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Abstract. This paper examines the validity of the Erlang distribution for runway
service times. It uses high-fidelity surface surveillance data, for the first time, to
model the probability distributions of runway service times and departure through-
put, and to validate the Erlang service time assumption. The paper proposes sev-
eral potential approaches to determine departure runway service time distributions
from empirical data, and compares the results. In particular, it finds that a displaced
exponential fit may be a better match to the empirical service time distribution than
an Erlang distribution. However, the computational benefits offered by the Erlang
service time distribution, its accurate reflection of the means and variances of the
empirical service time and throughput distributions, and its ability to represent the
tail of the service time distribution, make it attractive for use in queuing models of
airport operations.
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Introduction

The Erlang distribution has been widely used to model runway service process in queu-
ing models of air traffic operations [1,2,3], since its use was first proposed by Hengsbach
and Odoni [4]. The Erlang distribution has been shown to offer certain computational
advantages, because it can be viewed as a sum of exponential distributions. To the best of
our knowledge, there have been few efforts to validate Erlang distribution assumptions
using operational data, and even those have only been performed informally with aggre-
gate or low-fidelity data [5]. This paper attempts to use high-fidelity surface surveillance
data to examine the validity of the Erlang distribution for runway service times.

1. Data sources

The Aviation System Performance Metrics (ASPM) database maintained by the Federal
Aviation Administration (FAA) provides records of the wheels-off and wheels-on times
of all domestic flights in the United States (US) [6]. These reports are obtained automati-
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cally through a system called ACARS for the major carriers, and are inferred for the oth-
ers [7]. While a valuable data source, ASPM presents several challenges for validating
actual runway service time distributions:

• Aircraft takeoff times are rounded to the nearest minute [7]. Due to this quantiza-
tion, aircraft can appear to be taking off with zero inter-departure time from the
same runway.

• To estimate service times from departure times, periods of persistent runway de-
mand must be extracted from the ASPM data [8]. In particular, it is difficult to
use this low-fidelity data to identify instances when there was at least one aircraft
present in the queue at the departure runway threshold.

The Airport Surface Detection Equipment – Model X (ASDE-X) system combines
data from surface radar tracks, multilateration and ADS-B where available to present a
more detailed view of airport surface operations [9]. Aircraft wheels-off times are typ-
ically captured with a precision of seconds. In addition, ASDE-X data can be used to
measure the precise number of aircraft that are physically present in the queuing area at
the departure runway threshold [10,11]. As a result, runway inter-departure times can be
measured conditioned on the actual state of the departure queue.

For the above reasons, ASDE-X data presents a promising way to accurately model
runway service times, and to assess the validity of the Erlang distribution to represent
them. This paper presents a case study based on operations at Boston Logan International
Airport (BOS), for the 22L, 27 | 22L, 22R runway configuration in the year 2011.

2. Fitting of Erlang distributions

The first step in the analysis is the extraction of instances in which there was persistent
demand, and to fit an Erlang distribution to the inter-departure times seen during these
instances. Persistent demand in this case is identified by 15 min periods when there were
more than 22 aircraft taxiing out [8]. The resultant empirical throughput distribution over
these instances is shown in red in Figure 1.
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Figure 1. Empirical ( frw) and modeled ( frm) probability distributions of the departure throughput of 22L, 27
| 22L, 22R at BOS.

Suppose the service times were generated from an Erlang distribution with parame-
ters (k,kµ), where k ∈N+ and kµ > 0 are the shape and rate parameters, respectively. In



other words, the probability density function of the service times is assumed to be given
by

f (t; k,kµ) =
(kµ)ktk−1e−kµt

(k−1)!
, t > 0 (1)

The parameters of the Erlang distribution are estimated from the data using an ap-
proximation based on the method of moments. Let µ1 and µ2 denote the first and second
moment of the empirical runway throughput distribution frw. Since the runway service
times are drawn from the Erlang distribution (k,kµ), if there are exactly i takeoffs in the
time interval ∆, there are at least (i−1)k+1 and no more that (i+1)k−1 occurrences
of a Poisson random variable with rate kµ∆. In the first case, the first k−1 occurrences
corresponding to the ith takeoff occurred in the previous time period, in the latter, the last
k−1 occurrences correspond to the (i+1)th takeoff which takes place in the next time
period. Summing over all these possibilities yields the following expressions:

µ1 =
∞

∑
i=0

(
i ·

(i+1)k−1

∑
j=(i−1)k+1

k−|ik− j|
k

· e(−kµ·∆) · (kµ ·∆) j

j!

)
(2)
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k
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j!

)
(3)

The method of moments cannot be applied exactly because k is constrained to be a
natural number. For this reason, the following approximation is made: The parameter µ is
obtained by numerically solving Equation (2) as a function of increasing values of k. For
each pair (µ,kµ), the error of Equation (3) is calculated. The iterations are stopped when
the absolute error increases. Any further increase in k would imply a further decrease in
variance and a larger absolute error in the value of the second moment.

The actual, frw, and fitted, frm, distribution parameters are shown in Table 1. The
parameters (k,kµ) of the Erlang distribution, grm, yielding the throughput distribution
frm are (6, 3.92). The Erlang distribution grm has an average service time of 1.5 min with
variance 0.4 min2.

Table 1. Empirical and modeled runway throughput distributions, frw and frm, for 22L, 27 | 22L, 22R at BOS.

Distribution frw frm

Mean (aircraft/15 min) 9.81 9.81

Standard deviation (aircraft/15 min) 1.38 1.34

3. Estimation of empirical service times

Consistent with Air Traffic Control phraseology, a queue with pressure is defined as a
departure queue with a sufficient number of aircraft such that that aircraft take off as soon



as the runway is available. Conditioned on a queue with pressure, the service time equals
the inter-departure time. For estimating the condition that implies a queue with pressure,
we use the following algorithm, where dq(l) is defined as the departure queue at the time
of takeoff of the lth aircraft, and Z = maxdq(l):

for i = 1→ Z do
Si← set of inter-departure times of aircraft for which dq = i

end for
i← 1
C← 0
while C 6= 1 do

if inter-departure time distributions of sets Si, . . . ,SZ are statistically significantly
different then

i← i+1
else

C← 1
end if

end while
return i

In other words, the algorithm identifies the value of dq for which the inter-departure
times do not change significantly with the number of aircraft in the queue. A non-
parametric method, namely, the Kruskal-Wallis one-way analysis of variance, is used to
compare the distributions of service time distributions in sets Si, . . . ,SZ . In this particular
case, the algorithm returns a value of 5, implying that the inter-departure times for this
configuration at BOS are distributed differently when there are 4 aircraft in queue and
when there are 5 or more aircraft in queue. Such a large number of aircraft in the queue
area is necessary to guarantee that the trailing aircraft is at the runway threshold, and not
traveling through the queuing area or on hold for extraneous reasons.

For the aircraft in sets S5,S6 . . .SZ , the inter-departure time equals the service time.
It is worth noting that the obtained set of service times does not consist of indepen-
dent samples, and two subsequent takeoffs may be correlated. As shown in earlier work,
one Heavy aircraft departure within a 15-minute interval does not impact the departure
throughput significantly, because the controllers use the wake vortex separation to per-
form runway crossings [12]. As a result, the inter-departure times of surrounding non-
Heavy aircraft may not be significantly impacted. In such a scenario, the service times are
correlated. Similarly, when there no Heavy aircraft in the departure queue, a controller
might choose to perform a stream of tight non-Heavy departures followed by a stream of
runway crossings. In this case, the service times of the departures will be correlated. This
issue has been previously recognized, and capacity is typically defined over a long time
period (for instance the saturation capacity, the practical hourly capacity and the sus-
tained capacity are all defined over an hourly-time window) [13]. The 15-minute period
has been found to provide a good compromise between sufficient length and persistent
demand through the duration of the time period [12,14,15,16].

In order to get independent samples of service time distributions, sets of service
times that are 15 min apart are randomly sampled. The 15 min value was chosen for
consistency with the throughput estimates, which are also performed for 15 min time
windows.
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Figure 2. Empirical service time probability distribution for departures of 22L, 27 | 22L, 22R at BOS.

The empirical distribution for the service times of departures l with dq(l) = 5, and
which takeoff at least 15 min apart, is shown in Figure 2. The figure shows that the service
time distributions have a very long tail despite having a queue with pressure. The support
of the distribution is seen to start around 50 sec, and not 60 sec as would be expected.
The reason for this difference is that inter-departure times are measured at wheels-off,
and not at the start of the takeoff roll where separation is applied by the controllers. The
mode of the distribution is found to be 68 sec. The distribution exhibits also a second
distinct peak at around 100 sec, which can be attributed to Heavy aircraft departures.

4. Probabilistic modeling of service times

In this section, four different fits to the empirical service time distributions are compared
and evaluated:

1. The maximum likelihood estimate (MLE) Gamma distribution (ggl), which esti-
mates the the maximum likelihood parameters of a Gamma distribution to fit the
empirical distribution in Figure 2.

2. The displaced exponential distribution fit (gde), given by

gde(x;φ ,d) =

{
φ · e−φ(x−d) if x≥ d
0 otherwise

(4)

The displaced exponential distribution is often used in traffic engineering applica-
tions because it assumes that there is a minimum headway (d) between vehicles,
in addition to a probabilistic quantity [17]. It could potentially be a good model
for the runway service time distribution, since it reflects the minimum required
separation between successive departures.
In fitting the displaced exponential distribution, the parameters (φ ,d) are chosen
using the Method of Moments:

d +
1
φ
= E[S] (5)

1
φ 2 = var(S) (6)



3. The Erlang distribution fit from applying an approximate method of moments
(MoM), gem. In this method, the Method of Moments is first used to fit a gamma
distribution to the observed service times. The Method of Moments for the
gamma distribution yields estimates k̂ and λ̂ for the shape and scale parameters
as follows:

k̂ =
(E[S])2

var(S)
(7)

λ̂ =
E[S]

var(S)
(8)

The shape parameter, k, is then constrained to be an integer, in order to trans-
form the Gamma distribution to an Erlang one. The objective is to find an Erlang
distribution which has the same mean as the observed distribution, and shape (k)
that will result in a variance as close as possible to the observed one.

k̂ = b (E[S])
2

var(S)
+0.5c (9)

λ̂ =
b (E[S])

2

var(S) +0.5c
E[S]

(10)

The resulting Erlang distribution has a mean E[Lk] and variance σ2
Lk

such that

E[Lk] =
k̂

λ̂
= E[S] (11)

σ
2
Lk

=
k̂

λ̂ 2
=

E[S]2

b (E[S])
2

var(S) +0.5c
≈ var(S) (12)

4. The Erlang distribution fit grw which was obtained by fitting frm to frw, as seen in
Figure 1. The parameters in the current case were estimated to be (6, 3.92). While
frw comprises all departure throughput observations in saturation (more than 22
departures taxiing out), the service time distribution shown in Figure 2 comprises
independent samples of inter-departure times given a queue with pressure. The
Erlang distributions grw and gem essentially model the same quantity, but are es-
timated differently. Some differences are expected between the two distributions,
because the empirical distribution grw is sampled randomly; a different sampling
could yield different parameters.

5. Results

Figure 3 shows the results of applying the four different fitting procedures to ASDE-
X data from BOS, for the 22L, 27 | 22L, 22R configuration in 2011. The estimated
parameters for the four distributions are shown in Table 2.

The plots suggest that the displaced exponential fit matches the empirical distribu-
tion best. d is estimated to be 0.88 min (53 sec), suggesting that it accurately captures
the minimum separation requirement. The displaced exponential fit also matches the tail
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Figure 3. Service time probability distribution fits for departures of runway configuration 22L, 27 | 22L, 22R
at BOS.

Table 2. Distribution parameters

Distribution
Parameter 1 Parameter 2

Mean Var.
(Shape/ Displacement) (Rate)

Empirical – – 1.49 0.30
ggl 8.54 5.72 1.49 0.26
gde 0.88 0.62 1.49 0.30
gem 6 4.02 1.49 0.37
grw 6 3.92 1.53 0.39

of the empirical distribution very well. However, it does not predict the mode of the
distribution exactly.

The Gamma and Erlang fits also fail to predict the mode of the distribution, and they
overestimate the density of the distribution for values lower than 60 sec. By contrast,
they predict the tails of the empirical distribution to the same extent as the displaced
exponential fit. The Gamma and Erlang distributions are different, as can be verified
from their parameters in Table 2. The discrepancy is not the result of rounding k̂ (it is
rounded up to 6 from 5.98), but due to the different estimation methods applied (MLE
versus MoM).

Finally, distributions gem and grw are seen to be very similar despite being de-
rived differently. The similarity between the two distributions demonstrates that the esti-
mated departure throughput under persistent demand and the inter-departure times given
a queue with pressure are consistent with each other.

Estimating the service time distribution from the throughput distribution, as outlined
in Section 2, appears to accurately calculate not only the mean and the variance of the
departure throughput, but also the mean and variance of the inter-departure time given a
queue with pressure. On the other hand, Figure 3 suggests that the displaced exponential
is a better fit to the empirical service times than an Erlang distribution. This hypothesis
is tested by using the estimated parameters (k,kµ) of the fitted frm distribution to derive
a displaced exponential distribution with the same mean and variance as follows:



Table 3. Comparison of the distributions frw, frm and fde.

Distribution Mean Variance KL Divergence

frw 9.81 1.90 –
frm 9.81 1.80 0.010
f̃de 9.81 1.77 0.008

g̃de(x; φ̃ , d̃) =

{
φ̃ · e−φ̃(x−d̃) if x≥ d̃
0 otherwise

(13)

such that:

d̃ +
1
φ̃
=

1
µ

(14)

1
φ̃ 2

=
1

kµ2 (15)

For this example, the parameters are calculated to be (0.91, 0.62), which are, as
expected, similar to those of gde (Table 2). The corresponding f̃de is shown in Figure 4
and is a good match to the empirical distribution. Table 3 shows that f̃de has a smaller
Kullback Leibler (KL) divergence (a measure of the difference between two probability
distributions [18]) from the actual throughput distribution, when compared to frm. It
is therefore conjectured that g̃de accurately represents the service time distribution. It
models the minimum service time requirement, the observed tail of the empirical service
time distribution, as well as the associated departure throughput distribution.
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Figure 4. Empirical departure throughput distribution, frw, and fits frm and f̃de for 22L, 27 | 22L, 22R at BOS.

6. The need for sampling

This section illustrates the need to sample the runway service times. Figure 2 shows the
empirical distribution grw of the sampled service times, given a queue with pressure.
Suppose this distribution is used to generate the corresponding throughput distribution,
fs f in a 15-minute period. Consider the alternative distribution gsa of all service times,
given a queue with pressure. The corresponding throughput distribution, fsa, in a 15-
minute period can be similarly generated.
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Figure 5. Empirical throughput distribution, frw, and fits fs f and fsa for departures of BOS runway configu-
ration 22L, 27 | 22L, 22R.

Table 4. Comparison of the distributions frw, fs f and fsa.

Distribution Mean Variance KL Divergence

frw 9.81 1.90 –
fs f 10.05 1.78 0.0445
fsa 10.06 1.49 0.1053

Figure 5 compares fs f and fsa to the empirical distribution frw. The three distri-
butions are also compared in Table 4. The comparisons show that fsa is a less variable
throughput distribution than frw, due to its using dependent observations. Table 4 shows
that fsa has a higher KL-distance from frw than fs f has. The above observations illustrate
the need for sampling the inter-departure times in order to get independent observations.

7. Effect of fleet mix on service times

The empirical service time distributions can be further parametrized by fleet mix. Heavy
jets are expected to have a service time of at least 2 minutes (120 sec). Figure 6 shows
the empirical service time distributions parametrized by the type of aircraft taking off.
The distribution of the service times for Heavy jet aircraft is clearly distinct from that
of the non-Heavy jets. Heavy jets have much longer service times, as expected given
their separation requirement. The mode of the distribution is at 105 sec. Since the service
time is measured as the difference between successive wheels-off times, it is less on
average than the required separation at the start of the takeoff roll, since Heavy aircraft
tend to have longer roll times. The average service time of non-Heavy aircraft is 87 sec,
compared to 119 sec for a Heavy aircraft.

Finally, these findings are compared to estimates of jet departure capacity presented
in earlier work [19]. In that work, it was concluded that the departure throughput does
not depend on Heavy aircraft, whereas Figure 6 shows that Heavy aircraft tend to be sep-
arated from the subsequent departures for much longer than non-Heavy aircraft. How-
ever, Figure 6 does not show the impact of Heavy departures on the service times of
surrounding non-Heavy aircraft. In Figure 6, this would imply that short non-Heavy air-
craft service times are correlated with Heavy departures in the surrounding time-window.
Similarly, the impact of an arrival bank will not be seen in the inter-departure time of a
single aircraft, but will be seen in the 15-min departure throughput.
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Figure 6. Empirical service time probability distributions for departures of BOS runway configuration 22L,
27 | 22L, 22R for Heavy and non-Heavy jets.

8. Conclusions

This paper presents the first attempt to evaluate the validity of the Erlang distribution for
runway service times, using surface surveillance data. The analysis shows that while the
Erlang distribution may provide computational advantages, the displace exponential dis-
tribution may be a better match to the empirical service time distribution. The complete
modeling of separation requirements and the impact of the exogenous variables (arrival
crossings, route availability, fanning of props, etc.) would need a hidden Markov model
in which the exogenous variables along with the endogenous one (Heavy vs. non-Heavy)
would explain the separation times. The complexity of such model renders it impractical
for both modeling and simulation. The analysis proposed in this paper has implications
both to the development of queuing models of airport operations, and to the estimation
of airport capacities.
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