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Abstract—This paper presents a new model for predicting
delays in the National Airspace System (NAS). The proposed
model uses Random Forest (RF) algorithms, considering both
temporal and spatial (that is, network) delay states as explanatory
variables. In addition to local delay variables that describe the
arrival or departure delay states of the most influential airports
and origin-destination (OD) pairs in the network, we propose new
network delay variables that depict the global delay state of the
entire NAS at the time of prediction. The paper analyzes both
the classification and regression performance of the proposed
prediction models, which are trained and validated on 2007 and
2008 ASPM data. The predictive performance of the model is
evaluated using the 100 most delayed OD pairs in the NAS:
the results show that given a 2-hour prediction horizon, the
average test error across these 100 OD pairs is 19% when
classifying delays as above or below 60 min. The effect of changes
in the classification threshold and prediction horizon on model
performance are also studied.

Index Terms—Air traffic delay prediction; network effects; k-
means clustering; Random Forest methods; ASPM

I. INTRODUCTION

The large number of shared resources in the air traffic
network together with aircraft, crew and passenger interdepen-
dencies makes air traffic network effects an important field of
study [1, 2]. Network effects are becoming more significant for
two main reasons. Firstly, airlines attempt to maximize aircraft
utilization in order to increase revenue, thereby reducing the
time buffer between arrivals and departures. As a result,
arrival delays are more likely to be propagated to subsequent
departure flights [1]. Secondly, as demand gets closer to
the maximum capacity levels, the ability of the network to
absorb disruptions decreases, thereby making the network
susceptible to large-scale delays. The study of network effects
can help us to understand factors that mitigate or amplify
delay propagation, and to identify the elements of the network
causing a bigger impact on the entire system.

The goal of this paper is to study the potential of delay
interdependencies in the NAS network in developing delay
prediction models. Can we predict the departure delay of
a particular OD pair by only looking at the current and/or
past delay state of the different elements in the network?
Similarly, we hypothesize that the delay state of the different
elements in the network at a certain time would be a good
indicator of how NAS delays will evolve in the short term.
We expect that our prediction models will have difficulties
capturing non-congestion related delays, which only affect a
few elements in the network (for example, delays related to
mechanical issues which only affect a small subset of flights).

Our goal is not to predict individual flights delays, but instead
to estimate the future network-related delay on a certain route.
We evaluate the prediction performance of this model over
actual delay data, which can include any type of delay. While
different prediction models have been proposed in the research
community [3-8], none of these models have investigated the
role of the network delay state.

We consider three different types of variables in our delay
prediction models. First, we have temporal variables, which
only depend on the time for which the prediction is being made
(for example, the time of day, or day of week), and not the
delay state of the network. Second, we have local delay state
variables, which indicate the delay level of specific elements
of the network (for example, delay at a particular airport or
route). Finally, we have high-level delay state variables which
depict the state of a group of elements, and are obtained by
clustering local delay state variables.

The analysis of the different prediction models presented
in this paper will help us better understand delay interactions
among the different elements in the NAS network, and evaluate
how much of the future delay on a particular route can be
explained by looking at the current network delay state.

The paper is organized as follows. Section II describes the
data used in this research, and the preprocessing performed.
Section III analyzes the explanatory variables that will be
used in the prediction models. Sections IV and V focus on
the prediction model description, and performance analysis.
Finally, the paper ends with conclusions and next steps.

II. PROBLEM STATEMENT

The main objective of this paper is to predict the departure
delay state of a certain route in the network. The departure
delay state at time t is an estimate of the departure delay of
flights taking off at time t in that route. We evaluate the value
of different network delay state variables in predicting the
departure delay state of a specific route. We study two types
of prediction mechanisms: classi f ication, where the output is
a binary prediction of whether the delay is more or less than
a predefined threshold, and regression, where the continuous
output is an estimate of the delay along the route of interest.

III. INPUT DATA AND PREPROCESSING

The results presented in this paper were obtained using
data from the FAA’s Aviation System Performance Metrics
(ASPM) database. The ASPM database integrates data from
different sources: ETMS, ARINC, OAG and ASQP. ASPM



provides detailed data for individual flights by phase of flight,
airport weather data, runway configuration, and arrival and
departure rates. Two years of ASPM data were processed
in our analysis, from January 2007 to December 2008. We
processed the following ASPM fields for each flight:
• Dep LOCID: Departure Location Identifier.
• Arr LOCID: Arrival Location Identifier.
• SchInSec: Scheduled Gate-In.
• ActInSec: Actual Gate-In.
• SchOffSec: Scheduled Wheels-off.
• ActOffSec: Actual Wheels-off.
• FAACARRIER: Flight Carrier Code
• TAILNO: Aircraft Tail Number
These ASPM fields correspond to individual flight data,

which are processed to obtain a more robust aggregate delay
picture. We are not interested in predicting individual flight
delays, but instead in the delay levels of different airports
and OD pairs in the network. We define the delay state of
an airport or OD pair at time t as an estimate of the delay
that a hypothetical flight using that resource at that time will
experience. For example, if the BOS-MCO departure delay
state is 30 min at 3 pm, it means that the estimated departure
delay for a BOS-MCO flight taking off at 3pm is 30 min.

We use a moving median filter to obtain the delay states of
airports and OD pairs. The delay state of any NAS element
at time t refers to the median delay of all the flights that
fall within a window of size W centered at time t. This low
pass filter mitigates high frequency changes by calculating the
median of the data points. The window size is set to two hours,
and the time step to one hour.

Finally, the two years of data led to 2,029 airports, and
31,905 origin destination pairs. Most of these links average
less than one flight a day. Since only links with high traffic
volume can have an impact on the rest of the network, only
OD pairs with 10 or more flights per day are included in
the analysis. Figure 1 depicts the resulting simplified network,
which is composed of 584 OD pairs, and 112 airports.

 Fig. 1: Simplified NAS network showing links with at least
10 flights a day. The light green icons denote airports in the
original dataset that are not included in the simplified network.

IV. ANALYSIS OF EXPLANATORY VARIABLES

This section describes the explanatory variables that are
included in the delay prediction model, and demonstrates their
relevance. The analysis of the different variables presented

here focuses on the JFK-ORD departure delay prediction
model. However, since our goal is to predict delays along
arbitrary links in the network, the explanatory variables are
defined for generic OD pairs.

The Kruskal-Wallis parametric ANOVA test [9] and the
multiple comparisons test were used to evaluate the depen-
dence of the future departure delay with different categories
for the proposed categorical explanatory variables. A para-
metric ANOVA test was used due to the highly skewed delay
distributions. By contrast, a Random Forest (RF) methodology
was used to identify the most relevant continuous variables.
Random forest is an ensemble classifier that consists of many
decision trees and outputs the class that is the mode of
the classes output by individual trees. The method combines
bagging idea and the random selection of variables at each
tree split.

The significance of the explanatory variables depends on
the output of the prediction model considered (e.g., time
horizon, regression vs. classification, etc.). We assume that if
an explanatory variable has an effect on the continuous delay
output, it will also have an effect on the binary output. For
this reason, only the continuous delay output is analyzed in
this section. While the results shown here were obtained for a
2-hour prediction window, the effect of the prediction horizon
on model performance is discussed in Section V-E.

A. Temporal variables

Temporal variables considered include the time-of-day, day-
of-week, and month-of-year. All these variables are categorical
(e.g., the time-of-day variable has one category for each hour).
The low p-values obtained by the ANOVA tests showed that
the three temporal categorical variables lead to significant
differences in the output delay. For example, Figure 2 presents
the multiple comparisons test plot for the JFK-ORD departure
delay model, showing that the confidence intervals do not
overlap for most categories. Figure 2 indicates that flights
departing at 3 am are the most delayed, which is reasonable,
since few flights are scheduled for that hour, and any flights
that actually depart at that time were likely scheduled for much
earlier in the day. We also see that delays tend to accumulate
through the day until demand levels drop overnight, causing
delays to decrease.
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Fig. 2: Time-of-day multiple comparisons test for JFK-ORD
departure delays.



B. Network delay state variables
1) NAS delay state: The NAS delay state is a categorical

variable that depicts the level of delay in the entire NAS. The
NAS delay state at time t is defined by the departure delay state
of each link in the simplified network at time t. The typical
NAS delay states are obtained by clustering the NAS delay
states into N groups using the k-means algorithm. The output
of the clustering algorithm will indicate the closest typical
state to each of the observations, where the “typical states”
are given by the centroids of each of the clusters.

The first step is to select the number of clusters, or typical
NAS delay states. Six clusters are chosen for two reasons:
First, the total intra-cluster distance does not decrease much
for more than 6 clusters (as seen in Figure 3), and second, six
appears to be qualitatively reasonable since all the main delay
centers are represented in the centroids of clusters.
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Fig. 3: Total inter-cluster distance vs. number of clusters.

Figures 4 depicts the cluster centroids’ delay levels, and
we can see that Chicago, New York City, and Atlanta are the
main delay centers. For fewer than six clusters, Atlanta does
not appear; for more than six clusters, no new delay centers
appear. For simplicity, we want to have the minimum number
of clusters that allows us to differentiate between all the typical
delay situations.

The NAS delay state categorical variable represents the
closest typical NAS delay state at that time. We are interested
in evaluating the dependence of the future delay of a given
OD pair on the current delay state of the NAS as a whole.

For the JFK-ORD OD pair, we performed an ANOVA
test and obtained a p-value equal to zero, meaning that the
means of the JFK-ORD future departure delay for different
values of the NAS state categorical variable are not equal.
Figure 5 shows the associated multiple comparisons intervals.
It is reasonable that State 4 leads to the lowest delay interval,
since it is the low NAS delay state. The next highest JFK-
ORD delays are for State 1, which is the medium NAS delay
state. The ATL high delay state (6) comes next: The JFK-ORD
delay levels are not too high for this state. The next state is the
NYC medium-high delay one (State 2), and finally we have
the Chicago and NYC high delay states (3 and 5).

While some of the NAS delay state categories could be
merged in this case, we do not want to make model simpli-
fications that could worsen the model performance on other

OD pairs. For example, the differences between States 1 and
6 increase significantly for the ATL-MCO route.
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Fig. 5: NAS typical states multiple comparisons test.

2) NAS type of day: In addition to clustering the NAS
delay state at time t, we clustered entire days. The idea was
to identify a set of typical NAS day types, according to the
daily delay of all the links in the simplified network. We
hypothesized that the type of NAS day would have an impact
on the future delay level of any given OD pair.

We followed the same methodology presented in the previ-
ous section to choose the number of clusters (based on distance
reduction and qualitative description of the centroids), and we
chose six again as the number of clusters. Since we need a
video to visualize the cluster centroids, Table I describes the
main source of delay at the highest delay point of the day for
each of the clusters. The average daily delay is also shown.

TABLE I
TYPE OF NAS DAY CLUSTERING. DELAY DEFINITIONS: HIGH (90 MIN),

MEDIUM-HIGH (60 MIN), MEDIUM (20 MIN), LOW (5 MIN).

Avg. delay (min) Qualitative Description
Day 1 29 NYC high+, ATL, ORD high delay
Day 2 22 CHI high, NYC medium high delay
Day 3 15 NYC, ORD medium delay
Day 4 21 ATL high, NYC, ORD medium high delay
Day 5 9 Low NAS delay
Day 6 19 NYC high, ATL, ORD medium delay

Figure 6 shows the monthly occurrences of each type of day.
We see that Day 1 (high NYC delays, and significant ORD and
ATL delays) is more common in the summer months, while
Day 6 (high NYC delays, but not high ORD or ATL delays)
is seen year-round, with higher frequency around the summer
months. We also see that the Chicago high delay day (Day 2)
is more frequent in winter, while the Atlanta high delay day
(Day 4) is more frequent in summer.

Finally, in Figure 7 presents the multiple comparisons test
results for the JFK-ORD departure delay and the type-of-day
variable, showing different JFK-ORD departure delay levels
for different categories of the type-of-day variable.

We note that one needs the entire day’s delay information
to determine the type of a given day. In practice, if we make a
delay prediction at 2 pm, we only have the delay information
from the beginning of the day to 2 pm. Although the type of
day should be estimated with the information available at the
time of prediction is made, we are going to assume that we
know the type of day with certainty before the day is over.
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Fig. 4: Centroids of NAS delay states for six clusters.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

10

20

30

40

50

Month

C
lu

s
te

r 
m

o
n

th
ly

 o
c
c
u

re
n

c
e
s

 

 

Day1

Day2

Day3

Day4

Day5

Day6

Fig. 6: Monthly occurrences of NAS type-of-day.
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Fig. 7: Type of NAS day multiple comparisons test.

While evaluating the prediction capabilities of the type-of-day
variable, we do not include the errors in estimating it.

NAS delays for the previous day are known with certainty,
and can help predict delays later in the day. The NAS does
not immediately recover from high delay situations, such as,
a day with strong convective weather and a large number of
cancelled flights. Passengers will be accommodated in flights
over the next few days, leading to higher traffic levels and sub-
sequent delays. Scheduled aircraft routings are also affected
by cancelled flights, causing additional delays. The multiple
comparisons test results showed significant differences for the
previous day type variable, and this variable was therefore

included in the prediction model.
3) Influential airport delay states: The influential airports

for a given delay prediction problem are those airports whose
arrival or departure delay states play an important role in
predicting the delay of the OD pair of interest. For example,
while predicting JFK-ORD departure delays, it is reasonable
that the ORD departure delay and the JFK arrival delay will
play an important role. We are interesting in identifying other
airport delay variables that would improve the predictions.

We consider 400 possible airports, which led to 800 vari-
ables (departure and arrival delay treated independently). The
goal was to order the 800 variables according to their pre-
diction capabilities. For this purpose we generated a Random
Forest [10] with the 800 airport delay variables as explanatory
variables, and the delay to be predicted as the output. We
used the variables’ importance provided by the RF algorithm
to choose the most relevant airport delay variables. Table II
shows the selected 10 variables for the JFK-ORD departure
delay prediction model.

TABLE II
INFLUENTIAL AIRPORTS FOR JFK-ORD DEPARTURE DELAY PREDICTION.

Airport Delay Type Variable Importance
DCA Departure 100
JFK Departure 96.9
ORD Arrival 85.3
ORD Departure 82.8
LGA Departure 58.9
BOS Departure 58.9
PHL Departure 58.2
EWR Departure 57.7
JFK Departure 56.3
DCA Arrival 46.1

4) Influential OD pair delay states: Our goal was to
identify the OD pairs whose arrival/departure delays can have
an important role in a delay prediction model. We used the
same methodology presented in the previous section, but with



OD pairs delay variables instead of airport delay variables.
We included in our analysis all the OD pairs in the simplified
network. This led to 1,064 variables, half of which were arrival
delay variables, and the other half, departure delay variables.

For the JFK-ORD model, the RF algorithm identified the
10 most important OD pairs presented in Table III. Intuitively,

TABLE III
INFLUENTIAL OD PAIRS FOR JFK-ORD DEPARTURE DELAY PREDICTION.

Origin Destination Delay Type Variable Importance
JFK ORD Departure 100

EWR ORD Departure 90.9
LGA ORD Departure 65.3
ORD JFK Departure 44
ORD LGA Departure 24.3
BOS ORD Departure 17
PHL ORD Departure 16.9
JFK FLL Departure 11.9
BUF JFK Arrival 11.4
LGA ORD Arrival 11

the findings of Table III are reasonable, since most of the
important variables reflect the delays prevalent in the NYC
and ORD areas. There are, however, some interesting findings,
for example, that the JFK-FLL departure delay has the same
importance as the BUF-JFK and LGA-ORD arrival delays
when predicting the JFK-ORD departure delay.

V. DELAY PREDICTION MODELS

First, we describe the training and test sets that were used
to fit and test the predictive models. We sampled 10 training
sets (3,000 points each) and 10 test sets (1,000 points each)
from the 2007-2008 data set. We fit and tested the prediction
models for each of the 10 training and test set pairs. This
allowed us to obtain a measure of the error variability and a
good estimate of the test error. The training and test sets were
not randomly sampled from the 2007-2008 data; instead we
used over-sampling. Over-sampling is the “deliberate selection
of individuals of a rare type in order to obtain reasonably
precise estimates of the properties of this type. In a population
which includes such a rare type, a random sample of the
entire population might result in very few (or none) of these
individuals being selected” [11]. Over-sampling allows us to
have a balanced data set, and to therefore avoid having more
low delay data points in our training and test sets. This is
especially important in the classification problem: If we want
to classify future delays as high (e.g., over 60 min) or low
(under 60 min), we want half of the points in our training and
test sets to present delays of over (or under) 60 min.

We tested different classification and regression models (lo-
gistic regression, single classification trees, bagging, boosting,
linear regression, neural nets), and the RF algorithm showed
the best performance. All the results presented in the rest of
the paper were obtained for the RF prediction model.

VI. DEPARTURE DELAY PREDICTION FOR THE 100
MOST-DELAYED OD PAIRS

With the purpose of evaluating our prediction model perfor-
mance, we test the RF prediction model on 100 different OD

pairs. We selected the 100 OD pairs with the highest average
delay to avoid a shortage of high delay data points. In this
section, we study the performance of the classification-based
and regression-based departure delay prediction models for a
2-hour prediction window and a 60 min classification threshold
(that is, whether the delay will be above or below 60 min).

A. Classification performance

We first study the classification performance. Figure 8
shows the test error histogram for the 100 most delayed OD
pairs. The test error ranges from 11.3% to 28.8%, and the
average value is 19.1%. The link with the lowest test error is
EWR-ATL (11.3%), and the one with the highest is LAS-SFO
(28.8%). Delays for flights arriving or departing from SFO are
hard to predict: The average test error rate for links that have
SFO as origin or destination is 23.3%. We find that 90% of the
analyzed links have a test error standard deviation under 1.7
percentage points. The empirical cdf of the test error standard
deviations of all the links in presented in Figure 9.
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Fig. 8: Classification test error histogram for the 100 most-
delayed OD pairs.
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Fig. 9: Empirical cdf of the standard deviation of the classifi-
cation test error for the 100 most-delayed OD pairs.

If we break down the test error into false positive and false
negative error rates (FPR and FNR respectively) we see that
the FNR is clearly dominant. For the 100 most delayed links,
the average FNR is 23.62% and the average FPR is 14.6%,
and the FNR rate is higher than the FPR for all OD pairs. In
other words, the classifier is more likely to miss a high delay
link than to predict high delay when in reality the delay on the



OD pair is low. This is because our prediction model bases its
predictions on the delay state of the different elements in the
network, and therefore has trouble capturing local delay causes
(such as, mechanical issues). If delays in the relevant network
elements are high, we will likely have a high delay situation
in 2 hours in our link of interest; however, if the network
delay is low we can still have a high delay in 2 hours due
to a local issue that only affects a certain flight. The analysis
also shows an increase of the FNR dominance as the test error
increases. Figure 10 shows the FPR and FNR versus the test
error for all the studied OD pairs. We see that the separation
among the FP points and FN points increases as the test error
increases. For the lowest test error OD pair, FNR/FPR ratio
is 1.3, while for the highest test error FNR/FPR=1.9, showing
that the FNR dominance increases with the test error. In the
OD pair with the highest test error (LAS-SFO), the prediction
model misclassifies high delay points almost twice as often as
the low delay points.
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Fig. 10: FNR and FPR scatter plot for the 100 most-delayed
OD pairs.

The time-of-day explanatory variable is the most important
variable for both the OD pair presenting the lowest test error
(EWR-ATL), and the highest (LAS-SFO). The differences in
their performances can be explained using Figures 11 and
12. They show the EWR-ATL and LAS-SFO departure delay
means and one standard deviation confidence intervals versus
the time-of-day for the data points in the test set. We see
that the EWR-ATL confidence intervals overlap less with the
60 minute threshold line than the LAS-SFO intervals. The
more the overlap and the less the distance from the intervals’
center to the 60 min threshold, the worse the prediction
performance, because the difference between the likelihood of
being over and under the decision threshold at a certain time
decreases (we move towards the random guess). The LAS-SFO
confidence intervals in Figure 12 are wider than the EWR-
ATL intervals. This indicates less correlation between the
departure delay and the time-of-day variable, and it increases
the overlap with the threshold line.

B. Regression performance

Next, we take a look at the regression problem, and compare
its performance with the results obtained for classification. We
use the same data set as the one used in Section VI-A.
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Fig. 11: EWR-ATL mean delay by time-of-day (±σ ).
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Fig. 12: LAS-SFO mean delay by time-of-day (±σ ).

Figure 13 shows the histogram of the median test error for
the 100 links studied. The median error values range from 15.6
min (EWR-ATL) to 36.4 min (LAX-HNL), and the average
median test error is 20.9 min. As we can see in Figure 14
the standard deviation of these error values is low, the 90th
percentile of the distribution is 1.17 min. It is remarkable that
there is a gap between the highest median error value (LAX-
HNL), and the second highest (SFO-JFK). Noting that none of
these links had the highest test error in classification, we can
ask the question: do links with high classification test error
also have high regression test error? To answer this question,
we plot the classification error versus the regression error
(Figure 15). Although there is a strong positive correlation
(0.78), some specific links perform significantly differently
in the classification and regression problems. The highlighted
data point in Figure 15 corresponds to the CLT-LGA departure
delay prediction model. The classification test error in this
link is 22.6%, which is high and in the 87th percentile of
the classification error distribution, but the regression median
test error is only 20.2 minutes, which is in the 40th percentile
of the regression error distribution. This shows that a good
performance in the regression problem does not necessarily
mean good performance in the classification problem, and vice
versa. The problems are different: in the classification problem
we need information to allow us differentiate between high and
low delay, but in the regression problem we need information
to predict the value of the future delay. For a given link, it
may be easier to predict if the future delay will be over 60
min, than to predict its exact value.
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Fig. 13: Regression median test error histogram.
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Fig. 14: Empirical cdf of the standard deviation of the regres-
sion median test error.
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Fig. 15: Classification vs. regression test error.

C. Importance of explanatory variables

There are 26 explanatory variables in the prediction model.
In this section, we evaluate the role of each of them by using
the RF variables’ importance to compare the relevance of the
different variables. Table IV presents the average importance
values for the 100 links. These results are for the 60-min
threshold, 2-hour horizon classification problem.

TABLE IV
AVERAGE IMPORTANCE VALUES OF THE 100 OD PAIRS IN CLASSIFYING

LINK DELAYS.

Variable Var. Imp. Variable Var. Imp.
Time of day 78.5 NAS type of day 28.5
Day of week 6 NAS prev. type of day 18

Month of year 3 Top 3 airports average imp. 49.3
NAS delay state 19.1 Top 3 links average imp. 62.6

On average, we find that the time-of-day is the most
important variable followed by the average importance of the
three most important links. However, some links show very

different behavior: For example, in predicting the ORD-PHL
departure delay, the second most important variable after the
current ORD-PHL departure delay is the NAS type of day,
with an importance level of 72.2.

D. Effect of classification threshold

We also study the impact of changes in the classification
threshold on the performance of the prediction models. We
test three classification thresholds: 45, 60, and 90 min. The
prediction time horizon continues to be 2 hours.

For the 100 most delayed links and the 45 minute threshold,
we obtain a mean test error of 21.2%; for the 60 minute
threshold, the misclassification test error is 19.1%; and for
the 90 minute threshold,16.38%. The test error decreases as
the classification threshold increases, since there are clearer
indications of whether the future delay will exceed 90 min,
than exceed 45 min.

Next, we look in more detail at the values of the test error
for the 100 links studied. Figure 16 depicts the test error
values for the three thresholds and the 100 links; the links are
ordered according to their 60 min threshold test error. This plot
shows that not all links have the same error reduction when
increasing the classification threshold, and that this reduction
is not correlated with the value of the test error. Figure 17
depicts the histogram of the test error increase when moving
from a 90 min threshold to a 45 min threshold. For most links
the error increases by 5 perc. points; however, the increase
ranges from as low as 2 perc. points to 8 perc. points.
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Fig. 16: Classification threshold analysis.

E. Effect of prediction horizon

One would expect the length of the prediction horizon to
affect the prediction performance. We measure the impact
of the prediction horizon length on the classification and
regression problems. We analyze four different time horizons:
2, 4, 6 and 24 hours. The classification threshold is 60 min.

The average classification test errors for the 100 links and
different time horizons are the following: 19.1% (2h), 21.4%
(4h), 22.6% (6h), and 27.2% (24h). The average test error
increase from 2 to 6 hours is only 3.5 percentage points.
If we calculate the average test error for a model in which
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Fig. 17: Histogram of the test error increment when changing
the classification threshold from 90 min to 45 min.

the only explanatory variable is the time-of-day, we have an
average test error of 30%. The difference between this test
error and the 24-hour horizon model test error is mostly due
to the predictive value of the previous day’s delay information.
Figure 18 shows the test error values for the 100 links ordered
in increasing order according to the 2h horizon test error. There
is no correlation between the 2-hour horizon test error and the
error increase as we increase the prediction horizon length.
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Fig. 18: Classification prediction horizon analysis.

Finally, we present the regression problem results. The
average median test error for the 100 links and the different
time horizons are the following: 20 min (2h), 23 min (4h), 24.3
min (6h), and 27.4 min (24h). In other words, the average
median test error increase from 2 to 6 hours is only 4.3
minutes, and only 7.4 min as the prediction horizon increases
from 2 to 24 hours.

VII. CONCLUSIONS

This paper presented a new network-based air traffic delay
prediction model that incorporated both temporal and network
delay states as explanatory variables. The results obtained for
the 100 most-delayed OD pairs in the NAS showed an average
test error of 19% when classifying delays as above or below
60 min, at a 2-hour prediction horizon. The analysis also
found that the dependence of individual link delays on the

network state varied from link to link. The results quantified
the effects of the classification threshold and the prediction
horizon on the predictive performance of the models. Both
the classification and regression models were found to be
quite robust to increases in the prediction horizon: The median
regression test error (averaged across the 100 OD pairs) only
increased from 20 min to 27.4 min when the prediction horizon
increased from 2 hours to 24 hours.

The NAS delay state variables proposed in this paper
enabled the development of the above network-based delay
prediction models. These variables could potentially be used
in the development of a network delay prediction and analysis
tool. Other next steps in this research include the clustering
of OD pairs by the predictive power of different explanatory
variables, with the goal of identifying links in the NAS that
exhibit similar behavior.
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