlimk→∞ D

(k)
1 AD

(k)
2 , which satisfies

the row and column sum constraints. Let us therefore
consider the limit of the Sinkhorn iterations,
bij = limk→∞ d

(k)
1i

aijd
(k)
2j

. Using this in (5), we find that

bij =
1

e
eλiaije

µj = lim
k→∞

d
(k)
1i

aijd
(k)
2j

(7)

satisfies the optimality conditions. Therefore, the limit of
the sequence of matrices generated by the Sinkhorn process
minimizes the KL-distance from thea priori distribution.
From the above, we arrive at the following theorem:

Theorem 2:Given A ∈ R
m×n, the optimal solution to

(2), B ∈ R
m×n, is always the solution to the Sinkhorn

iteration process.
Proof: Theorem 1 states that if the matrixA is

at least almost scalable, then the Sinkhorn process will
converge; the form of the solution is eitherB = D1AD2

or B = limk→∞ D
(k)
1 AD

(k)
2 , depending on whether the

matrix is exactly or only almost scalable. However, we have
shown that in either case ((6) for exact scalability and (7)
for only almost scalability) the Sinkhorn scaling process
converges to the minimum KL-distance matrix that satisfies
the row/column constraints.
This shows that from the information-theoretic perspective,
Sinkhorn scaling gives us the best solution to the problem
of incorporating local information into belief matrices.
E. Sinkhorn scaling and KL distance: some intuition

That the Sinkhorn iterations minimize the Kullback-
Leibler distance from thea priori distribution agrees with
intuition. Let us consider the argument:



The logarithm is a concave function, and the function
f(t) = t log t is strictly convex. We can use this property of
the logarithm to prove thelog sum inequality, as in [5]. For
the sake of brevity, we only reproduce the relevant theorem
here.

Theorem 3:([5], Log sum inequality): For nonnegative
numbers,a1, a2, · · · , an andb1, b2, · · · , bn,

n
∑

i=1

bi log
bi

ai

≥

(

n
∑

i=1

bi

)

log

∑n
i=1 bi

∑n
i=1 ai

(8)

with equality if and only if bi

ai
is a constant.

In the case of anm × n matrix, we can treat every row
(or column) as a set of nonnegative numbers. The log sum
inequality implies that for every row, the set of possible
new rows that minimize the KL-distance are the ones in
which the elements of the new row are obtained by scaling
all the elements of the old row by the same amount. But
this is exactly what the Sinkhorn iteration does at every
iteration - it scales the entire row by the same amount,
and the scaling factor is chosen in a way that satisfies
the row sum constraint. It then repeats this for the column
distributions. As long as this process of scaling rows and
columns alternately converges (as it does, by Theorem 1),
the matrix it converges to will minimize the KL-distance.

F. Complexity and convergence of Sinkhorn scaling

The Sinkhorn iterations are a natural way of scaling a
matrix to achieve prescribed row and column sums. The
complexity of each iteration is very small, and for an
m × n matrix, simply involves dividingmn numbers by
their row sums or column sums. While Sinkhorn and others
([20], [21], [14], [17]) proved that the iterative procedure
converges for appropriate matrices, they did not study the
rate of convergence. Franklin and Lorenz [7] showed that
each iteration of Sinkhorn scaling for an exactly scalable
matrix is a contraction map in the Hilbert projective metric,
and they concluded that the number of iterations is bounded
by O

(

L(A) · 1/ε
)

, whereL(A) is the binary input length
(the log of the ratio of the largest to smallest non-zero
elements ofA) and ε is the desired accuracy in some
metric of interest. Thus the Sinkhorn iteration process is an
approximation scheme, but is not polynomial inlog(1/ε),
even for positive, exactly scalable matrices. For an only
almost scalable matrix, there are no known bounds on the
rate of convergence of the Sinkhorn process.

III. F EASIBILITY OF THE PROBLEM

For the Sinkhorn iterations to converge, at the very
least, the optimization problem (2) must be feasible. We
first note that the feasibility check can be carried out in
polynomial time by identifying an equivalent problem [13].
The feasibility test is equivalent to a check for almost
scalability. We also formulate an approximation that checks
for the infeasibility of exact scalability.

A. Feasibility of scaling algorithm

The feasibility of (2) is equivalent to the maximum-flow
problem on a graph withm+n+2 nodes. Consider the graph
in Fig. 1. The flow on source-adjacent and sink-adjacent
arcs is denoted byfi andgj respectively. The flow on the
arc (i, j), i = 1, · · ·m, j = 1, · · ·n is denoted bybij .

Proposition 1: If
∑

i ri =
∑

j cj = K, there exists a
feasible matrix scaling if and only if the maximum source-
to-sink flow equalsK.

Proof: Suppose the maximum flow equalsK. Then,
we have a flow in the network that saturates the source- and
sink-adjacent arcs (i.e, fi = ri, gi = ci), does not violate
flow conservation, and does not violate capacity restrictions
(bij = 0 ∀{(i, j)| aij = 0}). Therefore,
∑

j bij = fi = ri, ∀ i ∈ {1, · · · ,m}
∑

i bij = gj = cj , ∀ j ∈ {1, · · · , n}
which is the definition of a feasible point for the optimiza-
tion problem, whose elements are given bybij .

Suppose the value of the maximum flow is less thanK.
Then, the value of every feasible flow in the network is
also less thanK. Given such a flow, there exists at least
one unsaturated source-adjacent arc,i.e.,
∃ i ∈ {1, · · · ,m} such that

∑

j bij < ri,
which violates the row sum constraint. Therefore, every
feasible flow in the network violates at least one of the
row sum constraints, which implies that there is no feasible
matrix solution to the optimization, and hence no feasible
solution to the Sinkhorn scaling process.
The maximum flow problem in bipartite networks can be
solved inO(pq log(q2/p)), wherep is the number of non-
zero elements inA = (aij), andq is min{n,m} ([2], [9]).
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Fig. 1. Equivalence of feasibility problem to maximum-flow problem

B. Infeasibility of an exactly scaled solution

We consider the case in which we might expect the
existence of an only almost scaled but not an exactly scaled
solution, i.e., a solutionB such thatbij = 0 even though
aij 6= 0. As we might expect, this solution, although
feasible, can be theoretically reached by the Sinkhorn
scaling process only after an infinite number of iterations.
We formulate the infeasibility of an exactly scaled solution
as the following equivalent network flow problem.
We are interested in checking whether there is some element
bij such thataij 6= 0 whose value is exactly zero in



every feasible matrix scaling (assuming one exists). This
is equivalent to asking if there is a feasible scaling such
that bij > 0 ∀{(i, j)|aij 6= 0}. While it is not possible
to answer this question exactly, it is possible to check (in
polynomial time) if there exists a feasible scaling such that
bij ≥ ε ∀{(i, j)|aij 6= 0}, for arbitrarily small values of
ε. We work on the same graph as before (Figure 1), but
impose a lower bound ofε on the flow on arcs{(i, j)|aij 6=
0, i ∈ {1, · · ·m}, j ∈ {1, · · · , n}}. By the same argument
as before, there exists a feasible matrix scalingB such
that bij ≥ ε∀{(i, j)|aij 6= 0} if and only if the maximum
flow equalsK. The problem of finding the maximum flow
in a network with arc lower bounds is as hard as solving
two maximum flow problems [1] (Section 6.7,Flows with
lower bounds). Both maximum flow problems are solved on
bipartite graphs (one on the original graph, and one on a
transformed graph); therefore, the complexity of finding an
ε-accurate solution to the question of the infeasibility of an
exactly scaled solution is alsoO(pq log(q2/p)), where, as
before,p is the number of non-zero elements inA = (aij),
and q is min{n,m} [2]. We note that for this infeasibility
check, which isε−approximate, the run time is independent
of ε. We also note that it is not possible to identify the exact
element inB that needs to be zero – we can only prove
that such an element necessarily exists.

IV. SCALING ALGORITHM BASED ON AN INTERIOR

POINT METHOD

Let us denote the mn−dimensional vector
of the elements of the matrix B byx, i.e.,
x = [b11, b21, · · · , bm1, b12, b22, · · · , bmn]T. Similarly,
let y = [a11, a21, · · · , am1, a12, a22, · · · , amn]T. Then we
can reformulate (2) as

minimize
∑mn

i=1 xi log xi

yi

subject to −xi ≤ 0, i = 1 · · ·mn
Cx = d

(9)

where Cx = d is the linear equality constraint derived
from the row and column sum constraints. We note that the
elements ofC are zeros and ones.

The optimization program (9) is a linear inequality con-
strained problem, with linear equality constraints and a
convex cost. The barrier method solves this problem by
solving a sequence of equality constrained problems, using
Newton’s method. It is also called the interior-point method,
since all the iterates ofx are strictly feasible,i.e., they lie
in the relativeinterior of the feasible set. We have already
seen how the maximum-flow formulation can be used to
compute a feasible pointx(0) in polynomial time. Using
the techniques presented in [4] and [16], we can derive the
following theorem:

Theorem 4:The complexity of scaling anm×n matrix to
specified row and column sums using the proposed interior-
point method with a logarithmic barrier and the KL-distance
as the objective function isO

(

m2n2(m + n)2 log(mn
ε

)
)

.
In particular, if n ≥ m, we can equivalently bound the
complexity byO

(

n6 log(n
ε
)
)

.

Proof: The interior-point algorithm sequentially per-
forms outer iterations, and a centering step in every outer
iteration, which in turn involves a number of the Newton
steps, and the total complexity can be derived, as in [4].
A. Discussion on the relative computational efficiency of
various algorithms for scaling

We have already seen that while the Sinkhorn process is
an approximate algorithm, it is not polynomial inlog(1/ε).
For reasonably small and exactly scalable matrices, the
Sinkhorn process is a very attractive option because of its
ease of computation and reasonable computational times.
However, for larger or only almost scalable matrices (a
property that we have shown can be checked in polynomial
time), we need to use more general and efficient polyno-
mial approximation schemes. For the problem of scaling
square matrices to prescribed row and column sums, [13]
developed an iterative process that is a modification of
the Sinkhorn scaling process, and which has complexity
O
(

n7 log(1/ε)
)

for an n× n matrix. This is the first (and,
to our knowledge, only) existing strongly polynomial-time
algorithm for general matrix scaling. In this paper, we
approach the problem in an optimization framework and
develop an algorithm that scales nonnegative rectangular
matrices to prescribed row and column sums, with a com-
plexity of O

(

n6 log(n/ε)
)

for square matrices.

V. EXAMPLES

We compare the performance of the Sinkhorn scaling
process and the barrier method through a few examples.
Let us first consider a very basic example, demonstrative
of the kind of scenarios we are likely to encounter during
tracking and identity management in a small sensor
network. Suppose the system has 4 objects (1,2,3 and
4) which are initially given the identities W, X, Y and
Z. During the process of tracking multiple maneuvering
objects, when the objects come close to each other,
it becomes almost impossible to maintain the distinct
identities of the objects. Let us consider the case in which
after repeated interaction between the objects, the belief
matrix is confused. Suppose, at this instant, one of the
sensors notices a physical attribute of Object 4 which
distinguishes it as Z for certain. Then, our belief matrix
before the observation and the prior (unscaled) distribution
after the observation are given by
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0.1 0.1 0.3 0
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0.3 0.2 0.3 1









.

The maximum-flow formulation of Section III tells us
that the prior matrix is almost but not exactly scalable to
a doubly-stochastic matrix. We choose anε of 10−8. A
MATLAB implementation of the Sinkhorn scaling process
takes 1.718 seconds (and 7105 iterations) to converge to
a solution, while an implementation of the interior-point
method in AMPL [6] using the MINOS [15] solver for the
centering takes 0.0156 seconds to reach the same solution.



Finally, we present a 100 trial Monte Carlo simulation
over a range of matrix sizes, for two different cases -
Sinkhorn scaling for only almost scalable matrices, and the
interior-point method, whose performance is independent of
scalability. The random matrices for the Sinkhorn scaling
were generated such that the elements of the prior matrix
that had to be scaled to zero were no more than 0.1 in mag-
nitude,i.e., they only violated the exact scalability condition
weakly. The matrices for the interior-point method were
a random combination of exact and only almost scalable
matrices. The average computational times are plotted in
Figure 2. While the Sinkhorn scaling process would perform
very well for exactly scalable matrices, there is a dramatic
deterioration in its performance when the prior matrix is
only almost scalable,even if the elements that need to
be scaled to zero are small in magnitude. On the other
hand, the interior-point algorithm scales much better and
is independent of the scalability of the prior matrix, as long
as it is at least almost scalable.

In most sensor networks, the nodes are scattered over a
large area. In the presence of a group management proto-
col [18], the scaling is carried out within a group, making
the computation inherently distributed. The development of
a distributed algorithm for scaling matriceswithin a group
would be an interesting direction for further research.
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Fig. 2. Computational time comparisons- Sinkhorn and Barrier methods

VI. CONCLUSIONS

The main aim of this paper is to develop efficient
algorithms for belief matrix maintenance, for the purpose of
identity management in large, possibly distributed, systems
with multiple objects. We identified the chief problems as
being (1) the efficient scaling of large rectangular nonneg-
ative matrices to prescribed row and column sums, and
(2) the efficient diagnosis of the behavior of the easy-to-
implement Sinkhorn iterations. We began with an analysis
of the properties of the solution of the Sinkhorn process
for the case when the matrix is only almost scalable, and
showed that the process always minimized the Kullback-
Leibler distance, even if it was slow to converge. We
formulated a maximum-flow with lower bounds algorithm
to efficiently predict the behavior of the Sinkhorn process,

and to generate a feasible point. We then formulated an
equivalent convex optimization problem, and showed that
the interior-point method was strongly polynomial in com-
plexity. We demonstrated through simulations that the pro-
posed algorithm is not sensitive to the sparsity structure of
the matrix, and performs better than the Sinkhorn algorithm.
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