Eighth USA/Europe Air Traffic Management Research and Dgakent Seminar (ATM2009)

Identification of Robust Routes using Convective Weather
Forecasts

Diana Michalek and Hamsa Balakrishnan
Massachusetts Institute of Technology
Cambridge, Massachusetts, USA

{dianam, hamsg@mit.edu

Abstract—Convective weather is responsible for large delays and ance demand for air traffic operations and the availableatapa

widespread disruptionsin the U.S. National Airspace Systa (NAS),
especially during summer months when travel demand is highThis
has been the mativation for Air Traffic Flow Management (ATFM)
algorithms that optimize flight routes in the presence of rediced
airspace and airport capacities. These models assume eiththe
availability of reliable probabilistic weather forecasts or accurate
predictions of robust routes; unfortunately, such forecass do not
currently exist. This paper adopts a data-driven approach hat
identifies robust routes and derives stochastic capacity fecasts
from deterministic convective weather forecasts. Using thniques
from machine learning and extensive data sets of forecast anob-
served convective weather, the proposed approach classfieoutes
that are likely to be viable in reality. The resultant model for route
robustness can also be mapped into probabilistic airspaceapacity
forecasts.

Keywords- convective weather; air traffic management; igtation
of weather forecasts and air traffic management; route rolnsss;
airspace capacity

I. INTRODUCTION

ties of various airspace and airport resources. This relsdalts
broadly into the realm of Air Traffic Flow Management (ATFM),
which is the process of making strategic decisions a fewour
ahead of the time of operations, in order to balance the ddman
for, and capacity of, constrained NAS resources. Howeber, t
capacity of airspace resources is strongly influenced byiemhb
weather, since aircraft need to avoid hazardous atmosptari
ditions and may therefore be forced to deviate from theinpéal
trajectories. Traditionally, ATFM models handled the mese

of weather by assuming that the impact of weather on the ca-
pacity of a resource at any time was known, and used the de-
terministic estimates of capacity to route flights betwdwgirt
origins and destinations in order to minimize delays. \Masio
approaches have been adopted to solve the large scale zgtimi
tion problems that arise, including integer programmingrfo-
lations [4] and Eulerian models which treat the traffic asticon
uous flows [5, 6]. Algorithms have also been developed to effi-
ciently synthesize routes through regions of airspace ategh
by convective weather. These algorithms require fine-gdhin
and time-varying weather forecast data as static weatipeit,in
and focus on synthesizing short and easily flyable routestwhi

The increase in demand for air travel over the past few yedgsnot get too close to regions of airspace impacted by weathe
has been accompanied by an increase in congestion and ddlay8]. The challenge in using these deterministic appreach
in the National Airspace System (NAS) of the United Statas, alies in the fact that under clear weather conditions, deitsistic
has made the system more susceptible to weather disruptiéapacity estimates based on weather forecasts tend tolile sta
This problem is particularly intense during summer monthad tend to reflect the conditions that materialize; howawver
when travel demand is high and there are frequent thunaerstoder stormy weather conditions, capacity is highly varizdutel

(convective weather activity) over much of the continehte.

the use of the expected capacity for planning is unrealistic

It has been estimated by the Joint Economic Committee of therhe knowledge that weather forecasts are inherently umicert
U.S. Senate that domestic air traffic delays in 2007 cost tise Unotivated optimization approaches that assumed multgpac-
economy $41 billion [1]. It has also been estimated that%6.ty scenarios for airspace resources, with associatechpilities

of all delay in the NAS and 25% of all delayed flights in 2008f occurrence. These approaches then minimized the expecte
was weather-related [1, 2]. With the demand for air traffiemp value of delay in the system while trying to route aircraftaso
ations expected to grow significantly over the next two desadto not violate capacity constraints [9]. More recently,ustop-

it has become increasingly important to develop approaittas timization approaches have been proposed that assume & set o

will enable the efficient operation of the airspace systemnén
the presence of convective weather [3].

A. Background and related work

possible capacity uncertainty values, and try to keep tetesy
safe for any possible realizations of the uncertainty [23]the
tactical level, prior research has assumed that convegtether
can be modeled as a dynamic stochastic process, and flighsrou

There has been much research over the past several decd@f@mined using dynamic programming.
on techniques to minimize air traffic delays and to better bal There have also been recent attempts at the problem of creat-



ing stochastic and deterministic models of capacity froratier II. PROBLEM DESCRIPTION

forecasts. In [11], the authors considered the problem ©f €s |n this section we formalize the problem of identifying rabu
mating the capacity of a sector of en-route airspace by COMRgytes in the terminal area. We also introduce the Lincoln La
ing a theoretical capacity given weather in the region. Was convective Weather Forecast (CWF) and the dynamic forecast
done through the application of continuous maximum flow thgriq, used in constructing our route robustness model. For s
ory. This work relied on static weather forecasts and did MKicity, we consider the case of airports with well-definedval
incorporate uncertainty intervals or any measure of f@eae- and departure gates through which most aircraft are rovied.
curacy. In [12], the authors extended this approach to the 0& jnstance of such an airport is Hartsfield Atlanta Internzaiir-
weather forecasts accompanied by regions of uncertairgy-H port (ATL), which uses four arrival gates in the NE, NW, SE and

ever, the uncertainty profiles were randomly generated,sby 8\v corners, and four departure gates in the North, Souti, Eas
suming that the probability of a weather impacted regiongda 54 \West corners.

ticular size was proportional to the intensity of the weafoee-

cast in the region. In the terminal area environment, thet®kol. Terminal-area model

Availability Planning Tool (RAPT) uses Lincoln Lab Conve&  ~qngjder the following version of the route robustness prob
Weather Forecasts to model jet route blockage determualbti oy, jjjustrated in Figure 1. The input is a terminal-aresfined
The product is used opera_tionally_in the New York area atepoby two concentric circles: an outer ciro, of radiusR, and

to help controllers determine if aircraft can take off ovelar an inner circleC; of radiusr. The outer circl&Co represents the

tively short time horizons [13]. points at which arriving aircraft first enter the terminakaiace,
o ) andR s typically about 40 nm (75 km). The inner circlg rep-
B. Contributions of this paper resents the point at which aircraft start their final apphoiato

While the efforts described above assume the existence offg airport, and is assumed to be 10 km in this study. In cebtra
liable probabilistic weather (or capacity) forecasts, tterapts departures traverse the terminal-area in the reverseidingen-
have been made to evaluate the quality of existing forecastp tering it close to the airport & and exiting it through the outer
ucts nor their predictions. Instead, the forecasts have reated PoundanCo.
as ground truth. In contrast, this paper explicitly conssdbe
problem of understanding and validating weather forecasts @
developing techniques that will help integrate them intdvAT Q
decision-making in a reliable and meaningful fashion. Wepad
a data-driven approach to achieving this objective. We nuzke
of state-of-the-art aviation convective weather forezadevel-
oped by MIT Lincoln Laboratory, to identify robust routekat
is, routes that are likely to remain viable in the actual \Weat
that materializes. We consider various features (chaiatits)
of the forecast weather along arrival and departure roated,
identify features which are highly correlated with routedk-
age. Using techniques from machine learning, we proposspot
tial classification algorithms that predict whether a giveute is &

likely to be open or blocked in actual weather, based on the va
ues of different features of the route, as determined bydhe f
Ca_St- We compare th_ese techniques with each other as we# agt,re 1: Model of terminal-area flows. Arrival flows enters througle thuter
naive prediction (which would treat the forecast as grouatht circle Co and flow into the inner circle€;, while departure flows (denoted by
and classify a route as blocked if it is blocked in the forecesey arrows) travel in the reverse direction. The red regépresents a forecast
weather). We evaluate these different approaches usirggadey/eaiher hazard.

metrics, such as the accuracy (the fraction of time thattedip- Given a route (for example, a path between an arrival gate
tion is correct), the false positive rate (the fraction ofe¢ithat we Co and a point orC;, a weather forecast provides us with a
forecast that the route will be open but it ends up being diseyregiction of where the weather obstacles will be located), a
the false negative rate (the fraction of the time that wedase tnerefore a prediction of whether the route will remain ot.no
that the route will be closed, but instead it remains vial#®).  However, we note that weather forecasts are not alwaysaiecur

In prior work, we considered the problem of evaluating for&igure 2 (left) shows an illustrative example: three patresiaid
casts using pixel-by-pixel comparisons, and also evatlite on a 30-min weather forecast on the left; and the same paths
probability that a route that is open in the forecast remapen, overlaid on the observed weather for that scenario on th.rig
by considering features individually [14]. In contrastistpaper We notice that two of the three paths (denoted by blue lines) a
adopts a route-centric view: we analyze the probability #my predicted to be open but are blocked by weather in realitjlewh
given route remains open in the observed weather, by dewgloghe third (denoted by a red line) is forecast to be blocketju
classification algorithms that consider combinations afdees. open in the weather that actually materializes.
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Figure 2: An example of forecast inaccuracy. The figure on the left shthe

forecast, while the corresponding observed weather is@right. We note that Figure 3: Sample Lincoln Lab Convective Weather Forecast near ATL.
two of the paths are forecast to be open but are blocked iity;eahile a third is

forecast to be blocked but is open in reality.

lect a weather forecast. This paper uses the state-ofrthéna
coln Lab Convective Weather Forecast (CWF), which is briefly
described in this section.

The 0-2 hour CWF consists of a grid of 1kr 1km pixels
covering a large portion of the NAS [15]. Each pixel contaans
predicted value of Vertically Integrated Liquid (VIL), ifchted
an integer value in the rand@ 255. Figure 3 shows a sam-
forecast for ATL. These VIL values are divided into seven
levels of convective activity, ranging from level O (none)ével
6 (very severe). A VIL value above a certain threshold (183, i
practice) in the observed data corresponds to weather efigev
level 3 or higher, which is commonly considered to be hazasdo
U3 pilots. A forecast has a horizon that spans every 5 mimute i

crement between 5 and 120 minutes, and is updated every 5 min-
Definition 1 A route is defined to bepenor clear in the ob- utes. In other words, at timi, forecasts are available for time
served weather if there exists a route that is not impacted Tyt 5, To+ 10, To+15,..., To+120. The forecast data is accom-
weather within a small neighborhood of the original route. ~ panied by observed VIL values for the same region of airspace

. _ _ . . at that time, providing data that can be used for evaluatieg t
This relaxed definition allows for slight deviations in %uality of the forecast

planned route that reflect the “wiggle room” or the abilityaof
aircraft to make small adjustments to the planned route.

The problem stated above is an important one from the air t
fic management perspective for several reasons. Firsi# o
capture trends in how the impact of observed weather onso
differs from predicted impact, rather than by simply evéhg
forecasts using pixel-by-pixel comparisons [14]. Secdrtdkes
into account the realities of scheduling aircraft routes;hsas
the ability to allow small deviations from planned routeghwi
out effecting operations. Third, this approach suggessith
the terminal-area, the theoretical capacity may not befacmift
metric to measure the impact of weather on air traffic flowg.[11 To model aircraft moving through the terminal area, it is-nec
This is because while the theoretical capacity might ptetimt essary to use a different time horizon for different aircparfsi-

N aircraft will be able to enter airspace over the next hour,tions. We achieve this dynamic weather grid by splicing toge
may not indicate the possibility (which is critical for pleing) weather data for time instantsthat increase from the outer to
that these aircraft must necessarily arrive from the Wasthr- inner circle for arrivals, and decrease from the outer t@iruir-
more, itis possible for the forecast theoretical capacigxactly cle for departures. The distance between two concentiitesir
match the realized theoretical capacity, and yet requaeah- in the grid (shown in Figure 4) corresponds to the distanaerflo
craft use trajectories that are very far from the originainpled by a typical aircraft in 5 min. These circles are drawn assum-

B. Problem statement

The objective of this paper is to determine routes that ke
to be robust to weather disruptions, by understanding acatin
porating the inherent uncertainty associated with wedfibrex-
casts. In other words, our problem can be stated as follows: b
Given a weather forecast for some time in the future and a Bé‘
of predetermined potential routes, we would like to besttidie
those routes that are likely to be open in the actual weathat t
materializes and also quantify the uncertainty associatét
our prediction mechanism.

In the approach that we follow to solve this problem, we
the following definition for an open route.

The static CWF is useful in obtaining a general idea of what
rWFather will look like, and is used in various decision suppo
taools by air traffic controllers and airlines. Lincoln Lals, well
88 other entities that develop forecast products, provally d
statistics such as rates of false positives, false negataved a
skill score, but these are pixel-based, and often ad hos.imt-
portantto note that no large-scale historical evaluatfdarecast
accuracy for ATM decision-making has been performed so far.

D. Dynamic weather grid

routes. ing an average aircraft speed of 180 knots in the terminal;are
we have also conducted similar analysis for aircraft spe&é5s
C. Lincoln Lab’s Convective Weather Forecast knots (corresponding to slower, general aviation airgraft

In order to assess the robustness of a route to the diffesencd-igure 4 contains a sample dynamic weather grid for arriv-
between the forecast and actual weather, it is necessargttedi ing aircraft. We assume aircraft arrive @ at timet, with a



representa sampling of routes through varying weathecésts.
Arrival trajectories point toward the inner circle, whileetdepar-
ture trajectories are oriented in the opposite direction.

Figure 4: Sample forecast region for arrivals, created by splicirggetoer con-
secutive 5-minute forecasts. This is for a 60-minute timezom on June 8,
2007, where aircraft reach the outer circle at time 2130$our

NIL 0 1 2 3 4 5 6

to-ml_nUte_ time honzon_' For de_partures,_ the Co_rrespondlng Q'Ygure 5: Eight routes selected through a 60-minute departure fetetanario
namic grid assumes aircraft arrive@tat timet, with the same gyer ATL for June 12 2007, at 0600 hours.

to-minute time horizon. This grid will therefore be used foam
ning at the current time, namely, tinhe- to.

C. \Validation of routes in the observed weather grid

[1l.  GENERATION OF DATA SETS . . .
Each pathP generated in the manner described above is eval-

As has been mentioned before, this paper adopts a datardriygted using the observed weather data. A réute defined as
approach of identifying routes that are likely to be robosttte  gpenif there exists a corresponding route in the observed weathe
inaccuracies in the forecast. The approach is based onex laggid which is withinB km of P and does not pass through any ac-
scale evaluation of the performance of the Convective Végatfyal weather hazards. Thigskm neighborhood allows for slight
Forecast, and the difference in predicted and ObserVeddeﬁérturbations in the path (on the order of several kilonsdter

on routes. An essential step is therefore the generatioheof hich represents only a slight change from the original pégh
necessary data sets, which consists of the selection ofdstetrajectory,P.

and observed weather scenarios, selection of potentiedband  Open routes are synthesized by solving the following modi-
departure routes, and the validation of these routes inregde fjeq shortest-path problem through the dynamic grid of ofeskr
weather, as described in this section. weather:

Construct a directed grapB(./',«/) such that the set of
nodes#” contains all pixels withirB km of P (in the dynamic

A dataset was created containing routes for several weatbigserved weather grid) which are free of weather hazards, an
scenarios during each of the 14 most weather-impacted daystich that each set of adjacent nodes form amares. At time
ATL during the months of June and July 2007, when ranked &ca unit of flow is sent from a set of source nod&s= CoN .4
cording to weather-related delays. (the subset of nodes lying on the outer cirClg) to a set of sink

Although the Lincoln Lab CWF data can be described as a nm@des7 = C, n.#". For simplicity, we use a standard transfor-
trix of integers in the rangf, 255, the archives of this data aremation and introduce a supersourgeand a supersink”, and
kept in a proprietary format, and each day of data takes akvegute one unit of flow between the two through the source nodes
hours to extract, yielding 30 GB of uncompressed binary.dagad sink nodes [16]. Define NX j) to be the nod& € .4” which
To identify convective weather scenarios for the ATL terakin constitutes a straight next arc (i, j) is used. In other words,
area, the forecasts for the airspace surrounding ATL were @¥desi, j,k form a straight line in the observed weather grid.
tracted and visualized to identify the time periods with maxThe objective is to find the minimum cost flofxsuch that out of
mum convective weather activity. This resulted in an aver@g all minimum cost flows has the minimum number of turns.
4 weather scenarios per day, separated from each otherdmsat| This problem is modeled by the IP below, which is a slight
30 minutes, and yielded a total of approximately 400 trajges modification to the shortest path problem. This problem figesb
in forecast weather. Ten datasets were created, corresgonfbr each of the selected routes in the data set; the inféiagibi
to the 10-, 30-, 60-, 90- and 100-minute time horizons fohbogf the problem implies that the route is blocked in the observ

A. Selection of weather scenarios

departures and arrivals. weather grid, feasibility implies that the route is consettopen.
o ) A version of this problem can be also be solved with different
B. Route selection in the forecast grid sets of sources and sinks to generate a large set of candidate

Potential aircraft trajectories through the forecast gfidach paths for a given weather forecast scenario [14]. Furtheemo
weather scenario are generated by sampling eight straigteés although the construction above models the case of aryitreds
from Cy to C;, as depicted in Figure 5. These eight trajectoriezact same IP can be used to model departures as well, as long



as the underlying dynamic grid is changed.

xj :=flowonarc(i, j) € &
zj:=11if (i, ) € &7 is a turn0 otherwise

min z CijXij + A Z zj
(i,))es

S.t. Z Xij — Z Xji = by Vies (1)
jeV jeN:
(i, j)EQ/ (j,hed

Zij > Xij — Xk V(i,]) € 2)
keNX(i,j):
(j,keA

xe {0,1}" 3)

ze {0,1}" (4)

Constraints (1) are the flow balance constraints, ‘jite= —1
for a supersource’, b; := +1 for a supersink, andb; := 0 for

these same routes are open over 78% of the time in the weather
that materializes (that is, there is a route in the neighbodof
the original path which does not pass through Level 3+ weathe
in the dynamic observed weather grid). The last two columns
indicate how the forecasts and true weather differ for imtiv
ual routes. Routes that are forecast as open are overwtghymin
open in the observed weather grid, with rates of 87% and above
Arrivals have slightly lower rates than departures, andrétes
decrease with increasing time horizon. Both of these tremds
to be expected, because arrivals typically encounter tlitiebo
neck at the end of their route through terminal airspace revhe
the forecasts are less accurate. Finally, routes that exedst as
closed are closed in the true weather approximately 60%eof th
time. These low rates reflect the effect of the additionaitfiéx
ity allowed for finding routes in the actual weather. Figuiemé-
tains examples of routes synthesized in the forecast gndga
with the same routes validated against the observed weather
The raw data suggest that subject to minor adjustments; plan
ning ata 10-, 30-, 60-, 90-, and 100-minute time horizonsiitq

all other nodes in .#". Constraints (2) in conjunction with thereasonable, since routes that are forecast to be open eraingp b

penalty term in the objective function serve to minimizerten-

overwhelmingly so. This is encouraging, and shows thatwallo

ber of turns in the path without changing the path lengthgesining even small adjustments from fixed arrival routes can ower

it is desirable that aircraft trajectories have a limiteainer of
turns for simplicity. All arcs that follow(i, j), except(j,k) for
k= NX(i, ), pay a penalty in the objective functioa. is cho-

the quality of decision-making based on the forecast. The& ne
sections explore how we can learn more from these data sels, a
better predict blockage based on the forecast data.

sen to be sufficiently small (less than the maximum lengtmgf a

path) to ensure that a longer route with fewer turns is nelver ¢

IV. FEATURE SELECTION

sen. Finallyx andz are binary variables because a single pathOnce a dataset of routes through the weather-constrained
cannot be split up, and the existence of a turn is a binaryityualerminal-area is available, it is interesting to identifiacacteris-

D. Dataset Details

The overall statistics of the route blockage datasets for
rivals and departures at the five time horizons studied atedi

in Table 1. Each dataset contains approximately 400 rothes,

# |[Fx OperAct. Open % Act. Open % Act. Closed
fo Pathg (%) (%) | Fx Open | | Fx Closed
«n| 10| 408 51 78 99 57
‘©| 30| 408 54 78 96 58
'<EE 60| 384| 55 78 93 60
90| 392 63 78 88 62
» | 100] 408 65 78 87 62
"g 10| 408 55 79 99 55
£ 30| 408 53 79 95 61
2| 60| 384 55 79 94 62
0O|90| 392 61 79 91 60
100| 408 66 79 90 58

Table 1: Overall dataset statistics for each of the 8 datasets. Fx Qpetual
Open) refers to the percent of routes that are open in thedstéactual) weather

grid. [Act. open| Fx Open] refers to the percentage of forecast open routeshwhi

are open in the actual weather as well. [Act. clos&a closed] has the similar
connotation for closed routes.

tics of the convective forecast which may best reflect thelikk
hood that a trajectory will be opn in the observed weather.
ar
A. Potential features of interest

For each path, eleven features of interest were indentifidd a
each feature was correlated with route blockage. The eli@aen
tures of the forecast weather, chosen for their possiblelziion
with route blockage, are listed below:

Mean VIL along the path

Standard Deviation of VIL along the path

Minimum distance to level 3+ weather along the path
Mean distance to level 3+ weather along the path
Maximum VIL in neighborhood of the path
Theoretical capacity for the weather scenario
Number of segments in the minimum cut

Length of the minimum cut segment (bottleneck) that the
path passes through

9 Length of tightest bottleneck

10 Maximum pixel density of L3+ weather along path
11 Maximum VIL density along path

co~NO UL WNPE

majority of which are open. The percentages of open forecasthe first four features are reasonably self-explanatotythmu
routes (routes which do not pass through Level 3+ weathemimers require some explanation. Feature 5 is the maximum VI
the dynamic forecast grid) are between 50 and 66 percentffmecast in the neighborhood of radiBslong the path, whei®

both arrivals and departures, meaning that approximatefyolf

is the same as in the integer program in Section Il. Featyies 6

the routes in the dataset are forecast to be blocked. Howesead 8 refer to the theoretical capacity of the forecast gnid a



Figure 6: Sample routes in a dynamic forecast grid are on the left-leahdnn, and the corresponding routes in the actual weatkeorathe right-hand column.
The top weather scenario is an arrival route from June 127 20@630hrs with a 60-minute time horizon, and depicts asdn where the route that is open
according to the forecast ends up open in the actual wedihentaterialized. The middle scenario shows an arrivalerénam June 15, 2007 at 2000hrs with a
90-minute time horizon. The precise forecast route is l@dckccording to the forecast, but a nearby route is availatitee true weather grid. The bottom scenario
is a departure route from June 8, 2007 at 2030hrs with a 3@dmitime horizon. In this situation, the forecast route isopen in the observed weather grid.



the corresponding minimum cut, and are computed usingrconthe lowest.

uous max flow theory and the techniques described in [17, 11]The above analysis provides a better understanding of how
Feature 9 contains the length of the minimum bottleneckutino well the features of a convective weather forecast correladth
which the route passes. Feature 10 is meant to indicate therqute blockage. In the next section, the selected featuitebav
tensity of the weather in the neighborhood of the route. Itiused to predict robust routes, though the use of methods from
computed by taking 8 km neighborhood of the route, and findmachine learning.

ing the strip of pixels perpendicular to the route with theyést

percentage of Level 3+ forecast pixels. If the route is fastto V. CLASSIFICATION

pass through Level 3+ weather, Features 8-9 will be 0, but Fealn this section, using the route datasets described incsecti
ture 10 may still contain pertinent information about théune 11l and IV, techniques from machine learning are adaptectte b

of the weather through which the route passes. Finally,featter predict the possibility of route blockage in actual vineat

11 is computed similar to Feature 10, except that it consid@pecifically, a classifier is trained to predict, given thatfiees

the largest average VIL in a perpendicular strip (rathentii@ of a route in forecast weather, whether the route will be apren

largest percentage of Level 3+ weather). blocked in the actual weather that materializes. This jotii
) is also associated with a probability, which is determingdhe
B. Feature selection performance metrics of the classifier.

Previous work by the authors computed the simple correla-
tions for each feature with blockage, giving smooth estasaf A. Training objectives
the probability of blockage at each feature level [14]. Talev When evaluating a classifier, the class predications are com
uate features for classification and gain a better undetistgn pared with the actual classes of a test set, according tdtdhe s
of which features best correlate with blockage individgalle dardtwo-class confusion matrix
compute the Mutual Information between each fea¥jand the i i
blockage labey (+1 for open, -1 for blocked). | | Predicted Open | Predicted Blocked |
Mutual information is an information-theoretic measur¢hef | Actual Open TP (True Positive)| FN (False Negative
dependence between two random variatdeandY, and mea- | Actual Blocked| FP (False Positive) TN (True Negative)
sures how much the uncertaintyXfis reduced ifY is observed.
ggz :lt:)a:tcggurr:zegfﬁ ;; ocnosnis’r:(isr;iscﬁi\fvr:) E?&gﬁq'\?g?{;%ﬁ% 0(total correctly predicted items) of a classifier on a test e

bined correlate very well witly. For discrete random variablesSettlng of aviation weather warrants a modified objectiveieD

X andY, their mutual informationl|,[X;Y], can be expressed as to safety concerns, it is more important to correctly predic :
route that ends up blocked than one that ends up open. This

_ P(x,y) emphasis on correctly predicting members of the blockeskcla
HX:Y] = Z( P(x,y) Iogm (minimizing false positives) is complicated by the facttttize
XEAYE dataset is imbalanced, having fewer blocked examples them,o
To compute mutual information, it is necessary to have accaking itinherently harder to perform well on the minoritgss.
to the density functions for the corresponding random e N addition to the FP and FN rate, we compute the follow-
When the dataset size is much larger than the range size ofig(standard) performance metrics to the evaluate ousifiess
joint p.d.fFx vy, we can choose the Maximum Likelihood paranf? = %ﬂppy al = Tpl%y g-mean =va *a‘, and accuracy
eter estimates of the p.d.f.s as good approximations. Earake = T°L™N, wheren is the total number of routes in the data set.
of continuous random variables, the data are discretizgaldny a~ (also known as recall) is a measure of how well the classifier
ing points intok equally sized bins. We note that there are othperforms on members of the blocked (minority) class. We will
approaches to approximating MI for continuous distribugian- seek to maximize this value through classification.
volving setting bin sizes so that the data points are equidly B
tributed between the bins, which is a better approximatiarue B- Two ensemble classifiers
entropy [18, 19]; however, for simplicity, these methodsaot  The Machine Learning literature has shown that ensemble
adopted here. classifiers tend to perform well on imbalanced datasetqenut
Figure 7 contains a comparison of mutual information (Mfdprming non-ensemble methods [20, 21]. We trained two clas-
across features and time horizons for both departure andlarrsifiers using the R language for statistical computing alihey
datasets. It is seen that M| decreases overall as the time Hares of [22]: an Ensemble of Support Vector Machines (En-
zon increases, which reflects the decreased forecast agatrasSVM), and a weighted random forest (WRF). This section de-
longer time horizons. In addition, departures have shghitjher scribes the training process.
MI than arrivals across the board, which can be explainethéy t For both classifiers, we created identical training anddatt
fact (also discussed in Section IIl.D) that departuresretite sets from each base route dataset. We partitioned the baseta
bottleneck of their path (close to the inner circle) at thatstf randomly so that the training set had 70% of instances, aad th
their time through the terminal area. Features 1, 10 and ta ctest set 30%, making sure that weather scenarios from the sam
sistently have the highest Ml scores, while features 6 analvé hdate were not split up, so as not to introduce bias. The trgini

Although it is typically desirable to maximize the accuracy
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Figure 7: Comparison of mutual information values across featuregtiare horizons for both arrivals (left) and departureshg

set was then further processed when setting up the ensembleesults for departures show the same trends.

blocked instances of the training set were set asideNabdot-  Thus EnsSVM is successful in combining the features of a
strap samples of size were created from the open instancegiven weather scenario and using them to predict route blgek
The blocked set was then combined with each of the bootsty@h higher recall rates than the weather forecast at lotiger
samples to creathd training bootstrap training sets. This wayhorizons. This decrease in the false positive rate comeasat-a
each of theN bootstrap sets had a balance between open @e@ted tradeoff with accuracy, due to the conservativeotibge
blocked instances. function we placed on the learning algorithm, and the imheea
TheseN bootstrap samples were then used to train the tlwetween open and blocked routes.
types of classifiers. EnsSVM was trained with an RBF kernel,
and 5-fold cross validation was used to tune the paraméfbes. D. Results for the weighted random forest
WRF was trained using the rpart package for R [23] for & largérne pherformance of the WRF classifier is similar to that of
set of weights, where a higher weight increases the penaity £,s5yM, as it is successful in learning from the featuresés p
missclassifying blocked examples. dict blocked routes, at a cost to overall accuracy. Althotigh
In both cases, the resulting ensemble classifier uses th@-majssociated metrics are omitted due to space constraietexth
ity vote of the ensemble to classify new routes. plicit penalty on misclassifying blocked routes in the WRIF (
the form of a weight in the training loss function), provices
C. Results for Ensemble SVM illustration of the tradeoff between FP rate and accuracy.
Table 2 shows the results for the ensemble SVM classifier aFigure 8 depicts this relationship across four time horizah
all four time horizons of interest, for both arrivals and depres. diagonal trend is evident between the FP rate and the agcurac
All metrics shown are the average of 5 runs of the classifier (@te of the WRF for each time horizon. The label on each point
independently generated test/training sets), to accauntari- contains the weight used in the training function. Pointoais
ability in training. ated with a lower weight tend to be in the top right (higher &R r
The table illustrates two major trends. Atthe shorter timg-h and accuracy), while points associated with a higher wedagid
zons of 10-, 30-, and 60-minutes, the ensemble does not imprtw be in the bottom left (lower FP rate and accuracy), for each
the performance of the forecast on blocked routes, sincesthetime horizon. The figure also depicts the changes in accuracy
call rates &™) of the classifier and forecast are quite similar, aknd FP rates across the time horizons: at the shorter time hor
though there is improvement in overall accuracy. This issuot  zons, the classifier can attain higher accuracy rates aref I
prising since at these short time horizons, there is vettg lior rates (due to the greater reliability of the weather forgcagile
improvement, and the weather forecasts are known to be matréhe longer time horizons, the absolute improvement ing@ r
accurate. is greater, but at a correspondingly larger cost to accuthan
There is clear improvement in the recall rate of the clasgsifie at shorter time horizons.
90- and 100- minute time horizons. Arrivals at 90-minutestpo Two additional classifiers, namely, a (regular) SVM with an
a 18% improvement in recall rate over the weather forecastRBF kernel and a decision tree with a weighted loss function,
a similar cost to FP rate. At 100-minutes, the improvementwrere trained on the route blockage data set, in order toatalid
recall rate is 37%, with a slightly larger cost to accuracheT the results above and compare with other classification adsth



10-min 30-min 60-min 90-min 100-min |
EnSVM | Fx EnSVM | Fx EnSVM | Fx EnSVM | Fx || EnSVM [ Fx

Acc 81.77 | 74.22 75.57 71.4 71.64 | 69.86 52.76 | 70.31 28.66 | 69.01

a 89.95 | 96.97 86.17 90.6 71.28 | 72.15 87.9 69.55 93.71 | 56.22

K%} at 79.22 | 68.43 71.49 | 65.14 70.95 | 68.55 42.38 | 70.44 9.25 72.28
.g g-mean 0.84 0.81 0.78 0.77 0.71 0.7 0.53 0.70 0.29 0.63
5: % TP 64.15 | 55.32 55.99 | 50.95 57.43 | 55.48 32.66 | 54.30 7.16 55.84
% FP 1.72 0.45 3.16 2.29 5.18 5.00 2.73 6.82 1.34 9.66

% TN 17.62 | 18.89 19.59 | 20.46 14.20 | 14.38 20.1 16.01 21.49 | 13.17

% FN 16.5 25.33 21.27 | 26.30 23.19 | 25.14 44,51 | 22.87 70.00 | 21.33

Acc 77.3 71.97 78.2 72.27 68.94 | 69.29 72.92 | 76.07 52.37 | 73.11

a 98.31 | 99.31 88.55 | 90.52 82.35 | 80.92 86.43 76.7 80.84 | 68.55

» at 69.91 | 62.55 73.91 66.1 64.83 65.6 69.66 | 75.64 45.26 | 74.34
“S" g-mean 0.83 0.79 0.8 0.77 0.73 0.73 0.77 0.76 0.52 0.71
% % TP 53.05 | 47.45 57.77 | 51.51 51.92 | 52.45 57.71 62.6 355 58.74
oy % FP 0.44 0.17 2.32 1.99 3.42 3.6 2.39 4.12 4.13 6.63
e % TN 24.25 | 24.52 20.43 | 20.76 17.01 | 16.84 15.21 | 13.48 16.87 | 14.37
% FN 22.26 | 27.86 19.48 | 25.74 27.64 | 27.11 24.69 | 19.81 43.49 | 20.25

Table 2: Results for (the average of 5 runs of) the Ensemble SVM dlasdior arrivals and departures

Comparison of false positive and accuracy rates
as a function of weight and time horizon
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Figure 8: Comparison of false positive and accuracy rates of the weigtandom forest classifier for each weight (where eacht othe mean of 10 iterations).
Each of the 4 trend lines (one for each time horizon) depiwschanges in classifier performance as a function of welghgeneral, a lower false positive rate is
accompanied by lower accuracy, and higher weight (pengtynat false positives).

EnsSVM and WRF outperformed them in terms of maximizirthe true weather grid given the EnsSVM prediction. Cdde the

recall. Due to space constraints we omit a discussion ofthekear-weather capacity of the airspace. Then the capattheo

techniques. the airspace can be forecast%‘swith probability Pr(exactlyk
of the arrival routes are open).

VI. CAPACITY FORECASTS FROM PREDICTIONS OF ROUTE
BLOCKAGE VII. CONCLUSION

The route blockage model can be used to create a stochastichis paper presents a data-driven approach to the premitio
model of capacity. This section presents an initial versibn routes that are likely to be robust to the inaccuracies o¥eon
such a model, for the case of arrivals. For an airport witar- tive weather forecasts. In contrast to prior research itraffic
rival gates (in the case of ATlm = 4 as shown in Figure 9), andmanagement which assumed the presence of accurate determin
for a given time horizory, we can forecast capacity in the folistic or probabilistic capacity forecasts as inputs, thgpraach
lowing way. First, the four standard arrival routes are dahp evaluates features of weather forecasts, and selectstaidsve
each sourced from a different quadrant of the outer ci@je high correlation with route blockage in observed weathbese
through the forecast grid. For each of these routes, theifias features are then utilized in classification algorithmsellasn
tion algorithm predicts the route to be either open or clpaed machine learning techniques to predict, given a set of poten
also provides an estimate of the probability with which ttes¢ tial routes and a weather forecast, which routes are likelyet
sifier believes that the route will be open. This probabiiyn be blocked and which ones will be open in the observed weather.
used to represent the probability that the route will bekdaldin The performance of the proposed classifiers is evaluated and
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Figure 9: ATL terminal-area, showing the arrival and departure gates

compared to the naive forecast predictions, using seveesl nLS]

rics including the false positive rate (or FP rate, when dedsl

predicted to be open but is blocked in the weather that neateri

izes), and the overall accuracy. It is shown that the classitian

be optimized to minimize the FP rate, which is important fos t

application, and the tradeoffs between overall accuradythe

FP rate are illustrated. Finally, a possible approach togusiese
route robustness models to obtain probabilistic capagcigdasts [18]

is discussed.
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