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I. Introduction

T HE Erlang distribution has been used to model the runway
service process in queuing models of air traffic operations [1–3]

since its use was first proposed by Hengsbach and Odoni [4]. It has
been shown to offer certain computational advantages because it can
be viewed as a sum of exponential distributions. However, there have
been few prior efforts to validate Erlang distribution assumptions
using operational data, and even those have only been performed
informally with aggregate or low-fidelity data [5].
This Note uses high-fidelity surface surveillance data to model the

probability distributions of runway service times and examine
the goodness of fit of the Erlang distribution. For this, probabilistic
models for the runway service times are derived from empirical
departure throughput distributions and empirical departure time
distributions. The results are compared in terms of bias, goodness of
fit, and computational advantages. The analysis has implications to
both the modeling of airport operations and to the estimation of
airport capacities.

II. Data Sources

The Aviation System Performance Metrics (ASPM) database
maintained by the Federal Aviation Administration records the
wheels-off andwheels-on times of all domestic flights in the U.S. [6].
These reports are obtained automatically through a system called
Aircraft Communications Addressing and Reporting System
(ACARS) for the major carriers and are inferred for the others [7].
While a valuable data source, ASPM presents several challenges for
validating runway service time distributions. Aircraft takeoff times
are rounded to the nearest minute [7], and due to this quantization,
aircraft taking off less than 1 min apart from a runway can appear to
be taking off with zero interdeparture time. In addition, the ACARS
data are not of sufficient fidelity to identify instances inwhich there is
at least one aircraft waiting at the departure runway threshold [8].
The Airport Surface Detection Equipment Model X (ASDE-X)

system combines data from surface radar tracks, multilateration, and
Automatic dependent surveillance-broadcast where available to
present amore detailed viewof airport surface operations [9].Aircraft

wheels-off times are typically capturedwith a precision of seconds. In
addition, ASDE-X data can be used tomeasure the precise number of
aircraft that are physically present in the queuing area at the departure
runway threshold [10,11]. As a result, runway interdeparture times
can be estimated conditioned on the state of the departure queue.
For these reasons, ASDE-X data provide a way to accurately model
runway service times. This Note presents these techniques for the
case of Boston Logan International Airport (BOS) for the 22L, 27 |
22L, 22R runway configuration in 2011.

III. Estimation of Service Time Distributions from
Departure Throughput

The first step in the analysis was the extraction of instances in
which there was persistent departure demand and to fit an Erlang
distribution to support the throughput seen during these instances.
Persistent demand in this case was identified by 15 min periods
during which there were more than 22 aircraft taxiing out [8]. The
empirical throughput distribution over these instances is shown in red
in Fig. 1 (left).
Suppose the service times were generated from an Erlang distribu-

tion �k; kμ�, where k ∈ N� and kμ > 0 were the shape and rate
parameters, respectively. The probability density function of the
service times was then given by

grm�t; k; kμ� �
�kμ�ktk−1e−kμt
�k − 1�! ; t > 0 (1)

The parameters of the Erlang distribution were estimated from the
throughput data using an approximation based on the method of
moments. Let μ1 and μ2 denote the first and second moments of the
empirical runway throughput distribution frw. Assume the runway
service times were drawn from the Erlang distribution �k; kμ�. When
there were exactly i takeoffs in the time intervalΔ, there were at least
�i − 1�k� 1 and nomore than �i� 1�k − 1 occurrences of a Poisson
random variable with rate kμΔ. In the first case, the first k − 1
occurrences corresponding to the ith takeoff occurred in the previous
time period, and in the latter, the last k − 1 occurrences corresponded
to the �i� 1�th takeoff that took place in the next time period.
Summing over all these possibilities yields the following expressions
for the mean and variance of the throughput distributions:

μ1 �
X∞
i�0

�
i ·

X�i�1�k−1
j��i−1�k�1

k − jik − jj
k

· e�−kμ·Δ� ·
�kμ · Δ�j

j!

�
(2)

μ2 �
X∞
i�0

�
i2 ·

X�i�1�k−1
j��i−1�k�1

k − jik − jj
k

· e�−kμ·Δ� ·
�kμ · Δ�j

j!

�
(3)

Themethod of moments (MOM) determines the values of the param-
eters k and μ by matching the previous expressions to the empirical
data. Since k is constrained to be a natural number, the following
approximation is made: The parameter μ is obtained by numerically
solving Eq. (2) as a function of increasing values of k. For each pair
�μ; kμ�, the error of Eq. (3) is calculated. The iterations are stopped
when the absolute error increases. Any further increase in k would
imply a further decrease in variance and a larger absolute error in
the value of the second moment. The empirical frw and fitted frm
throughput distributions are shown in Fig. 1. The estimated param-
eters �k; kμ� of the Erlang distribution grm are (6, 3.92). The
distribution grm has an average service time of 1.5 min with
variance 0.4 min2.
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IV. Estimation of Service Time Distributions from
Interdeparture Times

If the departure queue has sufficient load that an aircraft takes
off as soon as the runway is available, the service time equals the
interdeparture time. Such a queue is described as a queue with pres-
sure. To estimate the condition that implies a queuewith pressure, the
length of the departure queue beyond which interdeparture times do
not change significantly with the number of aircraft in the queue is
identified. A nonparametric method, namely, the Kruskal–Wallis
one-way analysis of variance, is used to compare the distributions of
service time distributions when an aircraft takes off with different
departure queue sizes behind it. For the case of BOS in the 22L, 27 |
22L, 22R configuration, the analysis suggests a value of 5, as shown
in Fig. 2. This means that when the departure queue size is 5 or more
the interdeparture time equals the service time.
It is worth noting that the obtained set of service times does not

consist of independent samples, since two consecutive takeoffs may
be correlated. For example, a heavy aircraft departure in a 15 min
interval does not significantly impact the departure throughput
because the controllers use the separation behind it to perform
runway crossings [12]. Similarly, when there are no heavy departures
in the queue, a controller might perform a sequence of nonheavy
departures followed by a sequence of runway crossings. Such
correlations between consecutive interdeparture times motivates
the definition of capacity over a long time period (for instance, the
saturation capacity, the practical hourly capacity, and the sustained
capacity are all defined over 1 h) [13]. To get independent samples of
service time distributions, sets of service times that are 15 min apart
are randomly sampled. The 15 min value is also consistent with
throughput estimates and has been found to provide a good compro-
mise between length and persistent demand through the duration of
the time period [3,12,14,15].
The empirical distribution for the service times of departures for

which the departure queue size is five ormore and forwhich takeoff at
least 15min apart is shown in Fig. 3. The figure shows that the service
time distributions have a long tail despite having a queue with

pressure. The support of the distribution is seen to start around 50 s,
and not 60 s as would be expected. The reason for this difference is
that interdeparture times are measured at wheels off and not at the
start of the takeoff roll, at which separation is applied. The mode of
the distribution is found to be 68 s. The distribution exhibits also a
second distinct peak at around 100 s, which is attributed to heavy
aircraft departures.

V. Probabilistic Modeling of Service Times

Four potential fits to the empirical service time distributions are
compared:
1. First is the maximum likelihood estimate (MLE) Gamma distri-

bution ggl, which estimates the the maximum likelihood parameters
of a Gamma distribution to fit the empirical distribution in Fig. 3.
2. Next is the displaced exponential distribution fit gde, given by

gde�x;ϕ; d� �
�
ϕ · e−ϕ�x−d� if x ≥ d

0 otherwise
(4)
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Fig. 1 (Left) Empirical (frw) and modeled (frm) probability distributions of the departure throughput of 22L, 27 | 22L, 22R at BOS; (right) first and
second moments of frw and frm.
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Fig. 2 Determination of the minimum size of the queue with pressure, for 22L, 27 | 22L, 22R at BOS.
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Fig. 3 Empirical service time probability distribution for departures of
22L, 27 | 22L, 22R at BOS.
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The displaced exponential distribution is often used in traffic
engineering applications because it assumes that there is a minimum
headway d between vehicles, in addition to a probabilistic quantity
[16]. It could potentially be a goodmodel for the runway service time
distribution since it reflects the minimum required separation be-
tween successive departures. The parameters �ϕ; d� of the displaced
exponential distribution are estimated using the MOM:

d� 1

ϕ
� E�S�; 1

ϕ2
� var�S� (5)

3. Third is the Erlang distribution fit gem from applying an approx-
imate MOM to fit an Erlang distribution to the observed service
times. The resulting Erlang distribution has a mean E�Lk� and
variance σ2Lk such that

E�Lk� �
k̂

λ̂
�E�S�; σ2Lk �

k̂

λ̂2
� E�S�2
b��E�S��2∕var�S���0.5c≈ var�S�

(6)

4. Finally, there is the Erlang distribution fit grm obtained from the
empirical throughput, as seen in Fig. 1. The parameters in the current
casewere estimated to be (6, 3.92).While frw comprises all departure
throughput observations in saturation (more than 22 departures
taxiing out), the service time distribution shown in Fig. 3 comprises
independent samples of interdeparture times given a queue with
pressure. The Erlang distributions grm and gem model the same
quantity but are estimated differently. The two distributions are
expected to differ because grm alone was obtained through random
sampling.

VI. Results

Figure 4 (top) shows the results of applying the four different
fitting procedures to ASDE-X data from BOS, for the 22L, 27 | 22L,
22R configuration in 2011. The estimated parameters are shown in
Fig. 4 (bottom).
The plots suggest that the displaced exponential fit best matches

the empirical distribution. Parameter d is estimated to be 53 s,

suggesting that it accurately captures the minimum separation
requirement. The displaced exponential fit matches the tail of the
empirical distribution well but does not accurately predict the mode
of the distribution.
The Gamma and Erlang fits also fail to predict the mode of the

distribution, and they overestimate the density of the distribution for
values lower than 60 s.However, they predict the tails of the empirical
distribution as well as the displaced exponential fit does. TheGamma
and Erlang distributions are different, as can be verified from their
parameters in Fig. 4 (bottom). The discrepancy is not the result of
rounding off k̂ (it is rounded up to 6 from 5.98) but due to the different
estimation methods applied (MLE vs MOM). Finally, distributions
gem and grm are seen to be very similar despite being derived
differently. Their similarity demonstrates that the estimated departure
throughput under persistent demand and the interdeparture times
given a queue with pressure are consistent with each other.
Estimating the service time distribution from the throughput

distribution appears to accurately calculate not only the mean and the
variance of the departure throughput but also the mean and variance
of the interdeparture time given a queue with pressure. On the other
hand, Fig. 4 suggests that the displaced exponential is a better fit to
the empirical service times than an Erlang distribution. This hypoth-
esis is tested by using the estimated parameters �k; kμ� of the fitted
frm distribution to derive a displaced exponential distribution with
the same mean and variance:

~gde�x; ~ϕ; ~d� �
�
~ϕ · e−

~ϕ�x− ~d� if x ≥ ~d
0 otherwise

(7)

such that ~d� 1

~ϕ
� 1

μ
;

1

~ϕ2
� 1

kμ2
(8)

The parameters are calculated to be (0.91, 0.62), which are, as
expected, similar to those of gde [Fig. 4 (right)]. The corresponding
~fde is shown in Fig. 5 (left) and is a good match to the empirical
distribution. Figure 5 (right) shows that ~fde has a smaller Kullback–
Leibler (KL) divergence (a measure of the difference between
two probability distributions [17]) from the actual throughput
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Fig. 4 (Top) service time probability distribution fits for departures of runway configuration 22L, 27 | 22L, 22R at BOS; (bottom) distribution
parameters.
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Fig. 5 (Left) empirical departure throughput distribution frw and fits frm and ~fde for 22L, 27 | 22L, 22R at BOS; (right) comparison of distributions.
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distribution, when compared to frm. It is therefore conjectured that
~gde accurately represents the service time distribution. It models the
minimum service time requirement, the observed tail of the empirical
service time distribution, and the associated departure throughput
distribution.

VII. Need for Sampling Runway Service Times

Figure 3 shows the empirical distribution grw of the sampled
service times, given a queue with pressure. Suppose this distribution
was used to generate the corresponding throughput distributionfsf in
a 15min period.Consider the alternative distributiongsa of all service
times, given a queue with pressure. The corresponding throughput
distribution fsa in a 15 min period can be similarly generated.
The left and right parts of Fig 6 compare fsf and fsa to the

empirical distribution frw. The comparisons show that fsa has lower
variance than frw due to its use of dependent observations. Figure 6
(right) shows that fsa has a higher KL distance from frw than fsf,
illustrating the need to sample interdeparture times.

VIII. Effect of Fleet Mix on Runway Service Times

Heavy jets are expected to have a runway service time of about
2 min (120 s), on account of the increased wake vortex separation
required behind them. Figure 7 shows the empirical service time
distributions parameterized by the type of aircraft taking off. Heavy
jets are seen to have longer service times (a mean of 119 s, and the
mode of the distribution is at 105 s) than nonheavy aircraft (a mean
service time of 87 s), as expected given their separation requirement.
Since the service time is measured as the difference between
successive wheels-off times, it is less on average than the required
separation at the start of the takeoff roll, since heavy aircraft tend to
have longer roll times.
Finally, these findings can be compared to prior estimates of jet

departure capacity [18], which concluded that the departure through-
put does not depend on heavy aircraft. By contrast, Fig. 7 shows that
heavy aircraft tend to be separated from subsequent departures for
longer than nonheavy aircraft. However, Fig. 7 does not show the

impact of heavy departures on the service times of surrounding
nonheavy aircraft. In Fig. 7, this would imply that short nonheavy
aircraft service times are correlated with heavy departures in the
surrounding time window. Similarly, the impact of an arrival bank
will not be seen in the interdeparture time of a single aircraft but will
be seen in the 15 min departure throughput.

IX. Applications to Other Airports

Because of the limited availability of ASDE-X data, service times
for departures from runway 17R at Dallas–Fort Worth International
Airport (DFW) were analyzed for 11 days from 2009. Runway
configuration 17C, 17L, 18R | 17R, 18L, 18Rwas in use during these
periods, and the queue size was at least four aircraft. The empirical
distribution of service times is shown in Fig. 8 and is seen to be
qualitatively similar to the service time distributions for BOS (Fig. 3).
The mode of the distribution is 55 s, and it exhibits a long tail
extending to more than 200 s. As more data become available, this
analysis can be replicated for more runways and airports.

X. Conclusions

This Note determined probabilistic models of runway service
times using high-fidelity surface surveillance data. First, a modeling
framework was developed for estimating Erlang service times
distributions from the empirical departure throughput distributions.
Subsequently, it was shown how empirical service time distributions
can be derived from high-fidelity surface surveillance data. Three
parametric distributions were fitted to the empirical distribution. For
the case of the airport BOS, the analysis also showed that a displaced
exponential distribution may be a better match to empirical service
time distributions than the Erlang distribution. However, the Erlang
distribution was found to accurately model the means and variances
of the empirical service time and throughput distributions, as well as
the tail of the service time distribution. It was also shown that its
parameters can be accurately derived from the empirical departure
throughput distribution. These features, combined with its computa-
tional benefits, supported the Erlang service time distribution as-
sumption for queuing models of airport operations.
A complete representation of the runway service process,

incorporating the impact of exogenous variables (arrival crossings,
airspace route availability, propellor-driven aircraft procedures, etc.),
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Fig. 6 (Left) empirical throughput distribution frw and fits fsf and fsa for departures of BOS runway configuration 22L, 27 | 22L, 22R; (right)
comparison of the distributions.
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Fig. 7 Empirical service timeprobability distributions for departures of
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jets.
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Fig. 8 Empirical service time probability distributions for departures of
DFW runway configuration 17C, 17L, 18R | 17R, 18L, 18R.
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would require a complex hiddenMarkovmodel with both exogenous
and endogenous variables.
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