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Data-Driven Modeling of the Airport Configuration Selection Process
Varun Ramanujam and Hamsa Balakrishnan

Abstract—The runway configuration is the set of the runways
at an airport that are used for arrivals and departures at any
time. While many factors, including weather, expected demand,
environmental considerations, and coordination of flows with
neighboring airports influence the choice of runway configura-
tion, the actual selection decision is made by air traffic controllers
in the airport tower. As a result, the capacity of an airport at any
time is dependent on the behavior of human decision-makers.

This paper develops a statistical model to characterize the con-
figuration selection decision process using empirical observations.
The proposed approach, based on the discrete-choice modeling
framework, identifies the influence of various factors in terms of
the utility function of the decision-maker. The parameters of the
utility functions are estimated through likelihood-maximization.
Correlations between different alternatives are captured using a
multinomial ‘nested logit’ model. A key novelty of this work is the
quantitative assessment of the effect of inertia, or the resistance to
configuration changes, on the configuration selection process. The
developed models are used to predict the runway configuration
three hours ahead of time, given operating conditions such
as wind, visibility, and demand. Case studies based on data
from Newark (EWR) and LaGuardia (LGA) airports show
that the proposed model predicts runway configuration choices
significantly better than a baseline model that only considers the
historical frequencies of occurrence of different configurations.

Index Terms—Air transportation, air traffic control, air-
port runway configuration, discrete-choice models, maximum-
likelihood estimation, decision processes.

I. INTRODUCTION

Most modern infrastructure systems involve significant in-
teractions between automation and human decision-makers. A
key challenge in designing algorithms for these systems lies in
reliably predicting the decisions made by the human operators.
This paper addresses this challenge in the context of airport
operations.

The runway system is generally believed to be a critical
bottleneck in airport operations [1]. Most major airports are
equipped with multiple runways, and at any time, a subset of
these runways (and associated traffic directions) are selected to
handle arrivals and departures. This choice of runways, known
as the airport or runway configuration, is a critical factor
in determining airport capacity [2–5]. Air Traffic Control
Tower personnel consider many factors including weather
(wind and visibility), predicted arrival and departure demand,
environmental considerations such as noise abatement proce-
dures, and coordination of flows with neighboring airports,
while selecting the runway configuration at any time. Runway
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configuration changes require increased coordination between
the Tower personnel and the aircraft and ground crews, and
therefore frequent configuration switches are not desirable.
However, little is known about the relative weightings given
to the different factors that influence runway configuration
selection.

Airport capacity predictions are a key input to a range of
air traffic management functions, ranging from air traffic flow
management [6, 7], to airport surface operations scheduling
[8], and system-wide simulations [9]. These functions all
assume either deterministic or probabilistic forecasts of airport
capacities at different times. Since the capacity of an airport at
any time depends on the runway configuration, the prediction
of the runway configuration is a key step toward forecasting
the capacity of an airport at any time. A better understanding
of the underlying selection process will, in turn, help better
predict the resultant runway configuration.

This paper proposes a statistical model that uses empir-
ical observations to characterize the configuration selection
process. The approach represents the configuration selection
process as a discrete-choice model, and infers the air traffic
controllers’ utility functions in making these decisions so as to
maximize the likelihood of the observed decisions. The result
is a probabilistic prediction of the human agents’ decision
on configuration selection, given a forecast of the operating
conditions at any time. The objectives of this work are: (1)
To determine a model of the configuration selection process,
including the utility function that best (in terms of maximum-
likelihood) explains the decisions that were made; and (2)
use the developed model to predict the runway configuration
(and consequently, the runway capacity) three hours ahead of
time. The first of the two outcomes helps evaluate the relative
importance of different factors (for example, wind, demand,
etc.) that are believed to influence the decision process, while
the second provides a vital input to air traffic management and
simulation tools. A utility function that reflects the preferences
of the decision-makers will also enable the design of realistic
objective functions for runway configuration optimization. The
proposed approach is demonstrated using two years of opera-
tional data from New York’s LaGuardia International Airport
(LGA) and Newark Liberty International Airport (EWR).

II. RELATED RESEARCH

Recent research efforts have focused on the development of
tools that prescribe the optimal sequencing of runway config-
urations, assuming knowledge of their respective capacities,
expected airport demand, and prevailing operating conditions
influencing configuration feasibility [10–15]. A significant
challenge to the practical implementation of such methods
is the incorporation of the constraints and objectives of the
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human operators. For example, it is known that configura-
tion changes require significant coordination between the air
traffic controllers (both at the airport and in the surrounding
airspace), pilots and other ground personnel, and increase
controller workload; little is however known about the role that
“inertia” or resistance to configuration changes plays in the
configuration selection process. As a result, tools that suggest
runway configuration choices have been found to recommend
significantly more frequent changes than was seen in actual
operations [16]. Few prior studies have conducted systematic,
large-scale evaluations of their results using real data [17]; for
example, Oseguera-Lohr et al. simulate 12 days of data from
Memphis (MEM), Dallas Fort-Worth (DFW) and New York’s
John F. Kennedy (JFK) airports [16]. By contrast, this paper
presents an evaluation over one entire year’s (2007) data from
New York’s LaGuardia (LGA) and Newark (EWR) airports.

NASA’s System-Oriented Runway Management (SORM)
concept is aimed at designing decision-support tools that
will improve the usage of limited runway resources [18]. In
considering runway configuration management, the concept
considers both strategic prediction of runway configuration
usage a few hours ahead of time, and tactical decision-support
that helps air traffic controllers choose the optimal runway
configuration, and even the associated arrival-departure mix.
This paper focuses on the former aspect, namely, the prediction
of the runway configuration in a given 15-minute period, at a
3-hour time-horizon.

A. Descriptive vs. prescriptive models
Broadly speaking, there are two approaches to modeling

decision processes such as runway configuration selection.
Prescriptive models aim to recommend or prescribe a decision
or course of action to the operators. These models are built to
optimize some desired objective (for example, delays), con-
sidering the feasible options as determined by various opera-
tional constraints. Most prior research on airport configuration
selection has focused on these types of models [10–15]. As
their name suggests, descriptive models are built to describe
the current decision-making process, and thereby predict the
outcomes of the process. To the best of our knowledge, this
aspect has received little attention in the context of runway
configuration selection [17], although data mining approaches
have been used to forecast airport arrival rates, especially dur-
ing Ground Delay Programs [19–22]. The need for descriptive
models has been acknowledged in the context of other human-
automation decision systems and tasks, including situation
awareness and functional allocation [23, 24]. It is important
to note that descriptive models can help develop better pre-
scriptive models: Delay (which depends on the relationship
between capacity and demand) is not the only objective in
the decision-making; a better understanding of the importance
of other factors such as inertia can enable the development
of prescriptive models that are more reflective of operational
considerations, and therefore have a greater likelihood of being
adopted in practice [12, 16]. Traditionally, descriptive models
are labor- and time-intensive, and require extensive site visits,
interviews, qualitative analyses, and ethnographic studies [23–
25]. The increasing availability of operational data motivates

the development of data-driven approaches to characterize
decision processes. These approaches can easily be automated,
and are typically easier to adapt to different operating envi-
ronments and application domains. While descriptive models
developed using data mining techniques may not be as “rich”
as those built from qualitative analyses (and therefore may not
be suitable for evaluating features such as cognitive structure
and exceptional situations), they may be sufficient for the
purpose of predicting nominal behavior.

This paper takes a data-driven approach to the problem
of modeling the configuration selection process: a discrete-
choice model of the runway configuration selection process
is estimated using archived operational data, quantifying the
effect of factors that influence the utility function of the
air traffic controllers. In short, while prior efforts primarily
aim to guide controllers on what runway configurations to
select (in order to optimize some predetermined objective
such as throughput), this study attempts to model how con-
trollers currently select runway configurations, and the relative
importance of key influencing factors. The rationale behind
this approach is that the actual objective functions are more
complex than just delays or throughput, and are learned by
controllers through experience. The utility functions of the dif-
ferent alternatives are represented as functions of the candidate
factors (wind, demand, etc.) that can influence configuration
selection. The discrete-choice framework, which has been
previously applied to other applications as diverse as modeling
driver lane-changing behavior [26], travel demand [27, 28],
residential and medical practice location [29, 30], enables
the estimation of the relationship between influencing factors
and the favorability of a configuration, and the prediction of
future configuration choices made in response to evolving
weather and demand conditions. The main assumption is
that the decisions are nominally driven by an underlying
utility function, that is consistent across the range of rational
decision-makers. In the absence of such consistent behavior,
the models will be poor predictors of system performance. The
proposed discrete-choice approach tries to reverse-engineer the
utility function that best explains (in the maximum-likelihood
sense) the observed decisions, and uses this utility function to
predict future decisions.

The rest of this paper describes the problem of runway
configuration selection, and the proposed methodology for
determining a discrete-choice model of the configuration se-
lection process. The approach is illustrated using case studies
of LGA and EWR airports, with models that are trained on
data from the year 2006, and tested on data from 2007. The
results demonstrate the proposed model’s ability to accurately
predict the choice of runway configuration, given operating
conditions such as wind, visibility, demand, etc.

III. OPERATIONAL BACKGROUND

A. Terminology

Runway configurations are typically represented in the
form ‘R1, R2 | R3, R4’ where R1 and R2 are the arrival
runways, and R3 and R4 are the departure runways. Runways
are denoted by their magnetic bearing (rounded off to the
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nearest 10◦). Fig. 1 shows the layout of LGA, which has
two runways. Each runway has two possible labels, depending
on the direction of operations. Therefore, the runway labeled
‘4’ lies at an angle of 40◦ to the magnetic North, while the
opposite direction of the same runway (at a 220◦ angle to the
magnetic North) corresponds to runway ‘22’. Similarly, ‘13’
and ‘31’ refer to the two directions of the same runway, at
angles of approximately 130◦ and 310◦ respectively. A given
runway can be used at any time for arrivals, departures, or
both simultaneously; and in one of two possible directions.
In theory, an airport with N runways has O(6N) possible
configurations. For LGA (two runways), there are 32 possi-
ble configurations. During operational hours (6AM-midnight),
only 10 of these configurations are seen to be used in practice
[31].
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Fig. 1. Layout of LGA airport, showing its runways and their labels [32].

The capacity of a runway configuration refers to the number
of arrival and departure operations that the airport can serve
in some interval of time, typically 15-minutes or an hour.
There is a tradeoff between the number of arrivals and the
number of departures than the airport can serve; this tradeoff
is represented by the capacity envelope. The capacity envelope
of an airport at any time varies by configuration, and also by
the prevailing weather conditions [2]. Of particular interest for
operational decisions (such as planning Ground Delay Pro-
grams) is the Airport Arrival Rate (AAR), which corresponds
to the arrival capacity of the airport at any time.

B. Runway configuration selection

The Tower Supervisor or the Controller-in-Charge (CIC)
typically have the primary responsibility of determining which
runways are active at any time [33]. A variety of factors are
considered in selecting the runway configuration, including
surface wind direction and speed, wind shear/microburst alerts,
coordination with adjacent airport flows, severe weather ac-
tivity, and environmental considerations such as noise abate-
ment procedures [33]. At many airports (LGA and EWR,
for example), the Traffic Management Coordinator (TMC)
in consultation with the Supervisor/CIC selects the runway
configuration, considering current and forecast weather, opti-
mum arrival/departure rates, and noise abatement. The TMC is
generally expected to maximize operational efficiency through
the proper selection of runway configuration, procedures, and
flow control initiatives.

1) Coordination: At metroplexes in which there are several
busy airports in close proximity of each other, the coordination
requires coordination with the terminal-airspace (TRACON) as
well. Letters of Agreement (LOA) between the TRACON and
the individual facilities govern the coordination protocols.

2) Documentation: The National Traffic Management Log
(NTML) records traffic management activities (including run-
way configuration selection) at all major facilities. 77 airports
in the United States are required to report their runway
configurations and the associated arrival and departure rates
on a quarter-hourly basis, which are then archived in the
Aviation System Performance Metrics (ASPM) database [34].
The TMC’s responsibilities include the reporting of these and
other statistical data [35].

IV. DISCRETE-CHOICE MODELS

Discrete-choice models address problems in which a
decision-maker needs to select one option from a finite set
of alternatives [27]. The decision-maker is assumed to select
the solution that maximizes a utility function that depends on
several influencing factors (known as attributes, and denoted
by the vector X̄). The utility function for each alternative is
modeled as the sum of an observed component V (which
is a linear combination of the influencing factors) and an
unobserved component ε represented through error terms. In
other words, consider the observation of the nth selection
decision. Let Cn be the set of alternatives available for the
nth choice. Then, the utility of choice ci ∈Cn is given by

Vin = α + β̄ · X̄in (1)
Uin = Vin + εin, (2)

Equation (1) reflects the assumption that the utilities are
linear functions of the attribute vector, X̄in, and weights given
by the vector β̄ . Equation (2) reflects errors due to unmodelled
effects or noise. For the nth observation, the decision-maker is
assumed to select the alternative c j ∈Cn such that

j = argmax
i:ci∈Cn

Uin. (3)

The error terms, εin, are assumed to be Gumbel-distributed,
that is, the p.d.f is assumed to be

f (x) = µe−µ(x−η)e−eµ(x−η)
, (4)

where η ∈R is known as the location parameter, and µ ∈R+

is known as the scale parameter. The Gumbel distribution is
used as an approximation to the normal distribution, since it
results in computationally tractable analytical expressions for
the probability of observing a particular choice [27].

When one assumes that the error terms are i.i.d and drawn
from a Gumbel distribution, the resulting model is known as a
multinomial logit (MNL) model [27]. The choice probability
expression for the MNL model is given by

P(ci|Cn) =
eVin

∑ j:c j∈Cn eV jn
. (5)

In other words, Equation (5) provides the probability of the nth

choice being ci, given that the set of feasible alternatives was
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Ci. The probability of selecting an alternative ci increases as
the observed component of its utility (given by Vin) increases
relative to those of the other alternatives.

Each 15-minute interval can be assumed to be a unique
instance n for an air traffic controller to select the utility-
maximizing configuration ci out of the list of feasible con-
figurations Cn at that time. However, the assumption of inde-
pendent error terms in the MNL model may be too restrictive
for this application. For example, if two candidate configura-
tions use the same arrival (or departure) runway, their error
terms may be correlated due to the same unmodeled effects.
Extensions such as the Nested Logit (NL) and the Cross-
Nested Logit (CNL) models overcome this challenge [27].
These models permit correlated errors within specified subsets
of alternatives, represented by nests. Fig. 2 illustrates four
alternatives {alt1, alt2, alt3 and alt4}, grouped into two nests,
N1 and N2, in (left) an exclusive manner (NL representation),
and (right) an overlapping manner (CNL representation) with
alt2 shared between the two nests. Choices within a nest have
correlated error terms. Under the Nested Logit model shown,
alt1 and alt2 would have a common component to the error
terms, while alt2 and alt 3 would have independent errors;
under the Cross-Nested Logit model shown, alt2 would have
a common component of error with alt1, and another common
component with alt3 and alt4.

N1 N2 

alt1 alt2 alt3 alt4 

N1 N2 

alt1 alt2 alt3 alt4 

Fig. 2. (Left) NL model framework; (right) CNL model framework.

The expressions for alternative probabilities for the NL and
CNL models, and their comparisons with the MNL model are
described in [27]. For example, the selection probability for
alternative alt1 in the NL model (Fig. 2 (a)) is given by

P(alt1|{alt1,alt2,alt3,alt4}) = P(alt1|N1)P(N1|{N1,N2}) (6)

where P(alt1|N1) =
eµN1Valt1

∑ j:c j∈{alt1,alt2} eµN1V j
, (7)

P(N1|{N1,N2}) =
eVN1

eVN1 + eVN2
, (8)

VN1 =
1

µN1

log ∑
j:c j∈{alt1,alt2}

eµN1V j , (9)

and so on.
The scale parameters µN1 and µN2 reflect the extent of

error correlation among alternatives within nests N1 and N2
respectively.

A. Parameter estimation

The model parameters (α , β̄ in Equation (1) and the
scale parameters µ in Equation 7) are estimated using the

maximum-likelihood approach. The vector β̄ corresponds to
the weighting of different attributes in the utility function.
The likelihood of a given dataset of choice observations is
the joint probability of observing the sequence of choices
recorded. Configuration choice probabilities at different times
are assumed to be conditionally independent of one another,
given the explanatory factors X̄in. Therefore,

L (α, β̄ ,µ)=P((c1|C1)
⋂

....
⋂
(cN |CN)|α, β̄ ,µ, X̄)

N

∏
i=1

P(ci|Ci)

where ci is the selected alternative, and Ci is the set of available
alternatives for ith observation, i ∈ 1,2, ..,N.

The parameter estimates (α̂, ̂̄β , µ̂) are those that maximize
this likelihood:

(α̂, ̂̄β , µ̂) = argmax
α,β̄ ,µ

L (α, β̄ ,µ). (10)

Likelihood-maximization is a nonlinear optimization prob-
lem. BIOGEME, a software package that specializes in es-
timating discrete-choice models through customized in-built
algorithms, was used to carry out the optimization [36].

B. Model specification

Model specification refers to the attributes X̄in that determine
the utility function. The specification is developed through
iterative consideration of candidate factors. All three types
of models (MNL, NL and CNL) of the airport configuration
choice process were determined and evaluated. The statistical
significance of factors were assessed using the Likelihood-ratio
test [27] for nested hypothesis testing, and the Cox composite
model test [37, 38] for non-nested hypothesis testing. The
Hausman-McFadden test [39] was used to check the statistical
validity of the NL or CNL models over the MNL model.

V. CASE STUDIES

A. Training data

The proposed approach was used to model configuration
selection processes at LGA and EWR airports. The training
data set for each airport comprised of records from the Federal
Aviation Administration’s Aviation System Performance Met-
rics (ASPM) database for the year 2006 [31]. This database
reports the chosen configuration as well as other prevailing
airport conditions such as weather, demand, etc. for each 15-
minute interval during the year. Data from hours between
midnight and 6 am were excluded from the data set, since
these periods have very low demand, and the reporting is prone
to errors. Feasible configurations for each time period were
determined by the set of runways that did not exceed the FAA-
specified safety thresholds for tailwinds (5 kn) and cross-winds
(20 kn). Observations with infeasible runway configurations
(likely due to reporting errors) were also filtered from the
data.
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B. Candidate influencing factors in utility function

There are several factors that potentially influence the choice
of configuration (from among the feasible options) in any time
period. The following factors were explicitly included in the
utility functions of the discrete-choice model:

• Inertia: Configuration changes require extensive coordi-
nation among the different airport stakeholders, and are
thought to cause a loss in airport throughput [10, 12, 40].
Since maintaining the configuration from the previous
time interval is preferable to a significant extent, the util-
ity function of the incumbent configuration is expected to
be higher than those of the other candidate configurations
due to the inertia factor.

• Meteorological Conditions: The prevailing weather con-
ditions, indicated by the height of the cloud ceiling
and the visibility at the airport, influence the choice
of runway configuration. Therefore, the utility function
considers whether the airport is operating under good
visibility (Visual Meteorological Conditions, or VMC) or
reduced visibility (Instrument Meteorological Conditions,
or IMC).

• Wind speeds and direction: Observed wind speeds and di-
rections are used as attributes in the utility function. Since
significant tailwinds are not favorable for operations,
headwinds are expected to have a positive effect on the
utilities of the corresponding configurations. Significant
head winds (winds aloft) may also have an adverse
effect on operations by decreasing spacing between pairs
of aircraft on final approach, a phenomenon known as
compression [5]. As a first step, this paper assumes a
single linear term representing the headwind component
of the speed along each runway; the methodology can be
extended to incorporate different linear terms for head-
and tailwinds, as well as compression effects.

• Demand: During periods of high demand, a high-capacity
configuration is likely to be favored. Arrival and departure
demand are both considered as factors.

• Noise abatement procedures: In order to minimize distur-
bance to neighboring communities, many major airports
impose noise rules regarding runway use during nighttime
hours. In the New York area, these rules are imposed
between 10 pm and 7 am; these times are therefore likely
to have a negative impact on the utility functions of some
affected configurations. Since the hours of midnight to 6
am are not included in the study, only 3 hours a day of
the data set are subject to noise abatement.

• Configuration proximity: Configuration changes require
increased coordination and disrupt the flow of aircraft on
the surface. The workload associated with a configuration
change may vary depending on the configurations before
and after the switch: For example, a configuration change
that only requires the addition of a departure runway
may be easier to implement than one that changes the
direction of runway operations. The configuration change
type, a categorical variable, is denoted by the differences
in angles between the arrival and departure runways of the
preceding and succeeding configurations. A configuration

change which results in a 90◦ reorientation of the arrival
runway and a 180◦ reorientation of the departure runway
is labeled (90◦,180◦).

• Inter-airport coordination: In multi-airport terminal-areas,
flows into and out of the different airports need to be
coordinated. In the New York area, John F. Kennedy
International airport (JFK), LGA and EWR all lie in close
proximity of one another. JFK is the largest of the three
airports, annually serving more than 2.5 times the number
of operations that either of the other two airports. It is
therefore expected that the configuration chosen at JFK
at any time influences the configuration choice at LGA
and EWR. Categorical variables are used to represent
interactions between pairs of runway configurations at
JFK and at LGA/EWR.

C. Estimation of discrete-choice models and utility functions
The utility specifications and error structures were devel-

oped and statistically evaluated, as described in Section IV-B.
The resultant models are discussed below.

1) LGA model: The training data set had a total of 17,716
choice observations post-filtering (i.e., data from 17,716 time
periods), featuring a total of 10 distinct configuration alterna-
tives. The final model has a NL structure with two alternative
nests, grouping configurations with arrival runways 4 and 13
respectively as illustrated in Fig. 3. The other configurations
are modeled as singleton nests.

4|4 4|13 4|31 13|4 13|13 

22|13 22|22 22|31 31|4 31|31 

Arr_4 Arr_13 

Fig. 3. Estimated NL structure for LGA configuration selection (for year
2006).

The results of the utility coefficients are tabulated in Table
I, along with the corresponding t-statistics in parenthesis.
Parameters whose estimates are judged as not being statis-
tically insignificant (the absolute value of the t-statistic is less
than 1.96) are shown in red. The results support the a priori
hypotheses on the effects of inertia and headwinds, both of
which are found to be strongly statistically significant. Further
analysis shows that the estimates of configuration proximity
and JFK coordination variables are consistent across multiple
years. The scale parameters µArr 4 and µArr 13 are estimated
to be 1.1 and 1.65, respectively. The discrete-choice model
identified for LGA comprises of 36 parameters.

2) EWR model: The training dataset had a total of 23,506
choice observations after filtering, and featured 20 different
configurations. The final model had a NL structure with one
nest corresponding to the use of an additional arrival runway,
as shown in Fig. 4. This nesting suggests that configurations
with an additional arrival runway share commonalities in terms
of unobserved factors influencing their preferences.

The results of the utility coefficients are tabulated in Table
II, along with the corresponding t-statistics in parenthesis.



6

CAUTION: BE ALERT TO RUNWAY CROSSING CLEARANCES.
READBACK OF ALL RUNWAY HOLDING INSTRUCTIONS IS REQUIRED.

AL-285 (FAA)AIRPORT DIAGRAM

AIRPORT DIAGRAM

15064

15064

NEWARK, NEW JERSEY

NEWARK, NEW JERSEY
NEWARK LIBERTY INTL(EWR)

NEWARK LIBERTY INTL(EWR)

Z

EE

EE

EE

M

M
M

P1

V

N

P2

E

G

J

P3

K

P4

W

Z 22L
22R

W
Y

P
P

P

P

L

K

J

G

E

C

P

P

P

P

P

AA

BB

CC

V

N

P

2
9

4R

4L

AA

AA BB

CC

CC

V

PA

PA

PA

RB

RB

FE

N

N
B4

C

E
E B3
RD

RD

DK

RC
RC

DL

RE
RE

G
DM

RF

B
2

J
JRG

B

A

B

B

B

B

BB

A
A

A

A

A

S

S

R

R

R

B
1

KK
K

RG

K

LL

YYY
Y

Y

W
W

W W
W

Z

Z
Z

Z
Z

RF

PA
D

D

D

D

RN
RN

RH
RHRJ

RJU
U

U
U

U
U

RK

RK

U
B

U
A

Z
3

Z
4

Z3

R
L

R
M

W2

W
2

R
M QS

A

A

B

B

B

118.85
CLNC DEL
121.8
GND CON
118.3 257.6
NEWARK TOWER
115.7 134.825
ATIS

D

AREA 15
PARKING

FIRE STATION EQUIPMENT
P.A. ADMINISTRATION

PARKING
AVIATION
GENERAL

PARKING
AIRCRAFT
AREA 340

1
1

EMAS

17
ELEV

107.9 

287.9 
6726 X 150

FIELD
ELEV
17

10
ELEV

S
S

S

9
ELEV9

ELEV

HS 2 HS 1

HS 3
T

PARK
BALL LAHSO

S

2
1
8
.7

 

2
1
8
.7

 

0
3
8
.7

 

0
3
8
.7

 

1
0
0
0
0
 X
 1

5
0

1
1
0
0
0
 X
 1

5
0

G

C
TERMINAL

B
TERMINAL

A
TERMINAL

348
TWR

0.0  E
ANNUAL RATE OF CHANGE

JANUARY 2015

     D-210, 2D-520, 2D/2D2-1000
     PCN 96 R/B/W/T
RWY 11-29
     D-210, 2D-520, 2D/2D2-1000
     PCN 96 R/B/W/T
RWY 04R-22L
     D-210, 2D-520, 2D/2D2-1000
     PCN 96 R/B/X/T
RWY 04L-22R

om all twys and rwys.
Operate transponders with Mode C
ASDE-X Surveillance System in use.

74 11’W 74 10’W

40 41’N

40 42’N

A

U
P

FD

W
ILBUR AMELIA

LIN
DY

10
ELEV

11
ELEV2

CAT

Q R
R

RA

H

V
A

R
  1

2
.9

    W

410

ZA

M

N
E-2, 05 M

AR
 2015 to 02 APR

 2015

N
E-

2,
 0

5 
M

AR
 2

01
5 

to
 0

2 
AP

R
 2

01
5

4R 4L 

22R 22L 

29 
11 

(a) Layout of EWR airport [32].

22L|22R,29 29|22L 29|22R 29|4R 29|4L 11|22R 22L|22R 4L|4R 4R|4L 29|29 22R|22R 22L|22L 4R|4R 4L|4L 
Extra	  

Arr	  Rwy	  

4R,11|4L 4R,29|4L 22L,11|22R 22L,29|22R 22L,22R|22R 22R,29|22L 

(b) Structure of estimated nested logic model for EWR.

Fig. 4. Layout of EWR, showing its runways and their labels [32], along with the estimated NL structure for EWR configuration selection (for year 2006).

Estimates for which the absolute values of the t-statistics are
less than 1.96 are shown in red. The nest scale parameter
µextra Arr is estimated to be 1.45. The discrete-choice model
identified for EWR comprises of 57 parameters.

Once again, inertia and wind effects were found to be
statistically significant. The estimates of configuration prox-
imity and JFK coordination were found to be consistent across
multiple years.

D. Model evaluation

The proposed models are evaluated by comparing the con-
figuration choice predictions of the estimated discrete-choice
model and a baseline model for an independent test dataset.
The test set consisted of ASPM records from 2007, refined
using the same filters as the training data set (2006 data). The
baseline model is described in the next section, following by
a discussion of the test results.

1) Baseline model: The use of the discrete-choice modeling
framework enables the incorporation of relevant influencing at-
tributes like weather conditions, demand, etc. in determination
of configuration selection probability. An alternative approach
is to compute explicitly, using data, the probability of a
particular configuration being chosen, given the configuration
in effect in the previous time interval. Such an approach would
generate a transition probability matrix ∆, where an element
∆(i, j) would represent the probability of configuration j
being chosen in any time interval, given that configuration

i was active in the previous time interval. Peterson (1992)
previously proposed such a model for representing airport
capacity dynamics [41].

Given Ct ∀t = {1,2, ...T};Ct ∈ {1, ...,Nc}, where T is the
total number of time intervals, Nc is the total number of
possible configurations, and Ct is the configuration selected
at time t, the transition matrix ∆ is given by

∆(i, j) =
∑

T
t=1 1(Ct = j)1(Ct−1 = i)

∑
T
t=1 1(Ct−1 = i)

∀i, j ∈ {1, ..,Nc},

where 1(·) is the indicator function that is 1 if its argument is
true, and 0 otherwise.

The baseline models were determined using the same train-
ing data as the discrete-choice models (ASPM 2006). Tables
III and IV present the estimated transition probabilities (∆i, j)
for the most prominent configurations at LGA and EWR.

2) Model evaluation results: Considering a typical airport
configuration planning horizon, a 3-hour forecast horizon is
considered. The discrete-choice model predicts the probability
distribution (over all possible choices) of the runway con-
figuration in the next time-period. Bayes’ rule can then be
used to recursively compute the probability of each runway
configuration being selected 3 hours in the future, given the
current runway configuration, and demand and weather over
the next 3 hours.

For each runway configuration, we also calculate the aver-
age (over the test data) probability with which that configu-
ration was predicted for time-periods when it was observed.
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TABLE I
ESTIMATED UTILITY FUNCTIONS (VALUES OF VARIOUS ELEMENTS OF β̄ )

FOR THE DISCRETE-CHOICE MODEL FOR LGA.

1. Inertia
Configuration from previous time step (incumbent) +5.100 (68.8)
2. Meteorological Conditions
13|13 in VMC +1.530 (2.72)
22|22 in VMC +1.830 (2.79)
31|31 in VMC +1.710 (2.20)
4|13 in VMC +1.150 (3.42)
22|13 in VMC +0.800 (2.10)
22|31 in VMC +1.350 (2.71)
31|4 in VMC +1.540 (4.30)
13|4 in VMC +0.830 (1.47)
3. Headwind speed
Relative to arrival runway +0.044 (8.90)
Relative to departure runway +0.029 (5.0)
4. Demand
Configuration that uses both runways (high capacity) +1.650 (9.25)
5. Noise abatement
Runway 31 for morning 6-8 am +1.320 (7.40)
Runway 4 for evening 10 pm-12 am +0.930 (3.8)
Runway 31 for evening 10 pm-12 am -0.290 (-1.30)
6. Configuration proximity
Switch type (90◦,180◦) -1.780 (-7.53)
Switch type (180◦,180◦) -2.200 (-4.40)
7. Coordination with JFK
Departure runways (31@LGA and 22@JFK) +0.959 (4.10)
Departure runways (13@LGA and 31@JFK) -1.050 (-3.59)
Arrival runways (22@LGA and 31@JFK) -1.140 (-5.83)
Departure runways (4@LGA and 4@JFK) +0.440 (1.75)
Arrival runways (31@LGA and 4@JFK) -0.400 (-1.7)
Departure runways (13@LGA and 22@JFK) -0.588 (-1.69)
Departure runways (13@LGA and 13@JFK) -0.404 (-1.37)

Since a perfect forecasting mechanism would always correctly
identify the observed runway configuration with 100% cer-
tainty, it would have an average prediction probability equal
to 1.

The results of the evaluation are shown in Table V for LGA,
and Table VI for EWR. Although both the discrete-choice
and baseline models consider all configurations reported in
the training data (10 for LGA and 20 for EWR), only the
configurations that are seen more than 3% of the time are
compared in the tables, for the sake of simplicity. The results
corresponding to time periods that are not within 3 hours
of a switch are shown separately from time periods in the
temporal vicinity of (i.e., within 3 hours before or after) a
switch. The tables show the average predicted probability of
the runway configuration that actually occurred, both near and
away from configuration switches. The prediction probabilities
in the vicinity of a switch are conditioned on the occurrence
of a switch sometime in that 3-hour interval.

E. Discussion, limitations of approach and future research

The evaluation results show that the predictions generated
by the discrete-choice model are significantly better than those
of the baseline model, despite needing considerably fewer
parameters. For example, the discrete-choice model for EWR
comprises of 57 parameters, as opposed to 400 parameters in
the baseline model. Similarly, the discrete-choice model for

TABLE II
ESTIMATED UTILITY FUNCTIONS (VALUES OF VARIOUS ELEMENTS OF β̄ )

FOR THE DISCRETE-CHOICE MODEL FOR EWR.

1. Inertia
Configuration from previous time step (incumbent) +4.820 (66.60)
2. Meteorological Conditions
22L,11|22R in VMC -0.025 (-4.96)
22L,22R|22R in VMC -0.009 (-3.10)
4L|4R in VMC -0.025 (-2.73)
4R,11|4L in VMC -0.013 (-2.67)
22L,29|22R in VMC -0.030 (-2.20)
22L|22L in VMC -0.027 (-2.12)
29|29 in VMC -0.014 (-1.96)
22R,29|22L in VMC -0.018 (-1.89)
4R,29|4L in VMC -0.006 (-1.67)
4R|4R in VMC -0.021 (-1.60)
3. Headwind speed
Relative to primary arrival runway +0.033 (3.00)
Relative to primary departure runway +0.054 (4.24)
Relative to extra arrival runway +0.027 (3.93)
4. Demand
For parallel runway configuration (when demand +1.090 (8.33)exceeds capacity of crossing runway configuration)
For configurations with extra arrival runway (when +0.760 (5.90)arrival demand exceeds parallel runway capacity)
For configurations with extra departure runway (when +1.780 (7.15)departure demand exceeds parallel runway capacity)
5. Noise abatement
Runway 11 for morning 6-8 am -1.670 (-7.35)
Runway 29 for morning 6-8 am -1.860 (-6.60)
6. Configuration proximity
Switch type (0◦,90◦) -0.98 (-3.73)
Switch type (90◦,90◦) -0.620 (-1.80)
Switch type (0◦,180◦) -1.700 (-6.74)
Switch type (90◦,180◦) -2.230 (-3.23)
Switch type (180◦,180◦) -0.420 (-3.97)
7. Coordination with JFK
Departure runways (4@EWR and 31@JFK) +0.826 (2.35)
Departure runways (22@EWR and 13@JFK) -1.140 (-2.35)
Departure runways (29@EWR and 13@JFK) -0.694 (-2.73)
Departure runways (22@EWR and 4@JFK) -0.615 (-1.32)
Arrival runways (4@EWR and 22@JFK) -1.250 (-3.07)
Arrival runways (11@EWR and 13@JFK) +0.437 (2.57)
Arrival runways (11@EWR and 31@JFK) + 0.576 (2.84)
Arrival runways (22@EWR and 13@JFK) +1.200 (2.95)
Arrival runways (22@EWR and 22@JFK) -0.940 (-2.63)
Arrival runways (29@EWR and 13@JFK) +1.130 (4.08)
Arrival runways (29@EWR and 31@JFK) +1.220 (4.17)
Arrival runways (29@EWR and 22@JFK) +0.449 (1.66)

LGA contains 36 parameters (compared to 100 parameters in
the baseline model).

The discrete-choice models show that inertia and wind
effects are important factors in the decision-making process,
and are statistically significant at both airports. While wind
speed and direction are well-known to be key factors that
influence runway configuration selection [17, 18], this paper
represents the first time that the influence of inertia has been
quantified.

If the most-likely configuration is chosen for each time-
period, the discrete-choice model has an accuracy of more
than 85% for LGA, and more than 82% for EWR. By contrast,
prior research achieved a prediction accuracy of 75% at LGA
and 63% at JFK, respectively [17]. The predicted probability
of observed configurations from the discrete-choice model is
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TABLE III
BASELINE MODEL ESTIMATES FOR LGA, FOR THE MOST FREQUENTLY

OCCURRING CONFIGURATIONS. THE COMPLETE BASELINE MODEL
CONSIDERS ALL 10 CONFIGURATIONS REPORTED AT LGA IN 2006.

4|4 31|31 4|13 22|13 22|31 31|4
4|4 0.941 0 0.021 0.011 0.002 0.018

31|31 0.001 0.957 0 0.002 0.019 0.019
4|13 0.004 0 0.974 0.013 0 0.004

22|13 0.001 0 0.005 0.980 0.007 0.003
22|31 0 0.005 0.001 0.008 0.972 0.009
31|4 0.003 0.003 0.007 0.003 0.008 0.977

TABLE IV
BASELINE MODEL ESTIMATES FOR EWR, FOR THE MOST FREQUENTLY

OCCURRING CONFIGURATIONS. THE COMPLETE BASELINE MODEL
CONSIDERS ALL 20 CONFIGURATIONS REPORTED AT EWR IN 2006.

1 2 3 4 5 6
1. 4R|4L 0.983 0.006 0.003 0.006 0.001 0
2. 4R,11|4L 0.019 0.972 0 0.005 0.003 0
3. 4R,29|4L 0.019 0 0.973 0.007 0 0
4. 22L|22R 0.004 0 0.001 0.987 0.003 0.004
5. 22L,11|22R 0.004 0 0 0.016 0.976 0.003
6. 22L|22R,29 0.001 0 0.001 0.040 0.013 0.941

consistently higher than from the baseline model, both near
and away from configuration switches. The predicted prob-
abilities are lower in the vicinity of configuration switches,
chiefly due to the inertia term, which biases predictions
towards the incumbent configuration. Configuration changes
are relatively infrequent, occurring about 3.1 times per day at
LGA, and 2.3 times per day at EWR. Prediction performance
also deteriorates for less frequently-used configurations.

The main limitation of a data-driven approach is that it
relies on prior observations (in the training data). As a result,
it will only predict configurations that have been observed
before, and will not apply when there are major changes
in the decision process, such as capacity enhancements or
new procedures. The reliance on data also implies that the
prediction of infrequently observed configurations is difficult.

TABLE V
MODEL EVALUATION RESULTS FOR LGA.

Outside temporal vicinity of switches
Avg. prob. of prediction

Configuration Frequency Baseline Discrete-Choice
22|13 4403 0.81 0.95
22|31 3725 0.73 0.92
31| 4 2989 0.77 0.90
4|13 2339 0.74 0.91
31|31 1211 0.61 0.70

4|4 599 0.50 0.69
Within temporal vicinity of switches

Configuration Frequency Baseline Discrete-Choice
31|4 1103 0.48 0.71
22|31 1043 0.50 0.74
22|13 1024 0.55 0.76
4|13 569 0.47 0.58
31|31 403 0.31 0.57

4|4 135 0.31 0.44

TABLE VI
MODEL EVALUATION RESULTS FOR EWR.

Outside temporal vicinity of switches
Avg. prob. of prediction

Configuration Frequency Baseline Discrete-Choice
22L|22R 6583 0.88 0.87

4R|4L 4173 0.84 0.87
22L,11|22R 1686 0.77 0.94

4R,11|4L 1087 0.74 0.88
4R,29|4L 715 0.74 0.81

22L|22R,29 211 0.52 0.16
Within temporal vicinity of switches

Configuration Frequency Baseline Discrete-Choice
22L|22R 2073 0.70 0.73

4R|4L 1303 0.65 0.73
22L,11|22R 799 0.32 0.76
22L|22R,29 573 0.24 0.21

4R,11|4L 505 0.40 0.74
4R,29|4L 336 0.29 0.70

The discrete-choice modeling approach assumes the presence
of rational decision-makers who share a utility function that
reflects nominal system behavior.

This paper assumed that the demand and wind variables
were accurately known at the 3 hour planning horizon. In
reality, there are errors in forecasting both these quantities,
which will increase as the forecast horizon increases. An
important direction of future research is the study of the
impacts of forecast errors on configuration prediction.

The results presented here demonstrate the potential of
the discrete-choice modeling approach in building descriptive
models of the runway configuration process. The methodology
can be easily extended to include additional features in the
utility function, as well as other decisions, such as combina-
tions of configurations and procedures. Other potential model
refinements are the use of configuration-specific inertia terms
in the utility function, terms that differentiate between head-
winds and tailwinds, and wind gusts. It is important to note
that the addition of terms in the utility function will increase
the number of parameters, and therefore increase the model
complexity. Future work will investigate the tradeoffs between
model complexity and prediction performance. Finally, the
data-driven nature of the proposed approach also makes it
amenable to application at other airports.

VI. CONCLUSIONS

Runway configuration selection is a key driver of airport ca-
pacity, and is based on decisions made by air traffic controllers.
Accurate forecasts of runway configuration and the resulting
airport capacity are key inputs to air traffic management
algorithms. This paper proposed a data-driven approach to
modeling the configuration selection process using operational
data. The dependence of configuration choice on influencing
factors like weather, arrival and departure demand, noise
mitigation directives, coordination with neighboring airports,
etc. was identified and estimated through a utility function.
A key contribution was a quantitive assessment of inertia,
namely, the resistance to configuration changes.
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The proposed discrete-choice modeling framework was ap-
plied to two major airports in the New York area, LaGuardia
(LGA) and Newark (EWR). Evaluation of the proposed model
showed that the average probability of predicting the observed
configuration three hours in advance was more than 0.8 for
the more frequently-used configurations, during time periods
away from configuration changes. Although the predictive
performance deteriorated near switches, the average prediction
probability for the observed configurations was more than 0.7
for the most frequently used configurations at both airports.

The discrete-choice model required fewer parameters than a
baseline Markovian model, and yet yielded better predictions.
In addition to determining realistic objective functions and
models that can be used to design decision-support tools, the
proposed methods present a promising approach to modeling
systems driven by human decision processes.
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