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1. INTRODUCTION

The global commercial aviation industry gener-
ated $485 billion dollars in 2007, after a steady in-
crease in revenue over the last decade. In the United
States alone, this activity included 660 million pas-
senger enplanements and the transport of over 11
million tons of freight (IATA, 2008; Bureau of Trans-
portation Statistics, 2008a). This increase in de-
mand for air travel has coincided with increased de-
lays in the National Airspace System (NAS). Ac-
cording to Joint Economic Commitee Majority Staff
(2008) estimates, the annual cost of domestic air
travel delays to the U.S. economy was $41 billion
in 2007. This figure includes $19 billion in costs
to airlines, and $12 billion in costs to passengers.
What’s more, 76.9% of NAS delays in 2007 were
weather-related, an increase over previous years (Bu-
reau of Transportation Statistics, 2008b). This situ-
ation will only get worse, as demand for airspace is
projected to climb further in the coming years, and
it will become increasingly important to operate the
airspace system efficiently even in the face of storms
(IATA, 2007).

Researchers have been working on the challenge
of minimizing delays for several decades, mostly in
the field of Air Traffic Flow Management (ATFM).
ATFM is the process of making strategic decisions a
few hours ahead of the time of operations, to balance
the demand for aircraft operations with the capac-
ity of the NAS. The capacity of airspace is affected
by the presence of hazardous weather, since aircraft
must avoid unstable regions and are often forced to
deviate from their planned trajectories. Historically,
ATFM models have taken expected capacity to be
a known input, and have only focused on optimiz-
ing routing decisions based on this input. Under
clear weather conditions, these expected capacities
are fairly stable and tend to reflect reality. However,
under stormy weather conditions, capacity is highly
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variable, and the use of estimated capacity for plan-
ning is unrealistic. More recently, researchers have
developed stochastic models for TFM, which take as
input a probabilistic weather forecast or a probabil-
ity distribution for capacity.

The missing piece has been a realistic model of
airspace capacity under hazardous weather condi-
tions. Such a model is critical for decreasing weather-
related delays, yet it has been a challenging prob-
lem due to the chaotic nature of weather and to the
unique requirements of ATFM forecasts. More con-
cretely, forecasts for ATFM must be reasonably pre-
cise and fine-grained. Knowing that there is a 30%
chance of rain in Boston today, for instance, does
not help to determine if there will be a route open
from the east into Boston Logan Airport at 5PM, or
if flights should incur delay on the ground and avoid
entrance into Boston between 5 and 9PM.

In this paper we present the first steps towards
creating a stochastic forecast of terminal capacity,
by using currently available weather forecasts. We
focus on terminal airspace, or airspace surrounding
an airport, since it is the bottleneck of aircraft op-
erations. We consider a scenario in which short-
term routing decisions must be made based on avail-
able forecast data. We find that the quality of a
forecast can be measured in terms of how likely it
is for a trajectory through forecast weather to be
blocked by true weather conditions. This leads to
a model for route robustness, which correlates fea-
tures of a particular trajectory with blockage. We
present the steps taken in creating this model, as
well results using weather forecast data for Hartfield-
Jackson Atlanta International Airport (ATL) termi-
nal area from the summer of 2007. In addition, we
show how route robustness can be mapped into a
probabilistic forecast of terminal airspace capacity.
Although this work focuses on the terminal area, the
methodology developed can be modified to model
en-route airspace.

The structure of this paper is as follows. Sec-
tion 2 gives an overview of relevant TFM models
and existing weather forecast research and opera-



tional products. Section 3 introduces the Lincoln
Lab Convective Weather Forecast, which is used in
this work. Section 4 describes the issues with try-
ing to model capacity by studying errors in weather
forecasts at individual pixels. Section 5 introduces
a trajectory-based approach to modeling capacity,
and contains the main contributions of this paper.
Finally, Section 6 contains conclusions and future
work.

2. RELATED WORK

In this section we present Traffic Flow Manage-
ment models whose objectives include minimizing
delays. These models take as input airspace capac-
ity or weather conditions. In addition, we briefly
describe currently available forecasts of airspace ca-
pacity and weather. This discussion will highlight
the gap between TFM input requirements and the
state of weather forecasting.

2.1 ATFM Models

Early work in TFM involved large-scale integer
programming models which determined how to route
a set of aircraft from their planned departure loca-
tions to their planned destinations while minimizing
the cost of delays. Capacity was the major system
constraint and limited how many aircraft could si-
multaneously occupy a region of airspace. Models
involving both a static set of capacities for each sec-
tor of airspace, as well as multiple capacity scenar-
ios, each associated with a probability of occurrence,
were developed (Bertsimas and Patterson, 2000; Bert-
simas and Odoni, 1997).

More recently there has been work on algorithms
to efficiently synthesize routes through regions of
airspace affected by convective weather. This work
requires fine-grained and time-varying weather fore-
cast data as static weather input, and focuses on syn-
thesizing short and flyable routes which do not get
too close to regions of airspace impacted by weather
(Prete and Mitchell, 2004; Krozel et al., 2006). How-
ever, the weather forecasts are treated as ground
truth, and routes are not evaluated against actual
weather scenarios.

Finally, the Route Availability Planning Tool
(RAPT) product uses Lincoln Lab Convective
Weather Forecasts to model jet route blockage de-
terministically. The product is used operationally
to help controllers determine if aircraft can take off
(DeLaura and Allan, 2003).

2.2 Capacity Estimation

Some recent work has begun to look at the prob-
lem of creating stochastic models of capacity. Krozel
et al. (2007) considers the problem of estimating the
capacity of a sector of en-route airspace by comput-
ing a theoretical capacity given weather in the re-
gion. This is done through the application of con-
tinuous maximum flow theory. However, this work
relies on static weather forecasts and does not incor-
porate uncertainty intervals or any measure of fore-
cast accuracy. This research is taken a step further
by Mitchell et al. (2006), which considers weather
forecasts accompanied by a region of uncertainty.
However, the uncertainty profiles are randomly gen-
erated.

We expand on this line of research by using max-
imum flow theory to help identify bottlenecks in re-
gions of airspace, and to help synthesize routes which
are then validated against observed weather.

2.3 Convective Weather Forecasts

There are several aviation weather forecasts avail-
able for the United States. In general, weather fore-
casts take the form of a grid, where each grid cell,
or pixel, corresponds to a 2-dimensional section of
airspace. Each pixel is associated with a value indi-
cating the severity level of weather at that point.

MIT Lincoln Laboratory’s Convective Weather
Forecast product is a state-of-the-art 0-2 hour fore-
cast, used throughout the United States to aid air
traffic control (Wolfson et al., 2004). The forecast is
static, meaning that each pixel contains one deter-
ministic value indicating weather severity, with no
additional estimate of the likelihood that the fore-
cast is correct, or a distribution over possible sever-
ity. Specific details about the forecast are provided
in Section 3.

Due to randomness in the weather and the result-
ing inaccuracy of weather forecasts, creating a plan
for routes is not realistic using static forecasts alone.
Indeed, flying through a region of airspace that turns
out to be stormy would compromise safety. This
has lead to research into developing probabilistic
weather forecasts for aviation. NCWF-2 is one such
forecast developed by the National Center for Atmo-
spheric Research, which at each pixel gives a proba-
bility p that the pixel will contain convective weather.
Initial validation of the forecasts show that these val-
ues of p have significant errors associated with them,
and tend to be large overestimates of true values
(Seseske et al., 2006).

Another probabilistic weather forecast that has
been proposed is based on polygons (Sheth et al.,
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Figure 1. Sample Lincoln Lab Convective Weather
Forecast near ATL.

2006). In this model, a weather cell is represented
by a polygon, and the probability that weather will
occur at a point in the polygon decreases with in-
creased distance from the center. This structure is
then used to estimate flight lengths and deviation
delays. However, the model is not validated against
behavior of weather, and for the polygons to have
much meaning, they might have to be very large
and hence not useful for fine-grained ATFM.

3. LINCOLN LAB CONVECTIVE
WEATHER FORECAST

In order to create a realistic model of terminal
area capacity, it is necessary to start with some avail-
able weather forecast. In this section we present the
details of Lincoln Lab’s Convective Weather Fore-
cast (CWF), which we use in modeling terminal ca-
pacity.

The 0-2 hour CWF consists of a grid of 1km x
1km pixels covering a region of the NAS (Wolfson
et al., 2004). The region will contain the entire con-
tinental United States as of 2008, though we only
use data from Atlanta’s Hartsfield-Jackson Airport
(ATL) for the purposes of this work. Each pixel con-
tains a value of Vertically Integrated Liquid (VIL),
indicated by an integer value in the range [0, 255].
Figure 1 shows a sample forecast for ATL. A VIL
value above a certain threshold (133, in practice)
corresponds to weather of severity level 3 or higher,
which is commonly considered hazardous weather
that pilots are thought to avoid. A forecast has a
horizon every 5 minutes between 5 and 120 minutes,
and is updated every 5 minutes. In other words, at
time T0, forecasts are available for time T0 + 5, T0 +
10, T0+15, . . . , T0+120. The forecast data is accom-
panied by observed VIL values for the same region
of airspace at that time, allowing for validation of
the quality of the forecast.

This static forecast is useful in obtaining a gen-

eral idea of what weather will look like, and is used
in various decision support tools by air traffic con-
trollers and airlines. Lincoln Lab, as well as other
forecast products, provide daily statistics such as
rates of false positives, false negatives, and a skill
score, but these vary daily and by storm. However,
no large-scale historical validation of accuracy has
been performed.

The natural first step in modeling airspace ca-
pacity is to see if historical trends in forecast skill
can be correlated with capacity. In effect, it seems
desirable to compute the conditional distribution of
actual weather given a forecast. This approach is
further discussed in the next section.

4. A PIXEL-BASED MODEL

One possible approach to developing a stochas-
tic model of airspace capacity using deterministic
forecast data is to determine a distribution for the
probability that hazardous weather occurs at pixel x

given the forecast value at pixel x. This probabilis-
tic forecast can then be mapped into a distribution
for capacity. This section discusses our attempts in
this direction, and the associated issues.

Let wx(t) be the observed weather at pixel x at
time t. Let fx(t, τ) be the τ -minute weather forecast
for pixel x at time t. In other words, fx(t, τ) is the
forecast made at time t − τ for time t. We would
like to know the conditional distribution Pr(wx(t) =
v | fx(t, τ) = u). Note that this distribution would
likely be independent of the pixel x, but might de-
pend on the geographical area.

After trying to approximate this distribution us-
ing historical weather data from 8 days of stormy
weather conditions surrounding ATL, we found that
the deterministic forecasts have large errors when
measured using this metric, making their use for
ATFM potentially problematic.

Figure 2 shows a sample of results from this ap-
proach. The two figures contain a histogram of the
VIL that actually occurred after a VIL of level 3
(VIL in the range [133, 162]) was predicted, for fore-
cast horizons of 30 and 60 minutes. Although both
plots look like they have a roughly Gaussian curve,
even the 30-minute forecast results in non-hazardous
weather more than half of the time. This would
translate to wasted capacity if the static forecast
were followed.

Several conclusions can be reached from these re-
sults. First, it is possible that the forecasts get the
general weather trends right, but are incorrect in the
position of the weather cells. This turns out to be a
major shortcoming of the pixel-based approach. A
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Figure 2. Plot of true VIL when Level 3 VIL (in the range [133, 162]) is forecast. Results for 30-minute and
60-minute forecast are on the left and right, respectively.

10km x 10km storm cell forecast, for example, might
be displaced by 10km to the west when observed, re-
sulting in no correct pixel predictions. For planning
purposes, however, this forecast is quite good be-
cause moving an aircraft’s planned trajectory 10km
east might be acceptable.

Along similar lines, different storm types have
different implications for ATFM. A storm consisting
of many small sparsely distributed cells of weather
activity (called a popcorn storm), might have very
low forecast accuracy in pixel-by-pixel comparisons,
because it is hard to predict the exact location of a
small cell. However, there may be routes through
the non-stormy sections between the popcorn cells,
resulting in no practical loss in capacity.

These observations suggest that a route-centric
approach may be a better way to think about weather
forecasts used for TFM. Identifying persistent routes
through weather might identify opportunities for in-
creased capacity even in the presence of storms and
of inaccurate forecasts. The remainder of this paper
outlines how we validate static forecasts and corre-
late path characteristics with capacity.

5. ROUTE-BASED CAPACITY FORECAST

The main contribution of this paper is a route-
based approach to modeling terminal airspace ca-
pacity. In this section we first formalize the ter-
minal area capacity problem. Then we describe our
data-driven approach to measuring the robustness of
a trajectory through airspace. The high-level steps

taken are: 1) Compute the theoretical capacity of
a region R of airspace using an algorithm for con-
tinuous maximum flow developed in Mitchell (1988)
and Mitchell et al. (2006). The resulting minimum
cut contains the bottlenecks for flow in R. 2) Use
the minimum cut to generate paths through R by
solving set of integer programs. 3) For each gener-
ated path p, solve another linear program to find a
path p′ in the neighborhood of p, in the observed
airspace. 4) Using data from steps 2 and 3, build a
model for the probability that a route will be avail-
able by correlating blockage with various features of
a path in the forecast space, such as mean distance
to weather. 5) Use this model for path robustness to
determine a probability distribution for the capacity
of R.

5.1 Problem Formulation

Consider the following version of the terminal
airspace capacity problem. The input is a termi-
nal area, defined by two concentric circles: an outer
circle CO of radius R, and an inner circle CI of ra-
dius r. The outer circle CO represents the points at
which aircraft first enter the terminal airspace, and
R is typically about 40 nautical miles, or 75 km. The
inner circle CI represents the point at which aircraft
start their final descent into the airport. Figure 3
illustrates the model of the terminal area described.

We are interested in determining the answers to
the following questions:
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Figure 3. Model of terminal area flow. Flow comes
in through the outer circle of radius R, CO, and into
the inner circle CI . The red region within the ter-
minal region represents a weather hazard according
to the static weather forecast for some time t.

1. If aircraft arrive at C0 t minutes from the cur-
rent time, how many will be able to get through
to CI? This is the question of theoretical ca-
pacity.

2. If aircraft are routed along trajectories that are
clear according to the t-minute weather fore-
cast, what is the probability that that these
trajectories will be clear in the weather that
actually materializes?

This paper aims to answer the second question.
We believe this question is an important one for air
traffic control for several reasons. First, it aims to
capture trends in how true weather cells differ from
predictions. And second, it better takes into account
the realities of scheduling aircraft routes. Theoret-
ical capacity might suggest that N aircraft will be
able to enter airspace over the next hour, but may
not indicate the possibility (which is critical for plan-
ning) that these aircraft must necessarily arrive from
the West, for instance. Furthermore, it is possible
for a forecast of theoretical capacity to exactly match
the true theoretical capacity, yet require that aircraft
use trajectories that are very far from original plans.

5.2 Dynamic Weather Grid

Since we assume that aircraft move inwards to-
wards the airport from the outer circle, we can splice

together weather data for time instants t that in-
crease from the outer to inner circle. This effectively
creates a dynamic weather grid.

Figure 4. Sample forecast region, created by splicing
together consecutive 5-minute forecasts. This is for
a 30-minute time horizon on July 29, 2007, where
aircraft reach the outer circle at time 21:00. The
regions with Level 3 and higher weather become ob-
stacles in the forecast grid.

Figure 4 illustrates how this is done, showing a
sample aircraft coming in, for reference. We assume
aircraft arrive at CO at time t, with a t0- minute
time horizon. This captures all planning that can
occur at time t − t0.

5.3 Synthesizing Paths

Given a t0-minute time horizon, we can model
paths through airspace which are likely to stay open.
Our approach is a data-driven approach to explor-
ing route robustness. This section outlines the steps
taken in creating a dataset of paths through weather-
constrained airspace.

Theoretical Capacity

First we compute the theoretical capacity in a
dynamic forecast grid. This computation identifies
the bottlenecks for flow in the region. To compute
the theoretical capacity, we follow the developments
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on continuous maximum flow extended to the case
of airspace in Mitchell et al. (2006), Krozel et al.
(2007), and Mitchell (1988). This work presents a
polynomial-time algorithm for computing the maxi-
mum flow through a polygon with holes, from a set
of source edges to a set of sink edges. In our case, the
polygon represents the terminal airspace, the holes
represent weather, and C0 and CI are sets of sources
and sinks, respectively. The algorithm involves the
creation of a discrete critical graph, where a shortest
path through this graph gives the cost of the mini-
mum cut through the continuous region, and is also
equal to the maximum flow.

The minimum cut gives the bottleneck for flow
through the airspace, and all trajectories would nec-
essarily have to pass through this bottleneck region.

Finding Paths in the Forecast Grid

We identify potential aircraft trajectories through
the forecast grid by solving the following modified
shortest path problem as an integer program:

Given a snapshot of the weather forecast for the
terminal region taken at time t− t0, construct a di-
rected graph G(N ,A) such that the set of nodes
N contains all pixels free of weather hazards, and
each set of adjacent nodes form an arc a ∈ A as
long as the arc moves towards the center. At time
t, a unit of flow is sent from a set of source nodes
S = {s1, . . . , sl} ⊆ N to a set of sink nodes T =
{t1, t2, . . . tm} ⊆ N , and must pass through a node
K ∈ N . K could correspond to points of interest,
such as the midpoint of the minimum cut or arrival
gates. For simplicity, we use a standard transfor-
mation and introduce a supersource S̄ and a su-
persink T̄ , and route one unit of flow between the
two through the source nodes and sink nodes (Ahuja
et al., 1993). Define NX(i, j) to be the node k ∈ N
which constitutes a straight next arc if (i, j) is used.
In other words, nodes i, j, k form a straight line in
the weather grid, pointing towards the center. The
objective is to find the minimum cost flow f such
that out of all minimum cost flows, f has the mini-
mum number of turns.

This problem is modeled by the IP below, and
can be solved with different sets of sources and sinks
and nodes K to generate a large set of candidate
paths for a given weather forecast scenario.

xij := flow on arc (i, j) ∈ A

zij := 1 if (i, j) ∈ A is a turn, 0 otherwise.

min
∑

(i,j)∈A

cijxij + λ
∑

(i,j)∈A

zij

s.t.
∑

j∈N :
(i,j)∈A

xij −
∑

j∈N :
(j,i)∈A

xji = bi ∀i ∈ N (1)

∑

j∈N :
(K,j)∈A

xKj = 1 (2)

zij ≥ xij −
∑

k∈NX(i,j):
(j,k)∈A

xjk ∀(i, j) ∈ A (3)

x ∈ {0, 1}n (4)

z ∈ {0, 1}n (5)

Constraints (1) are the flow balance constraints,
with bi := −1 for a supersource S̄, bi := +1 for
a supersink T̄ , and bi := 0 for all other nodes i

in N . Constraint (2) ensures that the path goes
through node K. These first two constraints along
with the non-negativity constraint (4) finds shortest-
paths through the airspace region. However, these
constraints alone do not limit the number of turns in
the resulting trajectory. It is however desirable that
aircraft trajectories have a limited number of turns
for simplicity. Constraints (3) serve to minimize the
number of turns in the path without changing the
path length. All arcs that follow (i, j), except (j, k)
for k = NX(i, j), pay a penalty in the objective func-
tion. We set λ to be sufficiently small (less than the
maximum length of any path) to ensure that a longer
route but with fewer turns is never chosen. Finally,
x and z are binary variables because a single path
cannot be split up, and the existence of a turn is a
binary quality.

We generate paths for many pairs of source and
sink sets, each passing through each segment of the
minimum cut.

Validating Paths in Observed Weather Grid

Given a set of paths through a region of airspace,
we validate the paths against observed weather. We
define a route u as open if there exists a correspond-
ing route in the forecast grid which is within B km
of u and does not pass through any actual weather
hazards.

We synthesize open routes by solving an IP iden-
tical to the one defined in the previous section, ex-
cept over a modified graph G′(N ′,A′), and without
the requirement of passing through node K. G′ cor-
responds to the dynamic grid of observed weather
in the neighborhood of u. N ′ contains all nodes in
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the truth grid that are within B km of the fore-
cast route u, and A′ contains all pairs of adjacent
nodes in N ′. The buffer B allows for slight pertur-
bations in the path (on the order of several kilome-
ters), which represents only a slight change from the
original planned trajectory of u.

Figure 5 contains a few examples of routes syn-
thesized in the forecast gird, side-by-side with the
same routes validated against true weather. Weather
scenarios corresponding to time horizons of 10, 30,
and 60 are included to show the difference in pixel
accuracy at different forecast horizons. The figure
also shows two routes that become blocked, and one
that remains open, subject to slight changes in the
planned trajectory.

5.4 Creating a Dataset of Routes

This section describes details of steps taken to
generate a dataset of trajectories through forecast
weather with corresponding trajectories through true
weather.

Selection of Weather Scenarios

A dataset was created containing routes for sev-
eral weather scenarios during the 18 worst weather
days in June and July 2007, ranked according to
weather-related delays.

Though the Lincoln Lab CWF data as described
is simply a matrix of integers in the range [0, 255],
the archives of this data are kept in a proprietary
format, and each day of data takes several hours
to extract and decompress, leaving 30 GB of un-
compressed binary data. To identify the times of
day which contain stormy weather, we extracted the
forecasts for airspace surrounding ATL and watched
visualizations of the entire two month time period
to identify the stormiest hours. This resulted in an
average of 4 weather scenarios per day, spaced 30
minutes apart, for a total of over 300 trajectories in
forecast weather. Four datasets were created, cor-
responding to the 10, 30, 60, and 90 minute time
horizons.

Dataset Details

Tables 1 contains overall statistics of route block-
age for the datasets. The vast majority of synthe-
sized routes end up being open in the true weather
grid, even for a time horizon of 60 minutes, which
had poor pixel-based accuracy. This suggests that
subject to minor adjustments, planning at a 10-, 30-,
60-, and 90-minute time horizon is quite reasonable.
This is encouraging, and shows that moving away
from fixed jet routes gives us the flexibility in the

airspace to allow that to happen.

Horizon t0 Size (# Paths) Viability rate (%)
10 356 87
30 369 87
60 335 80
90 323 74

Table 1. Overall dataset statistics. Each time
horizon contains over 300 paths through different
weather forecast scenarios, and the viability rate
shows the rate that these routes are viable in ob-
served weather.

For each path, eight features of interest were in-
dentified and each feature was correlated with route
blockage. The eight features, chosen for their possi-
ble correlation with route blockage, are listed below:

1 Mean VIL along path
2 Standard Deviation of VIL along path
3 Min distance to level 3+ weather along path
4 Mean distance to level 3+ weather along path
5 Number of turns in path
6 Theoretical capacity for weather scenario
7 Number of segments in the minimum cut
8 Length of path’s minimum cut segment

5.5 Robust Routes

This section introduces a method for route ro-
bustness based on creating correlations of features
with blockage.

Figure 6. Individual features give conditional prob-
abilities of route blockage. This figure shows this
probability (black line) as well as raw data (his-
togram) for Feature 4 at a 30-minute time horizon.
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Figure 5. Sample routes in a dynamic forecast grid on are in the left-hand column, and corresponding routes
in the actual weather are on the right-hand column. The top weather scenario is from June 8, 2007 at
1930hrs with 10-minute time horizon. The second is from June 28, 2007 at 2300hrs with 30-minute time
horizon. The bottom is from June 8, 2007 at 2100hrs with 60-minute time horizon. Notice that the middle
route is viable in the observed weather, while the other two are not.8



Intuitively, if a route through airspace is open
according to the forecast, but has an average VIL of
just below Level 3, we expect it is more likely to be
blocked in the actual weather than a similar route
with average VIL at Level 0. Using this idea, we
estimate the conditional probability that a route is
blocked given its value for various features. The fol-
lowing equation is used to compute these conditional
probabilities:

P( u blocked |fi(u) = v) =
P(fi(u) = v & u blocked)

P(fi(u) = v)
(6)

=
#(blocked & fi = v)

#(fi = v)
(7)

where fi(u) is the value of Feature i for route u.
Since the denominator in equation 7 may be 0 in

the case of continuous data, the feature values must
be binned where necessary. Due to sampling error,
these conditional probabilities contain some noise.
To account for this noise, smoothing was used to
create revised estimates of the desired conditional
probabilities. The smoothed conditional probability
P( u blocked |fi(u) = v) was computed by taking
the average of 5 neighboring bins (bin v as well as 2
bins on each side of v), weighted by the number of
paths in each bin.

Figure 6 shows a histogram of the raw data for
Feature 4 in the 30-minute time horizon. The green
(red) section of the bar shows how many routes hav-
ing value v ended up being open (blocked) when the
route was validated against true weather conditions.
In addition, the light gray line overlaying the plot
shows the raw conditional probabilities as computed
by equation (6), along with confidence intervals. The
black line corresponds to the smoothed conditional
probability that a route is blocked given Feature 4.

Similar correlations for a few other features at
10- and 60- minute time horizons are show in Fig-
ure 7 and Figure 8. The remaining features and time
horizons are omitted in the interest of space con-
straints. Looking at these figures, there is correla-
tion between features and blockage, and the correla-
tion is especially strong for the shorter time horizon
of 10 minutes. This is to be expected, since weather
forecasts for a shorter time horizon are known to be
more accurate. We see for mean VIL (Feature 1),
standard deviation of VIL (Feature 2), and number
of turns (Feature 5), that as the value of the fea-
ture increases, so does likelihood of blockage. These
trends agree with intuition. Indeed, high VIL val-
ues along a path indicate the route moves through

some weather-affected regions, which are more likely
to show up as level 3 or higher in the true weather.
Likewise, higher standard deviation of VIL indicates
increased variability in weather conditions along the
path, and hence higher likelihood that weather will
materialize. And a high number of turns indicate
that a route requires lots of maneuvering to avoid
weather, so is more likely to be exposed to moving
cells. For feature 3 (minimum distance to weather),
we see that synthesized routes that are very close
to weather end up being blocked more of the time,
and that routes that are very far from any fore-
cast weather stay viable. The same trend is found
with average distance to weather (Feature 4). Fi-
nally, theoretical capacity (Feature 6) shows the gen-
eral trend that increased theoretical capacity cor-
relates with decreased likelihood of being blocked.
The plots for Feature 7 were left out, because they
showed very little correlation with blockage. This is
probably because the number of segments in a mini-
mum cut can occur both if the theoretical capacity is
very high (there is 1 large cut segment, for instance),
or very low (there is a very small cut segment). The
high capacity case would make routes more likely to
be viable, since they are less likely to be close to ad-
verse weather cells, while the reverse is true for low
capacity.

5.6 From Routes to Capacity

The route blockage model can be used to create a
stochastic model of capacity. This section presents
an initial version of such a model. For an airport
with m arrival gates (in the case of ATL, m = 4),
and for a given time horizon t0, we can forecast ca-
pacity in the following way. First, four routes are
synthesized through the forecast grid, each sourced
from a different quadrant of the outer circle CO.
This can be done using the IP in Section 5.3. Next,
for each synthesized route, let the overall viability
rate for the given time horizon (listed in Tables 1)
be the probability that the route will be blocked in
the true weather grid. Let C be the clear-weather
capacity of the airspace. Then the capacity of the
the airspace can be forecast as Ck

m
with probability

Pr( exactly k of the synthesized routes are open),
which will be a binomial distribution.

6. CONCLUSION

A route-based approach to modeling airspace ca-
pacity turns out to be fruitful for estimating airspace
capacity using actual weather data. By analyzing
stormy weather data from the summer of 2007, we
were able to show that certain features of a candidate
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Figure 7. Plots showing how the values of the first 6 features correlate with route blockage at a 10-minute
time horizon. The histogram showing the distribution of feature values and blockage is overlaid with the
smoothed probability that a route is blocked given each feature value. Features 2, 3, and 4 correlate especially
well.

Figure 8. Plots showing how the values of the first 6 features correlate with route blockage, for 60-minute
time horizon.
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trajectory through airspace correlate with blockage
in true weather. We found that VIL levels along the
trajectory and in neighboring regions, along with
the complexity of the route (number of turns), to
be good individual predictors for blockage. Further-
more, we introduced an integer program for syn-
thesizing turn-constrained routes through forecast
regions, which turned out to produce routes that
tended to be viable in the true weather grid, sub-
ject to slight shifts in position. This is promising for
short-term route planning under uncertain weather
constraints. Future work includes the incorporation
of departures, additional weather features such as
echo tops, and ultimately, using these probabilistic
capacity forecasts for ATFM.
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