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Abstract—This paper proposes a new airport model and a
dynamic programming algorithm for controlling the departure
process at congested airports. Using a multi-variable state de-
scription that includes the capacity forecast, the runway system
is modeled as a semi-Markov process. The paper then proposes
a queuing model for modeling the controlled departure process
that enables the efficient calculation of optimal pushback policies
using decomposition techniques. The developed algorithm is
simulated at Philadelphia International Airport, and compared
to other potential control strategies including a threshold-policy.
The algorithm is also shown to effectively adapt to changes
in airport departure capacity, maintain runway utilization and
efficiently manage congestion.

I. INTRODUCTION
A. Motivation

Major airports worldwide frequently suffer from surface
congestion and its undesirable impacts, such as excessive taxi-
out times, fuel consumption and emissions. In the United
States, Philadelphia (PHL) airport has been seen to exhibit
frequent periods of excessive congestion, with significantly
more active aircraft than needed to maintain throughput.
During such congested periods, the average taxi-out time at
PHL was 38 min even in good weather, far more than the
unimpeded taxi-out time of 12 min [1].

Congestion at an airport such as PHL can be analyzed
using data from the Federal Aviation Administration’s (FAA)
Aviation System Performance Metrics (ASPM) database [2].
Figure 1 (top) shows the counts of aircraft pushbacks and
takeoffs during each 15-minute time window, averaged over
all days in 2011 during which aircraft landed on Runway
27R and took off from Runway 27 L. The average departure
capacity of this runway configuration at PHL, estimated to be
13 aircraft/15 min [3], is also shown. This plot illustrates that
while the departure capacity is limited, the demand (pushback
rate) can be much higher. The detrimental effect of this
imbalance on taxi-out times is seen in Figure 1 (bottom).

B. Background and related work

There are several possible options in designing a congestion
control strategy. The simplest approach is an open-loop control
policy that would restrict the demand to a value approximately
equal to the departure capacity. This form of demand man-
agement, known as slot control, is employed at most major
European airports and at a handful of US ones [4].

A simple closed-loop control strategy would be a state-
dependent pushback policy aimed at reducing surface conges-
tion, such as N-Control [5], [6], [7], [8]. The N-Control policy
is a threshold heuristic that stops pushbacks when the number
of departing aircraft on the ground exceeds a certain value, and
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Fig. 1: (Top) Average number of pushbacks, average number
of takeoffs and departure capacity per 15 minutes at PHL in
2011; (Bottom) Average number of pushbacks per 15 minutes
and average taxi-out times.

restarts them when the number of departures on the ground
drops below it. This approach is similar to constant work-in-
process (CONWIP) policies in manufacturing systems [9].

In prior work, we showed that on-off or event-driven
policies for controlling the pushback process are difficult to
implement in practice [10]. Air traffic controllers prefer being
given a dispatch rate that is valid for a predefined time period,
after which it can be updated. We refer to this class of policies
as Pushback Rate Control (PRC). In addition, the actuation oc-
curs at the gates during pushback, while the chief constraint is
the runway. The control strategy therefore has to accommodate
stochastic taxi-out times between the gate and the runway. In
order to address these issues, we developed and tested two
variants of PRC at Boston airport. The first, PRC_v1.0, was a
rate-based approximation of the N-Control policy [11], while
the second, PRC_v2.0, used dynamic programming to suggest
a rate at which aircraft would push back from their gates, so
as to keep the airport from becoming highly congested [10].
The suggested rate was was periodically updated depending
on operating conditions (weather, configuration, fleet mix and
arrival demand), the number of aircraft taxiing out, and the
load of the departure queue.

In order to achieve widespread implementation, PRC proto-
cols need to be adapted to different operational environments.
PRC_v2.0 presents several challenges to such adaptation,
including the dimension of the state-space, sensitivity of
the solution to uncertain parameters, and the definition of



the objective function [3]. This paper presents an alternate
approach (henceforth referred to as PRC_v3.0) that resolves
these problems using a new runway service process model.
Using simulations of operations at PHL, N-control and the
PRC variants are compared, and the tradeoffs between differ-
ent airport congestion control strategies are assessed.

II. DESIGN REQUIREMENTS

The objective of the control strategy is to minimize the
amount of taxiing-out traffic, and thus taxi-out times, while
maintaining runway utilization. In addition, the desired form
of a congestion control strategy is one that periodically rec-
ommends a pushback (release) rate to air traffic controllers
[11]. The suggested pushback rate is updated at the beginning
of each time-window, and is valid for the duration of it. If
the length of the time-window, A, is approximately equal to
the delay between actuation and control (that is, the expected
travel time from the gates to the departure queue), the flights
released from the gate during a given time period would be
expected to reach the departure queue in the next time period.

III. CONTROL STRATEGY
A. System dynamics

The state N; of the departure process at time ¢ consists of
the number of aircraft traveling from the gates to the departure
queue (R;), and the number of aircraft in the departure queue
(Qy), that is, N; = (R, Q;). Both elements of the state, R, and
Oy, can be observed using surface surveillance data.

The start of each time-window is called an epoch. Suppose
the state at epoch 7T is (R, Qz), and the decision maker selects
a pushback rate A; for that time period. Let us assume that i
out of the A; aircraft reach the runway during the time interval
(1,74 A] with probability ;. Similarly, i out of R; aircraft
are assumed to reach the runway at t > 7+ A with probability
%. Therefore, R; aircraft reach the runway during the time
interval (7,T+A], and A; aircraft at r > T+ A, with probability
1—-Y B —Y 7. In all cases, the queue at time 7+ A will be
a function f of the aircraft that were in the queue at T and
the number of aircraft that reach the queue during the time
interval A. The queuing system therefore evolves as follows:
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B. Control algorithm

At the beginning of each time-window, the algorithm recom-
mends a pushback rate A € A = [0, 4], expressed as the number
of pushbacks per A minutes. The model treats the departure
runways as a single server where aircraft line up (queue) to
await takeoff. The queuing system has finite queuing space C,
which depends on operational procedures and airport layout.

The control policy tries to balance two objectives, namely,
to minimize the expected departure queue length and to
maximize the runway utilization. These objectives are reflected

in the cost function ¢(r,q) (Section V). The optimal average
cost per stage, ¢ is given by Bellman’s equation:
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IV. PARAMETRIC THROUGHPUT FORECASTS

A wide range of factors such as fleet mix and the expected
number of landings in the next time period can provide a
conditional forecast for the runway service time distribution
[12]. These parameters help explain some of the variance in
the departure throughput, and provide a more accurate estimate
of the expected departure capacity. We extend the state space
to include the throughput forecast (F) as a state of the system:

N = (RtaQtaFt) )

The optimal average cost per stage, ¢* is then given by:
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where py is the probability of each throughput forecast and
py(r,q,f) is the probability vector of the state of the queue
at the end of the time-window given that the state at the
beginning of the time window is (r,q,f). The resulting policy
is denoted PRC_v3.0.

V. RUNWAY SERVICE PROCESS

In prior work, the runway service process was modeled as
an Erlang distribution whose parameters were estimated from
empirical data [10]. While the Erlang distribution is convenient
for modeling the evolution of a runway queuing system, the
numerical solution of the Chapman-Kolmogorov equations
can be computationally expensive [13], especially in case of
multiple possible throughput distributions with different shape
parameters.

D4, (M(2)|Ro)/Ds/1 model

We assume that during each time window the service
rate is deterministic, but unknown. It is one of a finite set
Ui, W, ..., s, with probabilities derived from the empirical
distribution (for example, Figure 2). The set up,Us,...,Us,
of cardinality s is the support of the empirical distribution
function.

For the example in Figure 2, the throughput process within
each 15-minute window is assumed to be deterministic with
rate 5, 6, ..., or 13. The probability of each rate equals the
corresponding probability mass in the empirical throughput
distribution. For example, the probability that the service rate
is 10/15 min is 0.28. While this model reflects the empirical
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Fig. 2: Example of an empirical probability distribution of
departure capacity.

probability distribution of the departure throughput, it does not
reflect the fact that a service rate of 10 aircraft/15 min does
not imply uniformly spaced service times of 1.5 min. We use
the following notation:

o L;: Possible service rate (aircraft/15 min).

o X: Set, of cardinality s, of all possible service rates

Hi, W2y ey My
e (R,Q;u;): State of the queuing system, given the deter-
ministic service rate U;.

e F: Set, of cardinality z, of all throughput forecasts
fl;f27-~~afZ'

w(i; f): Probability that the service rate equals y;, given
throughput forecast f;.

Consider the case of a single possible service rate, L.
In a given time-window, the system resembles a transient
M(t)/D/1 queuing system, except that the number of arrivals
to the queue during the time-window is known. We denote
such a system as (M(¢)|Ryp)/D/1, and analyze it by extending
the framework proposed by Koopman [14]. In this framework,
the service epochs are a priori marked on the time axis. For
example, when the service rate is 10/15, the (potential) service
time epochs are marked at times 1.5,3,...,15 min from the
beginning of the time window. If an aircraft arrives at an empty
system in minute 1, it must wait until 1.5 min before its service
starts. Delays at lower states may therefore be overestimated.
This assumption however makes the analysis tractable: If at
epoch 0, Ry aircraft are taxiing out, the probability mass
function ¢ of k arrivals between the departure runway service
times i and i+ 1 assuming that j — k aircraft have already
arrived, is:

8(i, j, k) = Pr{k arrivals in(#;,#;1+1]|(Ro — (j — k))arrivals in(#;,A]}
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In this case, the state of the runway system is denoted as
(R,Q; ), where R is the number of aircraft traveling to the
runway, Q is the number of aircraft in the queuing system
(in service or in queue) and u is the deterministic service
rate. Now, we observe that (i, j,k) is the probability of
transitioning from state (Ro — (j —k),j —k+1;;_4>1); )7 to

state (Ro — j, jil)g,,- The condition j—k > 1 implies that
there were one or more aircraft in the system before the
arrival of the k aircraft between service times i and i+ 1,
and one of them was served. At epoch 0 the system is in state
(Ro, Qo, 11). The state of the queuing system at time A, O (1),
is a probabilistic function of the initial value (Ro,Qo, M), the
functions g(i, j, k) describing the probability of each allowable
transition, and the assumed service rate U.

In the full system, for each throughput forecast f, we
have a finite set U, lo,...,Us of possible service rates, each
with probability w(1;f),w(2;f),...,w(s;f). The state of the
queuing system at A, Q, is therefore given by:

Equation (4) shows the benefit of this formulation: The
probability vector of the state of the system QOa(f) given
a throughput forecast f is decomposed in a weighted sum
of Oa(i;)’s, which are independent of the weights of the
summation w(1; f),w(2; f),...,w(s; f). A different throughput
forecast f can be modeled by merely changing the weights
w(i; f) in Equation (4).

We denote this queuing model of deterministic service times
sampled from a finite set and a known number of arrivals
at random times as (M(¢)|Ro)/Ds/1. Moreover, Equation (4)
offers the ability to track each individual arrival at the queue.
Each possible transition is assigned a probability (£(i, j,k))
and a cost. The cost has two components, that of queuing and
non-utilization of the runway. For the queuing cost, the first
of k arrivals between service times i and i+ 1 will encounter
a system with j—k aircraft, the second j—k+ 1 aircraft, etc.
Each transition is penalized in terms of its expected queuing
delay (in minutes). Similarly, each transition from an empty
system (j = k), is penalized in terms of a loss of runway
utilization. The runway non-utilization cost is the minutes of
additional delay for later flights due to the capacity loss. The
optimal pushback policies are obtained from the optimal cost-
per-stage solutions for the (M(¢)|Ry)/Ds/1 model.

M()|Ro)/Ds/1 and (M(1)|Ro)/E(k)/1

)- Oal(p)- “4)

B. Comparison of (
models

In Figure 3, the (M(f)|Ro)/Ds/1 model is compared to the
(M(t)|Ro)/E(k)/1 model used by PRC_v2.0 [15] in terms of
predicting the state of the queue after a 15-minute period
given the range of possible initial conditions Q and R. In
the (M(7)|Ro)/E(k)/1 model, the runway service time are
modeled as Erlang-distributed, and the state probabilities are
calculated by deriving the first-order differential equations
(Chapman-Kolmogorov equations) [15]. We assume a single
throughput forecast (Figure 2), and that parameters f3; and ¥
in Equation (1) equal zero.

The two models predict the same value of expected queue
for most initial conditions, except for states in which the initial
queue length is very low (0-3 aircraft). For example, given
0 aircraft queuing and 12 aircraft traveling to the runway,
(M(t)|Ro)/D;s/1 predicts an expected queue of 4 after 15 min,
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Fig. 3: Expected queue length after 15 min as a function
of the number of aircraft in the departure queue (R) and
the number of aircraft traveling to the runway (Q) for the
(M(t)|Ro)/E (k)/1 model (solid line), and the (M(t)|Ry)/Ds/1
model (dashed line).

whereas (M(t)|Ro)/E(k)/1 predicts an expected queue of 3.
The (M(1)|Ro)/Ds/1 model is conjectured to underestimate
the throughput (and overestimate the queue) in these cases,
because of the assumption that service times are a priori
equally-spaced in the time-window.

VI. SIMULATION OF CONGESTION CONTROL STRATEGIES
A. Departure process model

We focus on the departure process for the runway config-
uration 26, 27R, 35 | 27L, 35, which was in use 74% of the
time under VMC in 2011. In this runway configuration, the
main departure runway is 27L, and the main arrival runway is
27R. ASDE-X analysis shows that there is one departure on
runway 35 for every 11.5 departures on 27L. Additionally, the
thresholds of the two runways are very close to each other,
and the aircraft heading to both of them are part of the same
flow [3].

The model can be used to predict departure throughput and
taxi-out times through a day at PHL. Figure 4 (top) shows
the average number of pushbacks and the average number of
takeoffs (or departures) that were recorded during each 15-
minute time window for all days in which this runway config-
uration was in use in 2011. It also shows the average number
of departures predicted by the model. Figure 4 (bottom) shows
the actual and predicted average taxi-out times for the flights
that pushed back in each 15-minute time window. We observe
that the model is representative of an average day at PHL.

B. Calibration of PRC_v3.0

The u and w parameters of Equation (3) that are necessary
for estimating the queuing transition probabilities are esti-

Actual dep.
Predicted dep.
= = = Pushbacks

o

Operations (AC/15 min)
@ s

(A
o o o

Predicted

NN
=

o o
T T

6 8 10 12 14 16 18 20 22
Local time

Average taxi—out time (min)
@

o

Fig. 4: (Top) Average number of pushbacks, and average
numbers of actual and predicted takeoffs by time of day at
PHL in 2011; (Bottom) Average actual and predicted taxi-out
times by time of day.

mated from empirical throughput distributions. In particular,
the model makes use of seven departure throughput distribu-
tions, with average throughput ranging between 10 and 14
aircraft/15 min depending on arrival demand, route blockage
and fleet mix factors [3]. As explained in Section V, it is
not necessary to recalculate the transition probabilities, nor
the congestion costs. The maximum pushback rate is set to 24
aircraft/15 min, which is the maximum pushback rate observed
at PHL after eliminating outliers. This rate is assumed to be
the maximum admissible rate of arrivals into the departure
process (pushbacks).

The next step involves the decision of the optimal time
window, A, for this runway configuration. For this, we do a
simple flow analysis. On average, in a controlled scenario,
aircraft enter the system at the same rate as they exit, namely,
the average departure throughput (13 aircraft/15 min). The
corresponding average travel time of each aircraft is 14.6min
[3]. A is therefore chosen to be 15 min.

The last step involves calculating the probabilities f3;(R, 1)
and % (R,A), which are necessary for deriving the system
dynamics (Equation (1)). We use Monte Carlo simulations to
estimate the empirical distribution of the number of aircraft
traveling to the runway at the next epoch, R;;a given the
current number of aircraft traveling, R;, and the current
pushback rate, A;. The system evolves from a randomized
initial condition, and we select random pushback rates every
15 minutes. These rates are allocated to airlines according to
their relative presence at the airport. Every 15 minutes, we
record the transition R; A, given the current R; and pushback
rate A;. Finally, we derive fB; and ¥ from the simulated
empirical distributions Ry a = g(Re, A7).



C. Simulation setup

The simulations are used to evaluate the models used in
PRC_v3.0, and also to compare it to other congestion control
mechanisms such as N-Control and Slot-Control.

The airport is seen to saturate when 20 aircraft are taxiing-
out, that is, N* =20 [3]. A value of N.,; = N* =20, is used
for the N-Control policy. Simulations show that for N,;,; = 20,
aircraft do not incur additional delay resulting from gate-
holding. Given that N.,; > N*, the resulting taxi-out time
reduction is the highest that can be achieved with N-Control.

The capacity envelope of PHL is used for simulating Slot-
Control. The average departure capacity of this runway con-
figuration at PHL is 13 aircraft/15 min, and is not found to
change significantly with arrival throughput [3]. Slot-Control
can therefore be simulated by limiting pushbacks to the
average departure capacity. This policy is open-loop and easy
to simulate.

For all control policies, we impose the additional constraint
that the pushback rate does not exceed 4 aircraft/min, which
was the maximum number of pushbacks/minute achieved at
PHL in 2011. This additional constraint reflects the fact that
pushback coordination and communication require a certain
minimum time.

Finally, the earliest possible pushback time of each flight
is its recorded actual pushback time. This means that in all
scenarios, pushbacks can only be delayed, and not advanced.
In addition, for the cases of PRC and Slot-Control, if the push-
back requests in a 15-minute time-window are fewer than the
optimal pushback rate and the pushback cap respectively, the
remaining slots are unutilized. This loss of runway utilization
is because of a lack of sufficient demand at this time period,
and not because of the control scheme. In the case of N-
Control, there are similar instances without sufficient demand
to bring the number of aircraft on the surface to the N,; value.

D. Simulation results

For simulating the three strategies, we run 100 Monte Carlo
simulations sampling the unimpeded taxi-out time of each
flight from the corresponding distribution, and sampling the
runway service time. We also simulate a do-nothing scenario
as a baseline. The results are summarized in Table I, for
the 136,430 flights that pushed back and departed in this
configuration at PHL in 2011. The column “mean delay” lists
the additional takeoff delay that flights incur as a result of the
control scheme, and is the difference between the take-off time
in the baseline scenario and the takeoff time in the controlled
scenario.

Table I shows that PRC_v3.0 reduces average taxi-out times
by 1.66 min, while increasing the average delay by only 0.03
minutes, compared to the do-nothing (baseline) case. It also re-
duces the variability of taxi-out times. The N-Control strategy
yields slightly smaller taxi-out time savings, but with no added
delays. It is worth noting that the PRC_v3.0 strategy achieves
similar results to the N-Control strategy despite only being
applied every 15 minutes. We conjecture that this is because
of the predictive nature of PRC. Instead of aiming to keep the

taxiing-out traffic below 21 aircraft, it uses information on the
current state of the airport to predict the departure capacity
and the queue in the next 15 minutes. The pushback rate is
then set so as to optimize the load of the queue.

Table I also suggests that the taxi-out time savings from the
Slot-Control policy are less than those of either N-Control or
PRC_v3.0, and are achieved with an increased average delay
of 0.27 min or a total added delay of 614 hours per year.
This weaker performance is due to the level of stochasticity
in the PHL departure process, which makes it unsuitable for
an open-loop policy. Despite the fact that the number of
pushbacks is capped at the average departure capacity of the
system, loss of runway utilization occurs often enough that
this capacity loss propagates to delay later aircraft. We also
remark that Slot-Control would result in more variable taxi-
out times than N-Control and PRC_v3.0. Taxi-out times grow
much higher under Slot-Control because of the absence of a
feedback mechanism at times of significant congestion.

Figure 5 shows the average traffic by time of day resulting
from a single run of the N-Control simulation. Similarly,
Figure 6 shows the average traffic by time of day resulting
from a single run of PRC simulation. From the lower plots
of the figures, we notice that both strategies are very effective
in reducing long taxi-out times, and in particular removing
the taxi-out time peaks at 1000 and 1900 hours. The upper
plots show that the controlled pushback rates exhibit a similar
trend under both strategies. It is high in the beginning of
each departure push, but it is subsequently rapidly reduced.
Both strategies initially try to load the runway queue, and
subsequently regulate the flow of aircraft on the surface.

Pushback rates at the beginning of each departure push are
slightly higher under the PRC_v3.0 strategy (for example at
1745 hours). At low traffic levels, the optimal pushback rate
under PRC_v3.0 is high, since it aims to build up the queue
at the runway. Subsequently, given the current state of the
surface, (R,Q), and the predicted capacity, the pushback rate
is regulated so as to maintain a desired inventory of aircraft at
the queue, in this case 5-6 aircraft. In steady state, there will
be 5-6 aircraft in queue and 13 aircraft taxiing to the runway.
Although the initial level of traffic is higher for PRC_v3.0
than for N-Control, it subsequently stabilizes at lower values
(18-19 aircraft) on average.

Figure 7 shows the average traffic by time of day resulting
from a single run of the Slot-Control simulation. The trend of
pushbacks under Slot-Control is very different from that under
the two other strategies. The pushback rate is always capped
at 13 aircraft/15 min. For example, the evening departure push
is evenly distributed in the 1-hour time window 1745 - 1845
hours. The lower plot of Figure 7 shows that the smoothing
of the pushbacks results in significant taxi-out time reduction.
Aircraft pushback at the rate that they takeoff, and delays build
up very slowly.

Figure 8 compares the simulated taxi-out times from the
three control strategies to the do-nothing approach, during the
evening times. In the primary evening departure push between
1730 and 2000 hours, all control strategies achieve significant



TABLE I: Taxi-out time predictions from simulating different control strategies.

Control Taxi-out time Mean delay | Mean gate-hold time | Number of

algorithm Mean (min) [ St. dev. (min) (min) (min) flights held

Baseline 18.46 8.53 0.00 0.00 0

N-Control 16.85 5.82 0.00 1.61 31,325

PRC_v3.0 16.83 5.86 0.03 1.66 28,594

Slot-Control 17.03 6.60 0.27 1.70 52,042
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Fig. 5: N-Control simulation: Average departure capacity (in
black), average number of pushbacks, average number of
actual and simulated takeoffs at PHL in 2011 (top); Average
actual and simulated taxi-out times (bottom).
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Fig. 6: PRC_v3.0 simulation: Average departure capacity (in
black), average number of pushbacks, average number of
actual and simulated takeoffs at PHL in 2011 (top); Average
actual and simulated taxi-out times (bottom).

taxi-out time reductions. Under Slot-Control, taxi-out times are
low at the beginning of the departure push, because aircraft
push back at the same rate as the service rate. However,
between 1800 and 1830 hours, a significant number of Heavy
aircraft push back, and the departure capacity is reduced. As
time progresses, aircraft arrive at the queue at rate greater than
the service rate, and queuing delays increase. By contrast, both
PRC_v3.0 and N-Control have delays higher than Slot-Control
before 1815 hours, but they subsequently become significantly

Fig. 7: Slot-Control simulation: Average departure capacity
(in black), average number of pushbacks, average number of
actual and simulated takeoffs at PHL in 2011 (top); Average
actual and simulated taxi-out times (bottom).

lower. Between 1830 and 1930 hours, PRC_v3.0 outperforms
N-Control, due to its ability to adapt to the impact of Heavy
aircraft on departure throughput.
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Fig. 8: Comparison of the performance of the control strategies
in the evening times

VII. CONCLUSIONS

This paper proposed an airport model and a dynamic
programming based approach to airport congestion control that
can handle the multiple uncertainty factors that are present
in airport operations. The proposed Pushback Rate Control
approach, denoted PRC_v3.0, overcomes the challenges faced



by previous solutions to the problem. PRC_v3.0 used proba-
bilistic forecasts of the departure throughput distribution and
the observation of the current system state to determine the
optimal rate at which aircraft pushback from their gates. Using
simulations of operations at Philadelphia International airport,
the performance of PRC_v3.0 is compared to a static Slot-
Control strategy as well as a threshold policy known as N-
Control.

The results demonstrate that PRC_v3.0 offers an effec-
tive compromise between state-dependent control and static
congestion control. Congestion is efficiently managed, high
runway utilization is achieved, even when pushback rates are
allocated every 15 minutes. The algorithm is also shown to
effectively adapt to changes in airport departure capacity.
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