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Abstract— This paper analyzes the effect of a dynamic
programming algorithm that controls the departure pushback
rate at congested airports, with an emphasis on the uncertainty
of the underlying processes. The state of the airport at any time
includes the number of departures taxiing to the runway, and
the number of departures queued at the runway. The state
of the airport surface at the start of a time-window is used
to calculate the probability distribution of the state at the
end of that time-window, accounting for uncertainties in the
system. A cost function that penalizes both excessively long
as well as empty runway queues is used to determine the
optimal pushback rate for that time-window, using dynamic
programming. Since the level of uncertainty in the system
increases with the length of time-window, the performance of
the dynamic programming policy is evaluated, for different
lengths of time-window and planning time horizon. Uncertainty
in both arrival and departure demand parameters are evaluated
in simulation. Case studies of LaGuardia International Airport
(LGA) shows that the dynamic programming algorithm can
potentially reduce the departure taxi-out time by over 175,000
minutes over a 2-month period, even in the presence of arrival
and departure demand uncertainties, and a planning horizon
of 45 minutes.

Index Terms— Air traffic control, airport surface manage-
ment, dynamic programming

I. INTRODUCTION

Airlines operated 7.7 million departures from major air-
ports in the United States and consumed 10.3 billion gallons
of fuel in 2014 [1], [3]. Such high levels of traffic can
lead to congestion, resulting in delays. The average taxi-
out delay across the entire U.S. is greater than 5 min, with
LaGuardia (LGA) Airport in New York leading the nation
with an average taxi-out delay of more than 12 min [2].
Congestion results in long queues of aircraft at the departure
runways, resulting in additional costs in terms of fuel burn
and emissions.

Delays due to long departure queues can be reduced or
redistributed through the control of departing aircraft. How-
ever, careful consideration must be given to the uncertainties
present in the operating environment. The effectiveness of
control policies can depend on these uncertainties, as well
as the accuracy of the input data. This paper develops and
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Fig. 1. Departure throughput versus departure aircraft taxiing at LaGuardia
Airport for runway configuration 31|4, under Visual Meteorological Con-
ditions (VMC).

applies a congestion control algorithm to aircraft pushbacks,
and evaluates its performance in the presence of uncertain-
ties.

Departing aircraft push back from their gates, taxi to
their assigned runway, and wait in the departure queue
until takeoff. Surface management algorithms control the
aircraft operating at an airport so as to reduce congestion
while maintaining the throughput of the runways. Fig. 1
shows the departure runway throughput as a function of
the level of departure traffic on the surface, using 2013
data at LGA. At low levels of surface traffic, increasing
aircraft pushbacks (i.e., the level of surface traffic) results in
a corresponding increase in departure throughput. However,
after a certain traffic level, an increase in traffic no longer
results in an increase in departure throughput, and merely
leads to congestion. Several control algorithms have been
developed to mitigate congestion by controlling the rate at
which departing aircraft push back from their gates. These
algorithms are called Pushback Rate Control (PRC) policies.
They work within the existing airline schedules by holding
certain flights during times of congestion.

Dynamic programming can be used to determine PRC
policies that control the departure pushback rate by mini-
mizing a cost function that penalizes long runway queues
and low runway utilization [13]. For each time-window (say,
15 min) and given the current state of the system, a queuing
model is used to predict the state of the system at the end of
that time-window. A prediction of the departure throughput
of the airport for that time-window (which in turn depends on
the arrival rate of the airport) is required in order to predict
the state of the airport. The dynamic program then deter-
mines an optimal pushback rate for the duration of the time-



window. The dynamic programming policy has the benefit
that it accommodates probabilistic predictions of throughput.
However, the uncertainty associated with the throughput
prediction increases if either the time-window increases (say,
to 30 min instead of 15 min), or if the time horizon increases
(for example, planning for the time-windows that begin 15-
or 30-min later instead of just at the current time). On the
demand-side, arrival rate predictions may not be accurate,
which will in turn increase the uncertainty associated with the
predicted departure throughput. Similarly, departure demand
may vary, and aircraft may not push back at the times
recommended by the pushback rate. The impact of all these
uncertainties are evaluated using simulations of operations at
LGA.

II. RELATED RESEARCH

Airport surface management research has shown that push-
back control policies lead to reductions in fuel burn and
emissions, minimizing the impact of surface operations [5]–
[8]. Simaiakis and Balakrishnan developed and simulated a
threshold policy, N-control, for Boston Logan International
(BOS) airport and reported important metrics to describe
the effects of airport surface management [5]. They also
calculated those metrics for several major airports and ana-
lyzed the resultant reductions in emissions and fuel burn [6].
Ravizza et al. demonstrated the relationship between airport
surface movement and fuel burn [7]. Khadilkar examined
the control of both departures and arrivals on an individual
aircraft basis [8].

Simaiakis developed methods for the estimation of air-
port capacity and unimpeded taxi-out times, and a dynamic
programming algorithm for BOS [9], [10]. These techniques
form the basis of the research presented in this paper, to
develop models for LaGuardia (LGA) airport, and to study
the impact of uncertainties and policy parameter selection on
the performance of PRC policies. Simaiakis also noted that
PRC policies are flow-based approaches to airport surface
management, which means that these policies use virtual
queues by holding aircraft at their gates. The use of virtual
queues were initially suggested [11] and proposed in separate
studies [12]. Feron et al. [11] give a detailed overview of the
conceptual departure control process, culminating in the idea
of using virtual queues to mitigate congestion. Burgain et al.
[12] use virtual queues to minimize a cost function related
to passenger wait time.

Departure metering policies have also been determined
using dynamic programming [13]. This method accounts
for the underlying uncertainty of the airport capacity by
modeling the state of the airport surface as a semi-Markov
process. The optimal pushback rate is calculated based on a
cost of queuing function and the probability of the airport
surface being in a given state. However, this analysis did
not examine the effect of the choice of policy parameters,
such as the time-window over which a pushback rate remains
valid, and the planning horizon. This paper fills in this
gap. Other relevant work on dynamic programming applied
to airport operations has only focused on the optimization

of aircraft scheduling. Rathinam et al. [14] proposed a
dynamic programming approach for the departure schedule
that finds the optimal pushback schedule for a given number
of departing aircraft. Chandran and Balakrishnan [15] also
used a dynamic programming algorithm for the departure
runway schedule, but they only accounted for the uncertainty
and random deviations inherent in the runway process.
Dell’Olmo and Lulli considered the allocation of arrival and
departure capacities using dynamic programming, and the
tradeoffs between them [16].

This paper describes the development of a dynamic pro-
gramming algorithm for pushback rate control at LGA, and
examines the impact of the length of the time-window (the
length of time for which a pushback rate remains valid)
and time horizon (the number of time-windows for which
a pushback rate is calculated) on policy performance. The
analysis also considers the uncertainties pertaining to the
departure schedules and arrival rates. The results, based
on a 2-month simulation of LGA operations, show the
considerable benefits airlines would receive under the dy-
namic programming-based policy, even in the presence of
uncertainty.

III. ALGORITHM DEVELOPMENT

The dynamic programming algorithm models the state
of the airport surface as a Markov process with the state
described by the number of aircraft taxiing to the runway and
the number of aircraft queuing at the runway. By modeling
the runway service times as an Erlang distribution [10] with
the shape and rate (k, kµ), the transition probabilities over
a time-window are found by numerically integrating the
Chapman-Kolmogorov equations, which are described below.
The runway service time is the time between successive
takeoffs on a runway, meaning that a service time is the
time it takes the aircraft at the head of the queue to leave
the airport surface. Dynamic programming then uses value
iteration to find the optimal pushback policy in terms of the
costs of queuing and runway utilization.

To account for different runway service times due to
variability in the number of arrivals or weather, the machine
learning technique of regression trees can calculate departure
throughput under many different conditions. The regression
trees only describe the throughput for periods of congestion,
corresponding to the flat portion of Fig. 1. Using empirical
data, the regression trees calculate the predicted departure
throughput based on the arrival rate and route availability
during times of congestion. The Route Availability Planning
Tool (RAPT) is a tool that uses predictive algorithms to
estimate the location and severity of weather in the area
surrounding an airport [17]. RAPT is incorporated in the
regression trees by averaging values for a 30 min period over
all departure routes. Fig. 2 shows an example of a regression
tree for LGA.

A regression tree to predict departure runway throughput is
found for each runway configuration and weather condition,
or segment. For each leaf of the regression trees, the shape
and rate, unknown parameters of an Erlang distribution, are
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Fig. 2. Regression tree with predicted departure throughput at the leaves
for LGA for segment (31|4; VMC) with a 15 min time-window.

found by fitting empirical runway service times using the
method of moments. For an airport, a solution is found for
each shape of the Erlang distribution of service times.

At the beginning of the time-window, the state (r, q) is
observed, where r is the number of aircraft taxiing to the
runway and q is the stages-of-work to be completed at the
runway. The stages-of-work are the product of the number
of aircraft queuing and the shape of the Erlang distribution.
With the state (R0, Q0) at the beginning of the time-
window and the runway capacity C, the following Chapman-
Kolmogorov equations are then solved for the entire time-
window of length ∆ to get the probability Pr,q(∆) of the
airport surface being in a given state at the end of the time-
window [10]:

dP0,0

dt
= kµP0,1, (1)

dP0,q

dt
= kµP0,q+1 − kµP0,q, 1 ≤ q < k, (2)

dP0,q

dt
= kµP0,q+1 +

1

∆ − t
P1,q−k − kµP0,q, k ≤ q < kC,

(3)
dP0,kC

dt
=

1

∆ − t
P1,k(C−1) − kµP0,kC , (4)

dPr,0

dt
= kµPr,1 −

r

∆ − t
Pr,0, (5)

dPr,q

dt
= kµPr,q+1 − kµPr,q −

r

∆ − t
Pr,q, 1 ≤ q < k, (6)

dPr,q

dt
= kµPr,q+1 +

r + 1

∆ − t
Pr+1,q−k − kµPr,q,

− r

∆ − t
Pr,q, k ≤ q ≤ k(C − 1),

(7)

dPr,q

dt
= kµPr,q+1 +

r + 1

∆ − t
Pr+1,q−k − kµPr,q,

k(C − 1) < q < kC,
(8)

dPr,kC

dt
=
r + 1

∆ − t
Pr+1,k(C−1) − kµPr,kC , (9)

dPR0,0

dt
= kµPR0,1 −

R0

∆ − t
PR0,0, (10)

dPR0,q

dt
= kµPR0,q+1 − (

R0

∆ − t
+ kµ)PR0,q,

1 ≤ q ≤ k(C − 1),
(11)

dPR0,q

dt
= kµPR0,q+1 − kµPR0,q, k(C − 1) < q < kC, (12)

dPR0,kC

dt
= −kµPR0,kC . (13)

With these transition probabilities, the expected cost of
releasing aircraft with pushback rate λ can be found, with
the assumption that aircraft traveling to the runway queue at
the beginning of one time-window reach the queue by the
start of the next time-window. The minimum cost J∗(r, q) at
each state is given by the Bellman equation for the infinite
horizon problem with discount factor α:

J∗(r, q) = min
λ∈Λ
{c(r, q) + α

kC∑
j=0

Pr,qJ
∗(λ, j)}, (14)

where c is an average cost of a state over a time period
and Λ is the set of all possible pushback rates. Here, Pr,q
is the probability, starting at state (r, q) at the beginning of
the time period, of being in a state (λ, j) at time ∆. This
equation is solved by value iteration. The pushback rate for
the time-window is given by the λ that minimizes the cost
function.

The cost function must penalize both non-utilization of the
runway and excessively long queues. Non-utilization of the
runway is assigned a constant cost H , while for q > 0, the
cost is a non-decreasing function of q [10]. Therefore

c(q) =

{
H if q = 0,

( q−kk )2 if q > 0.
(15)

H is chosen to reflect the true cost of not maintaining
runway utilization. c(q) is only a function of queue length
and service time shape. Because dynamic programming
accounts for all possibilities for the evolution of the airport
state, the cost function must be combined with the probability
that the runway queue is of a certain length. To add the time
component, the vector of these probabilities is

pq(R0, Q0, t) = [

R0∑
r=0

Pr,0(t),

R0∑
r=0

Pr,1(t), ...,

R0∑
r=0

Pr,kC(t)].

(16)
In words, the above equation states that, given that the

state of the airport was (R0, Q0) at the beginning of the
time-window, these are the probabilities that the runway
queue consists of q stages-of-work at time t. Now, with the
probability of runway queue length as a function of time, the
product of these probabilities and the cost function can be
summed over an entire time-window ∆ to find the expected
cost of each state:

c̄(R0, Q0) =

10∆−1∑
i=0

1

10
pq(R0, Q0, i/10) · c(q). (17)

Because (16) is sampled 10 times a minute, the summation
in (17) reflects this sampling. With the expected cost over
a time-window, (14) is solved to find the optimal pushback
rate. The solution over all states can be seen in Fig. 3 for
an Erlang distribution of service times with shape k = 2 at
LGA with a maximum pushback rate of 15 aircraft per 15
min.
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Fig. 3. Parametric solution of pushback rate with observed values of aircraft
taxiing and departure queue length for ∆ = 15 min. Each line is the optimal
pushback rate for the given state, increasing from 0 to 15 from right to left.

Fig. 3 provides an intuitive understanding of the solution
determined by the dynamic programming algorithm. For a
low departure queue Q0 and taxiing departures R0, the
airport surface is relatively empty and the dynamic pro-
gramming recommends a maximum pushback rate. For high
Q0 and low R0, the pushback rate decreases slower with
increasing Q0 when compared to increasing R0 for high
R0 and low Q0. This makes sense because, with high Q0

and low R0, the queue will likely diminish by the time the
recommended pushback rate reaches the runway queue. If
R0 is high and Q0 is low, the aircraft taxiing will replenish
the queue before the recommended pushback rate reaches
the runway. Therefore, the pushback rate does not need to
be as high. This is reflected in both the slope and nonlinear
characteristics of each parametric solution in Fig. 3.

IV. CHOICE OF ALGORITHM PARAMETERS

The dynamic programming policy generates a pushback
rate that is valid for a given time-window of duration ∆. A
pushback rate can be calculated for several time-windows
(each of length ∆) into the future by changing the time
horizon of the policy. In other words, the optimal pushback
rate remains constant over a time-window, while the time-
horizon determines how far in advance the pushback rate
is determined. Changing the time-window or time horizon
allows an airport or airline to tailor the PRC policy to specific
needs and requirements, but can also change the performance
of the policy.

A. Duration of time-window

The duration of the time-window, ∆, refers to the length
of time over which a given pushback rate is maintained.
The pushback rate is updated periodically by repeating the
algorithm described in Section III. Historically, the value
of ∆ has been set to 15 min [13], but varying it has its
advantages and disadvantages.

Because the dynamic program calculates the optimal push-
back rate at the beginning of the time-window based on the
current state of the airport surface, a longer time-window

means that the pushback rate is valid for a longer period
of time. As a result, the rate cannot adapt dynamically to
changes in throughput or demand. In addition, the uncertainty
associated with the probability distribution of departure
throughput also increases as ∆ increases, and the policies
become less accurate, resulting in a reduction in benefits.

The duration of time-windows impacts the workload of air
traffic controllers. For shorter time-windows, the controller
needs to update the pushback rate more frequently. This also
requires the gathering of input data, and the recalculation
of the pushback rate. This workload decreases with the
increase in the length of time-window because the pushback
rates remain valid for a longer length of time. However, as
explained above, this decrease in workload could potentially
come at the cost of decreased benefits.

B. Length of time horizon

Although the pushback rate has previously only been
calculated at the start of each time-window, it may be
preferable to calculate these rates ahead of time. Suppose the
length of time-window is set to 15 min. Then, a time horizon
of 45 min would imply that at any time, the pushback rate
would be calculated for the time-window that begins 45 min
later, that is, the window that extends between 45 min and 1
hour from the current time. These rates would be based on
a prediction of the airport state 45 min later, which would
be more inaccurate than an observation of the current state.
As a result, the accuracy of the suggested pushback rate will
also decrease, resulting in a decrease in benefits. However,
longer time horizons provide estimated pushback rates and
pushback times to airlines well in advance, and enable better
operations planning on their part.

V. SIMULATION RESULTS

A. Input data

The data required for the simulation must be extracted
from multiple sources. The ASPM dataset provides flight
specific metrics such as pushback time, wheels off time, and
wheels on time [1]. Gate and terminal assignments allow for
the calculation of unimpeded taxi-out times, and allow the
policy to monitor gate conflicts. The last dataset contains the
weather data, RAPT, described previously. The simulations
consider July and August 2013.

Each simulation contains both a baseline case and a meter-
ing case. The baseline case simulates the airport operations
by releasing departures from their gates on a First-Come-
First-Served (FCFS) basis based on scheduled departure
times. The metering case simulates the airport operations
using the dynamic programming policy. The benefits of
the policy include the taxi-out time reduction, which is
the difference between the taxi-out times in the baseline
case and metering case. Taxi-out time reduction contrasts
with gate holding time, which is the length of time an
aircraft is held at a gate beyond the scheduled departure
time due to the dynamic programming policy. Gate holding
time is not strictly a cost because aircraft still belong to the
virtual queue with engines off. However, occupying the gate
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Fig. 4. Percentage taxi-out time reduction, gateholding time and market
share by airline for LGA simulations of the dynamic programming policy
for July-August 2013. These results are for a 15-minute time-window and
zero time horizon.

for longer periods of time causes more gate conflicts, and
extended gateholding times after boarding can inconvenience
passengers.

Considering the factors discussed in Section IV, the sim-
ulated durations of time-windows include the usual 15 min,
as well as longer time-windows of 30 min and 60 min.
To mirror the time-window analysis, time horizons of 0
(the immediate time-window), 15 min (one time-window
in advance) and 45 min (3 time-windows in advance) are
considered. As mentioned earlier, a time-horizon of 45 min
requires determining a pushback rate for the 15-min time-
window that extends between 45 min and 60 min later.

B. Fairness of dynamic programming policy

Fig. 4 shows the percentage of taxi-out time reduction,
gateholding time, and market share (in terms of operations)
corresponding to each airline, for simulations of the 15-min
time-window (and zero time horizon).

Examining Fig. 4 reveals some interesting features of the
dynamic programming policy. For each airline, all of the
percentages in Fig. 4 are roughly equal. The proportionality
between taxi-out time reduction and market share illustrates
that the dynamic programming policy is fair across airlines.
The benefits that an airline can expect are commensurate with
its share of operations. The relationship between taxi-out
time reduction and gateholding time reveals the effectiveness
of the dynamic programming policy, as airlines do not need
to invest a disproportionate amount of gateholding time to
realize the benefits of taxi-out time reduction. While Fig.
4 considers the 15-minute time-window, the same fairness
properties persist for 30-min and 60-min time-windows.

C. Duration of time-windows

Fig. 5 shows the total taxi-out time reduction for each
airline, for simulations of different durations of time-window.
It illustrates that the taxi-out time reduction benefits decrease
for increasing time-window lengths. Relative to the 15-min
time-window length results, a 30-min time-window has 63%
of the taxi-out time reduction and a 60-minute time-window
has only 43% of the taxi-out time reduction. These results
are consistent with the rationale that as the time-window
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becomes longer, the accuracy of the dynamic programming
policy decreases, along with its benefits.

D. Length of time horizon

In investigating the impacts of changing the time horizon,
the time-window is set to 15-min. Fig. 4 corresponds to the
case with no planning time horizon. While details are not
discussed here for reasons of brevity, policy fairness and
proportionality of benefits and gateholding times are found
to be maintained for different values of time horizon.
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Fig. 6 shows the total taxi-out time reduction for each
airline, for different values of planning time horizon. The
deterioration in taxi-out time reduction for increasing time
horizon length (Fig. 6) is as not drastic as the decrease with
increasing time-window (Fig. 5).

For longer time-windows, the dynamic programming al-
gorithm finds transition probabilities further into the future,
and uncertainty in the evolution of the state of the airport
surface results in a less accurate departure pushback rate.
Secondly, the rate can only adapt at the end of a time-
window. For longer time horizons, the initial pushback rate
for the first time-window is found as usual. For the following
time-windows in the time horizon, the pushback rate for
the previous time-window becomes the number of aircraft
traveling to the runway in the next time-window. The runway
queue is updated as follows:

Q∗0
k

=
Q0

k
− Tp +R0, (18)



where Q∗
0

k is the new runway queue length, Q0

k is the runway
queue length in the previous time-window, and Tp is the
predicted runway throughput in the previous time-window.
While this is approximate, even under a longer time horizon,
the state of the airport surface is updated throughout a time
horizon (at increments of ∆). By contrast, a time-window
increase relies on the original state of the airport surface,
and a single pushback rate for the entire time-window. This
difference results in greater robustness of performance under
longer time horizons than under longer time-windows.

E. Uncertainties in arrival and departure demand

1) Departure demand uncertainty and conformance to
target pushback times: There are two sources of uncer-
tainty in departure demand: First, that the demand does
not materialize as expected (in other words, aircraft call
ready for pushback at times that are different from their
scheduled or reported earliest pushback times1), and second,
that departures do not pushback at the target times that are
assigned to them. The impacts of either of these cases can
be simulated by considering perturbations of pushback times,
since they both translate to aircraft being ready for pushback
at a time other than their EOBT.

The perturbation to the departure (pushback) time of a
flight is drawn from a normal distribution with standard
deviation of 3.5 min. The assumption of a standard deviation
of 3.5 min ensures that two standard deviations of the
perturbation encompass an approximately 15-min span of
time.

For each flight, a perturbation time is randomly drawn
from the probability distribution described above and added
to the original departure time. The new departure time of a
flight t∗ is given by

t∗ = t+ tp, (19)

where t is the scheduled departure time of the flight and tp is
the perturbation. The scheduled departure time for each flight
in a day is updated using (19). The simulation of airport
operations with the the dynamic programming policy then
proceeds as usual.

The results of the simulation with the original schedule
can be compared to the results of the simulation with the
perturbed schedule. However, because the perturbed schedule
is subject to random sampling, the results of the simulation
with the perturbed schedule are also subject to the random
sampling. As such, the variable departure schedule uses a
Monte Carlo method to get a better sense of the results from
perturbing the schedule. The Monte Carlo simulation reruns
each day over the 2 months with a PRC policy 50 times,
each time with a different perturbed schedule. The results
are the average values over the 50 trials.

2) Arrival rate uncertainty: Similar to the departure
schedule perturbations, an arrival rate perturbation for a 15
min time-window is drawn from an arrival rate distribution
with mean 0 and standard deviation of 1, which is similar to

1Also known as Earliest Off-Block Times, or EOBT
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what is seen in practice. For the 30-min and 60-min time-
windows, the standard deviations of the arrival rate perturba-
tions are assumed to be 2 and 4, respectively. Because arrival
rates reflect the number of aircraft expected to land in a
certain time-window, the arrival rate perturbation is rounded
to the nearest whole number. The new arrival rate a∗ then
becomes

a∗ = a+ ap, (20)

where a is the original arrival rate and ap is the arrival rate
perturbation. (20) updates all of the original arrival rates for
each time-window. These perturbations result in new values
of the predicted departure throughput in each time-window,
since the regression trees (e.g., Fig. 2) depend on the arrival
rate. 50-Trial Monte Carlo simulations with different arrival
schedules are conducted, and the results are averaged.

3) Impacts of uncertainty: Figs. 7 and 8 show the results
of the dynamic programming policy with both arrival and de-
parture uncertainties, with different choices of time-window
and planning horizon.

Figs. 7 and 8 show similar trends for variations of time-
window and planning horizon – the benefits are more robust
to changes in the planning horizon than the time-window.
In both cases, the departure uncertainty has a greater impact
on benefits than the arrival rate uncertainty. In all but one
case, the departure uncertainty decreases the benefits, while
arrival rate uncertainty has little to no effect on taxi-out time
reduction. For the 60-minute time-window, the departure
uncertainty increases the policy benefits slightly, likely due
to the spreading out of scheduled departure times (e.g., (19)).
Simulations with both sources of uncertainty show that the



dynamic programming algorithm handles uncertainty very
well, and yields benefits that are nearly equal to the case
with no uncertainty. More importantly, the approach has the
potential to yield very significant benefits, nearly 175,000
min over the two-month period, even in the presence of
arrival and departure uncertainties. These benefits could be
achieved while giving airlines target pushback times at least
45 min in advance of operations.

VI. CONCLUSIONS

This paper explored the impacts of time-window duration,
advance planning horizon and uncertainties on the perfor-
mance of a dynamic programming based airport congestion
control strategy. The dynamic programming approach con-
sidered the state of the airport surface at the current time,
and calculated an optimal pushback rate for the duration of
a time-window, accounting for operational uncertainties. The
control strategy is evaluated using simulations of operations
at LGA for a two-month period. The results indicate that
the performance of the policy deteriorates significantly as
the time-window increases from 15 min to 60 min. They
also show that the control policy performs well even if
the planning horizon is increased to 45 min, with a time-
window of 15 min. Departure demand variability is found
to have a much larger impact on the taxi-out time benefits
than arrival rate variability. The simulations show that the
dynamic programming algorithm can potentially reduce the
departure taxi-out time at LGA by over 175,000 min over a
2-month period, even in the presence of arrival and departure
demand uncertainties. These benefits can be achieved while
providing airlines with target pushback times 45 min in
advance, which is promising from the perspective of airline
operations planning.
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