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Abstract 
Surface congestion causes significant taxi delays 

at busy airports. This paper proposes two different 
approaches to optimizing both taxiway and runway 
schedules simultaneously. The first is an integrated 
approach based on a single mixed-integer linear 
programming (MILP) model, while the second is a 
sequential method that sequentially combines runway 
scheduling and taxiway scheduling algorithms. The 
two optimization approaches are compared and 
evaluated using flight schedules at Detroit airport 
(DTW), by analyzing several airport performance 
metrics. The effectiveness of the proposed 
optimization methods in the current operational 
environment is also investigated through fast-time 
surface traffic simulations. 

Introduction 
With the growth of air traffic, busy airports 

currently experience congestion on the surface and in 
the surrounding terminal-areas. Surface congestion 
increases the taxi times of flights, leading to 
increased fuel costs and environmental impacts. It 
can also result in increased controller workload and 
safety concerns. The airport congestion problem can 
be mitigated through the efficient planning of surface 
operations. This motivates the development of 
decision support tools based on optimized airport 
resource allocation for airport surface movement 
control. 

There have been prior efforts to develop the 
optimization models for taxiway scheduling and for 
runway scheduling and sequencing. In most of these 
cases, optimization models were independently 
developed for taxiways and runways, and then 
combined in the integrated system for airport 
management as separate modules [1, 2, 3]. 

Similarly, there exist optimization models for 
aircraft ground movement problem that calculate 
optimal taxi schedules, subject to operational and 
safety constraints. These optimization models have 

significant potential for taxi time reduction when 
applied to busy airports. However, they are not 
suitable for real-time implementation currently due to 
their weak computational performance. They also 
assume that either a scheduled or a target takeoff time 
is given by another tool such as a Runway Scheduler 
[1] or a Taxi-out Time Estimator [3]. 

The runway has been identified as a main 
bottleneck in airport operations [4]. Runway 
scheduling algorithms have been proposed for 
maximizing runway throughput, considering wake 
vortex separation requirements [5, 6]. These 
approaches focus on runway sequencing and inter-
aircraft spacings, but do not consider the interaction 
with taxiway conditions and impact of arrivals on the 
taxiway and ramp areas. An optimal runway schedule 
that does not account for taxiway operations could 
potentially have adverse effects, such as long wait 
times in the departure queue [3]. 

The main objective of this paper is to bridge 
these two different scheduling models, and to 
develop efficient algorithms for solving both runway 
and taxiway scheduling problems simultaneously. 

Background 
Runway and taxiway scheduling algorithms 

cannot work in isolation at an airport because they 
are closely interlinked. However, the optimization 
models embedded in these planning tools are 
typically developed independently. If the taxiway 
schedule were optimized through the integration with 
the runway schedules, more benefits could be 
expected. However, few studies to date have focused 
on this integration due to its complexity [7]. 

Departure schedules have been previously 
considered by taxiway scheduling optimization 
models [8, 9, 10]. These efforts have assumed that 
the target departure times are given, and the models 
ensure that the departures satisfy the wake vortex 
separation requirements. In addition, these models 



have focused on minimizing the overall taxi times, 
and not on optimizing the takeoff times as well. 

As an alternative to simultaneously optimizing 
taxiway and runway operations, sequential 
coordination of the two modules has also been 
attempted [1, 2, 3]. In this approach, the runway 
schedule is optimized first, and the taxiway 
scheduling is then conducted using the optimal 
takeoff times. This sequential planning makes it 
possible to link the independent optimization 
components in the integrated system for airport 
management with common data. However, it may 
result in a suboptimal runway schedule because the 
takeoff times are fixed, without considering taxiway 
conditions.  

Assumptions 
Several simplifying assumptions are made in 

modeling airport surface operations, as explained 
below. 

• Airports have standard taxi routes in a given 
runway configuration. Therefore, given the 
runway and the gate, the taxi route of each 
flight is predefined. 

• Nominal taxi speed in free flow is assumed 
to be given. Therefore, given the length of 
the taxiway, the minimum travel time on 
each taxiway link can be derived. The taxi 
speed values are independent of aircraft types 
and weight classes. 

• The scheduled pushback times and the 
estimated landing times are known. 

• The preparation times for taxi-out are fixed 
and the same for all flights. Therefore, 
departures push back as planned by the 
optimization model. 

• Airlines accept up to two position shifts from 
the First Come First Served (FCFS) takeoff 
sequence. 

• Flights can meet the passage times 
determined by optimization at key points 
along taxi routes. 

Integrated approach 
The best way to integrate optimal taxiway 

scheduling and runway scheduling is to put both 

objectives into a single optimization model. The 
single MILP model for taxiway and runway 
scheduling proposed in this section is obtained by 
modifying the taxiway scheduling approach proposed 
by Rathinam et al. [11]. 

Decision Variables 
The proposed MILP model for integrated 

taxiway and runway scheduling has two kinds of 
decision variables: 1) Continuous time variables for 
the passage times at nodes along the taxi routes of the 
flights, and 2) Binary sequencing variables for 
determining the relative order of two flights at 
intersection nodes and runway thresholds where these 
flights may reach at about the same time. 

Objectives 
For efficient taxiway scheduling, the model is 

designed to minimize the sum of taxi times of the 
flights moving on the ground within the given time 
window for optimization. In this objective function, 
the taxi times can be categorized by the taxi-out time 
for departures and the taxi-in time for arrivals. These 
two objective terms can be expressed as follows. 
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In the objective terms above, dα  and aα  are the 
coefficients of the taxi-out time for departures and 
the taxi-in time for arrivals, respectively. 

An additional objective is to minimize runway 
delay, which is defined as the difference between the 
optimized takeoff time and the earliest possible 
takeoff time (EarliestOffT). The runway delay term is 
as shown below, where rα  is the coefficient for the 
runway delay when a flight takes off after its earliest 
possible takeoff time. 
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The objective function of the single MILP model is 
the sum of the three terms described above.  



Constraints 
The MILP model includes several operational 

constraints that need to be taken into account in 
airport operations. Firstly, departing flights can only 
leave their gates after their scheduled pushback 
times, by which time passengers complete boarding, 
and crews are ready to depart. However, during 
congested periods, it may be beneficial to hold flights 
at the gate in order to decrease taxi-out times and fuel 
burn. This is known as a "gate-holding strategy." 
However, departures need to leave the gate before a 
maximum possible gate-hold time (MaxGateHold). 
Arrivals are assumed to land on the assigned runway 
at their scheduled landing times. In addition, speed 
limits under airport operation rules are enforced for 
taxiing flights. For reasons of safety, taxiing aircraft 

have to keep sufficient separation from each other on 
the taxiway and ramp areas. For the same reason, 
overtaking cannot take place on the same taxiway 
link. Also, the flights moving on the airport surface 
must avoid head-on conflicts at intersections and on 
bidirectional taxiways. Finally, departures must 
satisfy wake vortex separation requirements on the 
runway, which depend on the weight classes of 
consecutive flights. 

Mathematical Formulation 
Incorporating the objective function and 

constraints described above, the single MILP model 
for runway and taxiway scheduling can be expressed 
as follows. 
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where D and A denote the set of departures and 
arrivals, respectively. Similarly, I denotes the set of 
intersection nodes, E the set of taxiway links 
connecting two nodes u and v, R the set of runways, 
and G the set of gates. M is a large positive constant. 

uit ,  is the primary decision variable for the passage 
time of flight i at node u along its taxi route. 

Constraint (1) is a sequencing constraint that 
determines which flight goes first when two flights 

reach an intersection node at the same time. 
Constraint (2) enforces the maximum taxi speed limit 
in terms of the minimum travel time on a taxiway 
segment. Constraint (3) ensures that two flights exit a 
taxiway link in the same order as when they entered 
it. This constraint prevents overtaking on a taxiway 
link. Constraint (4) is a sequencing constraint for 
bidirectional taxiway links that prevents two flights 
from simultaneously entering a taxiway link in 



opposite directions, and that determines which flight 
moves into the link first. 

Constraints (5) and (6) enforce the separation 
requirements (Dsepij) between two flights taxiing at 
different speeds on the ground. Another constraint for 
safety is also included in (7) for runway operations. 
Since the required separation distance and time are 
dependent on the weight classes of the successive 
aircraft over the runway, the separation time between 
takeoffs (Rsepij) can be different depending on the 
types of aircraft i and j. 

Schedule constraints (8)-(11) define the latest 
takeoff time (EarliestOffT+MaxRunwayDelay) based 
on the earliest possible takeoff time and the 
maximum delay allowed for takeoff, the earliest gate-
out time (OutT), the latest gate-out time 
(OutT+MaxGateHold) for departures, and the 
estimated landing time (OnT) for arrivals, 
respectively. 

Constraint (12) determines (as a constant) the 
passage times of flights that have already pushed 
back and are taxiing on the surface at the time of 
optimization. The passage times of these flights 
(FrozenT) come from the results of the previous time 
window, and cannot be updated subsequently. 

The binary decision variable u
ijz  for sequencing 

aircraft i and j at intersection node u is defined in 
constraint (13). This variable will be equal to one if 
aircraft i passes through the intersection before 
aircraft j, and 0 otherwise. 

Discussion of Formulation 
This single MILP model is an extension of the 

taxi scheduling model proposed by Rathinam et al. 
with several key enhancements. Firstly, the model 
optimizes the runway schedule as well as the taxiway 
schedule by introducing an additional term for 
runway delay in the objective function. Without this 
term, the optimization would focus solely on 
minimizing the taxi time, and as a result, the takeoff 
time may be further delayed. It could also result in 
excessive gate-hold times, causing gate conflicts. 
Secondly, the proposed model determines a feasible 
takeoff time window having a reasonable range based 
on the earliest possible takeoff time, whereas 
Rathinam et al.'s model uses the scheduled takeoff 

time constraint. In their model, this constraint may 
make the problem infeasible if the taxiway system is 
very congested. Thirdly, the new model accounts for 
the existing flights taxiing on the surface that can 
interact with new flights pushing back in the current 
optimization period. In this way, the model adopts a 
rolling horizon as time progresses. Finally, the model 
considers other safety constraints like collision 
avoidance on bidirectional taxiways. 

The main strength of this single MILP model is 
that it simultaneously implements runway scheduling 
and taxiway scheduling. In other words, it 
simultaneously determines the optimal takeoff 
sequence and times on runways, pushback times at 
gates for departures, and passage times at control 
points along taxi routes, as well as the gate-in times 
for arrivals. However, the mixed integer program can 
need long computation times, especially at high 
traffic demand.  

Another problem is that of fairness in the takeoff 
sequence. In order to achieve a more efficient runway 
schedule, the model can allow significant position 
shifts from the first-come, first-served (FCFS) 
sequence based on the original schedule. Apart from 
impacting the fairness of the takeoff order for 
airlines, these significant deviations from FCFS can 
increase controller workload. 

In order to address these concerns, an alternative 
approach proposed. Instead of a single model, two 
separate optimization models are used for taxiway 
and runway scheduling, but they are closely 
integrated through the sharing of schedule data and 
operational conditions. In this step-by-step approach, 
the two optimization processes are sequentially 
implemented. 

Three-step approach 

Methodology 
The sequential process follows the three steps 

described below. 

Step 1 is to estimate the earliest runway arrival 
times for departures. This time can be computed by 
adding the unimpeded taxi-out time to the scheduled 
pushback time. The unimpeded taxi time is obtained 
based on the distance from gate to runway along the 



given taxi route and on the nominal taxi speed. The 
parameters used in this step are the same as those 
used in Step 3 for taxiway scheduling, so that 
consistent assumptions are maintained during the 
entire optimization process. 

Step 2 of the approach optimizes the departure 
runway schedules using a runway scheduling 
algorithm. It determines the departure sequence and 
takeoff time schedule, accounting for the separation 
requirements over runways, available time windows, 
etc. The initial takeoff times used to optimize runway 
schedules are the same as the earliest runway arrival 
times obtained in Step 1. This common assumption 
makes the takeoff time window used in the next step 
reasonable. 

Step 3 optimizes the taxiway schedules using an 
MILP model. The MILP model determines the 
optimal pushback times for departures, gate-in times 
for arrivals, and passage times at taxiway 
intersections, by using a gate-holding strategy to 
minimize the taxi-out times. While optimizing the 
aircraft taxi schedule, takeoff times from both Step 1 
and Step 2 are used. The earliest runway arrival time 
for a departure from Step 1 defines the lower bound 
of the available takeoff time window, and the 
optimized takeoff time from Step 2 is used as a 
“target” takeoff time, while accounting for the 
taxiway conditions and potential conflicts. 

This sequential process is illustrated in Figure 1. 

 

Figure 1. Sequential Process for Three-Step Approach 

CPS Algorithm for Runway Scheduling (Step 2) 
For runway scheduling in Step 2, the algorithm 

proposed by Balakrishnan et al. [5] is chosen because 
of its good computational performance and fairness 
considerations. This algorithm uses Constrained 
Position Shifting (CPS) as a basis for fairness, by 
limiting the maximum deviation from the FCFS 
takeoff sequence to be less than a value k [12, 13]. 
The basic objective of the CPS algorithm used in the 
three-step approach is to minimize the sum of takeoff 
delays, which is the difference between actual takeoff 
time and the earliest possible takeoff time. This 
objective can also be changed to minimize the 
makespan, the takeoff time of the last aircraft in the 
given schedule. While computing the optimal takeoff 
schedule, the algorithm accounts for runway 
separation requirements.  

MILP Model for Taxiway Scheduling (Step 3) 
The MILP model for taxiway scheduling used in 

Step 3 is similar to the single MILP model proposed 

in the previous section. The model has the same 
decision variables, which are uit ,  and u

ijz . 

The objective of the MILP model in Step 3 is to 
minimize taxi-out times and taxi-in times, with an 
additional penalty for late takeoff, if a flight departs 
later than its optimized takeoff time (DesiredOffT) 
from Step 2. This penalty term corresponds to the 
runway delay term in the single MILP model. Note 
that this model allows a flight to take off earlier than 
the optimal takeoff time determined in Step 2. The 
penalty term in the objective function can be 
expressed as follows and can be rewritten in a linear 
form by introducing a new decision variable to 
indicate a late takeoff.  
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The constraints are basically the same as in the 
single MILP model. They account for the minimum 
travel time between nodes, minimum separation 
between aircraft, no overtaking on taxiways, conflict 



avoidance at intersection nodes and on two-way 
taxiways, and time schedules for pushback, takeoff, 
and landing. In the rolling horizon framework, 
existing taxiing flights optimized in the previous time 
window are also considered. 

Expected Benefits 
There are several benefits expected from this 

three-step approach. Firstly, we can determine 
efficient runway schedules for various objectives 
such as maximum runway throughput, minimum 
takeoff delay, and minimum weighted sum of takeoff 
times. Since Step 2 is dedicated to optimal runway 
scheduling, different alternative algorithms having 
different objectives can be used in it. The final 
sequence position of departures will not deviate 
significantly from the FCFS sequence based on the 
earliest possible takeoff time if the CPS method is 
adopted, although the departure sequence can still 
change in Step 3. 

The taxiway schedule is also optimized while 
maintaining the separation requirements on runways. 
Using the gate-holding strategy, we can achieve less 
congested taxiways, lower taxi times, fewer stop-and-
go situations, and less fuel burn during taxiing. We 
expect that these benefits will be similar to those of 
the single MILP model, as will be shown later using 
optimization results. 

Another advantage of this approach is its fast 
solution time. An optimal solution of the MILP 
model in Step 3 can be obtained quickly because 
runway scheduling, which makes it more difficult to 
find a solution of the single MILP model, is already 
almost complete in Step 2. 

Evaluation 
In this section, the two alternative approaches to 

runway and taxiway scheduling are applied to various 
flight schedules at DTW for evaluating their 
effectiveness and performance.  

Optimization Set-up 
The runway configuration used in the evaluation 

is (22R, 27L | 21R, 22L), which is the most 
frequently used configuration at DTW in 2007. 
Figure 2 and 3 illustrate the DTW airport layout and 

the corresponding node-link network model used for 
optimization models. It is assumed that there are 
enough gates to accommodate all the flights without 
duplication. There are four aircraft types: Heavy, 
B757, Large, Small; Heavy aircraft can depart only 
from Runway 22L because of the minimum takeoff 
roll distance needed. 

 

Figure 2. DTW Airport Layout 

 

Figure 3. Node-link Network Model for DTW 

For runway scheduling under CPS, five cases for 
takeoff sequencing are considered, depending on the 
maximum number of position shifts allowed and on 
the objective: 0CPS (equal to FCFS), 1CPSd, 2CPSd, 
1CPSm and 2CPSm. The prefixed number denotes 
the limit on position shifts from the FCFS takeoff 
sequence. The suffixes, "d" and "m", represent the 
objective of the runway scheduling algorithm, 
minimizing runway delay and minimizing makespan, 



respectively. The time window of the runway 
scheduling algorithm is 45 min, which has an overlap 
of 15 min with the next time window. 

The runway separation time requirements 
between successive departures are shown in Table 1, 
and depend on the weight classes of the leading and 
trailing aircraft. 

Table 1. Minimum Separation Time (in Seconds) 
between Takeoffs 

Leading 
Aircraft 

Trailing Aircraft 
Heavy B757 Large Small 

Heavy 120 120 120 120 
B757 90 90 90 90 
Large 60 60 60 60 
Small 60 60 60 60 

 

The MILP models were implemented in AMPL 
[16] using the CPLEX solver [17]. The tolerance of 
optimization was set to 'mipgap=0.0001' and 
'integrality=1e-07'. The time limit of the solver is 
restricted up to 30 min. The optimization time 
window of the model is 30 min, with a 15 min 
overlap with the next time window. In this way, the 
model accounts for frozen flights, which have already 
been optimized in the previous time window, and are 
traveling on the taxiway. 

In the objective functions for the MILP models, 
the taxi time weights are set to 1=dα  for departures 

and 2=aα  for arrivals, because many aircraft 
employ single-engine procedures while taxiing out to 
reduce fuel cost. The coefficient for runway delay is 

1=rα , and the penalty factor, pα  = 100 is used for 
late takeoffs. 

The minimum separation between taxiing 
aircraft on the ground (Dsep) is assumed to 150 m, 
regardless of the aircraft types. The minimum 
separation requirements between takeoffs (Rsep) are 
the same as those shown in Table 1. The maximum 
time for which an aircraft can be held at gate 
(MaxGateHold) and the maximum runway delay 
allowed (MaxRunway Delay) are set to 10 min and 
15 min, respectively. 

Based on surface surveillance data from DTW, 
the nominal free flow taxi speed values are set to 3, 7, 
and 18 kn on gate area, ramp area, and taxiways, 
respectively. The minimum taxi time on each link 
(MinTaxiT) is calculated in advance using these taxi 
speed assumptions and the length of each link. 

Table 2 summarizes the eight different cases that 
are evaluated. There are five cases derived from the 
three-step approach, depending on the runway 
scheduling objective and on the maximum position 
shifting value. For the integrated approach, two cases 
are implemented. The first case named 'FPSr' is the 
original optimization model minimizing both taxi 
time and runway delay simultaneously, where the 
case name 'FPS' represents Free Position Shifting, in 
contrast with the other constrained position shifting 
(k-CPS) cases from the three-step approach. The 
FPSt case is a control group that minimizes the taxi 
time only by putting 0=rα  in the objective 
function. This case was added to see the impact of the 
runway delay term in the MILP model. Finally, the 
NoGH case presents the taxiway and runway 
schedule when no gate-holding is applied and 
departures leave their gates at their scheduled times. 
This case is used as a baseline to evaluate the benefits 
of gate-holding. 

Table 2. Optimization Cases 

Approach Runway 
Scheduling 
Objective 

Optimization 
Case Name 

Three-step 
Approach 

FCFS 0CPS  

Min runway delay 1CPSd, 2CPSd 
Min makespan 1CPSm, 2CPSm 

Integrated 
Approach 

Min runway delay FPSr  
None FPSt  

No Gate-holding FCFS NoGH  
These optimization cases are compared using 

airport performance metrics such as taxi-out times, 
taxi-in times, takeoff delays, and the number of 
position changes in the takeoff sequence. 

Fast-time Simulations  
Optimization approaches to individual aircraft 

trajectory-based control assume that all flights use 
enhanced onboard equipment and meet the required 



times of arrivals (RTAs) at taxiway intersections 
given by optimal scheduling. Through fast-time 
airport traffic simulations using an air traffic 
simulation tool like SIMMOD [14], this 'RTA 
control' approach can be compared with the pushback 
time control approach so as to investigate the 
effectiveness of the proposed optimization methods 
in realistic operational conditions.  

For this comparison, the optimized pushback 
times for departures and the scheduled landing times 
for arrivals are input to the SIMMOD simulations. 
Similar to the current operational environment, 
SIMMOD only controls the entry times of the flights 
into the taxiway, and maintains a given constant taxi 
speed on the surface.  

Scenario 1 
To model a high traffic demand scenario at 

DTW, we first assume that flights are consistently 
supplied to this airport for 3 hours at the rate of 160 
flights per hour, with 80 departures and 80 arrivals. 
This rate is twice the average hourly traffic demand 
at DTW in 2007 and close to its declared capacity, 
namely, 184-189 operations/hour in optimal 
conditions and 168-173 operations/hour in marginal 
conditions [15].  

The detailed flight schedule data for individual 
flights, including scheduled pushback or landing 
times, gates and runways, are randomly generated by 
SIMMOD. Consistent with operations at DTW, the 
fleet mix ratio is assumed to be 5%, 10%, and 85% of 
heavy aircraft, B757, and large aircraft, respectively. 
As two runways are usually used for departures, 
runways are assumed to be balanced. For this 
experiment, 28 sets of flight schedule scenarios are 
generated and optimized using the eight different 
optimization cases. 

Figure 4 shows the average gate-holding time 
and the taxi-out time per departure for each 
optimization case. The whiskers denote the standard 
deviation of the sum of the two times, across the 24 
flight schedules. All the optimization cases from two 
different approaches show similar taxi-out times, 
except for the FPSt case that minimizes only taxi 
times, but at the expense of long pushback delays. 
The figure shows that the taxi-out time can be 
reduced by about 64 s per departure relative to the 

NoGH case through gate-holding. The takeoff times 
(sum of gatehold and taxi-out times) are similar, 
showing that the gate-holding time translates to taxi-
out time savings. 

 

Figure 4. Average Taxi-out Times for Scenario 1 

The average taxi-in times shown in Figure 5 are 
also similar to one another (except for the FPSt case, 
which has a lower average taxi-in time). It appears 
that holding departures at their gates has little effect 
on the arrivals.  

 

Figure 5. Average Taxi-in Times for Scenario 1 

Figure 6 shows the takeoff delay per departure 
for each of the eight optimization cases. The takeoff 
delay is defined as the actual takeoff time minus the 
earliest possible takeoff time (obtained by adding the 
unimpeded taxi time to the originally scheduled 
pushback time). In the three-step approach (left five 
cases in the graph), the takeoff delay from runway 
scheduling in Step 2 arises from the separation 
requirements between takeoffs. In Step 3, small 
additional delay occurs due to taxiway interactions, 
consequently leading to a little longer delay than the 
FPSr case in the integrated approach. The FPSt case 
does not consider runway delay in the optimization, 
and consequently has a significantly larger delay than 
the other cases.  



 

Figure 6. Average Takeoff Delays for Scenario 1 

Some flights may not meet the initially assigned 
takeoff slots due to unexpected interactions on the 
taxiways. This could increase the workload of air 
traffic controllers. Figure 7 illustrates the number of 
position changes from the initial takeoff sequence 
relative to the earliest runway arrival times. A 
comparison of the 0CPS, 1CPSd, 2CPSd, and FPSr 
cases shows that the number of takeoff sequence 
changes increases as the position change limit 
increases. The NoGH case shows the largest impact 
(except for the FPSt case) of taxiway interactions on 
the takeoff sequence. 

 

 

Figure 7. Takeoff Order Changes for Scenario 1 

 

The effects of taxiway scheduling on the takeoff 
sequence can also be studied by observing the 
difference between the takeoff orders from Step 2 
and Step 3 in the three-step approach, as shown in 
Figure 8 for each runway. In this scenario, 8-11% of 
flights cannot meet the optimal takeoff slots 
determined by a CPS algorithm. These position 
changes are a consequence of taxiway scheduling, 
and may result in additional delays to takeoffs.  

 

 

Figure 8. Takeoff Order Changes between Step 2 
and Step 3 in Three-Step Approach 

Figure 9 compares the total runtimes of the 
different optimization cases for a 3-hour flight 
schedule period. The CPS algorithm used in the 
three-step approach is typically fast, except in the 
2CPSd case which takes 20 min to optimize the 3-
hour long flight schedule. The MILP model used in 
Step 3 also shows good computational performance. 
As expected, the FPSr case for the integrated 
approach takes a long time to optimize the RTAs of 
the taxiing aircraft, because it simultaneously 
implements both runway and taxiway scheduling.  



 

Figure 9. Total runtimes for Scenario 1 

Using fast-time simulations in SIMMOD, we 
can investigate whether the optimized strategies are 
valid in the current operational environment. Figure 
10 illustrates the average taxi-out time per departure 
from both optimization and simulation for the 0CPS, 
FPSr, and NoGH cases representing three-step 
approach, integrated approach, and no optimization 
cases, respectively. Compared to the NoGH case, we 
can see that the significant taxi-out time savings can 
be obtained by controlling pushback times only.  

 

Figure 10. RTA Control vs. Pushback Time 
Control Only 

Comparison of optimization and simulation 
results for the 0CPS (or the FPSr) case also shows 
that the RTA control can further decrease taxi-out 
time by up to 16 s/aircraft. When controlling 
pushback times, departures interact with other 
departures or arrivals on the taxiway. These 
interactions increase waiting time in the departure 
queue since the takeoff sequence may change, as can 
be verified by observing the takeoff position changes 
between the optimized solution and the SIMMOD 
simulation. Figure 11 shows that some flights are 
affected by the RTA control at significant points on 

the taxiway. In addition, the high percentage of 
shifted departures in the NoGH case implicates that 
more holds at taxiway intersections are required 
when gate-holding is not applied.  

 

 

Figure 11. Takeoff Order Changes between 
Optimization and Simulation 

Scenario 2 
Scenario 2 was designed for investigating the 

effects of fleet mix. The flight schedules in Scenario 
2 were created in the same way as in Scenario 1, 
except for the fleet mix ratios, which was set to 10%, 
20%, and 70% for heavy aircraft, B757, and large 
aircraft, respectively. The detailed flight schedule 
data for each flight were generated by SIMMOD, as 
before. The same traffic demand and runway 
balancing were used. For this experiment, 28 
different sets of flight schedules were generated and 
optimized in eight optimization cases. 

Figures 12 and 13 show the average taxi-out 
times and the average taxi-in times in the eight 
different optimization cases. A comparison with 
Figure 4 and 5 shows that the average taxi-out and 
taxi-in times are almost the same as for Scenario 1. 
The metrics affected by the fleet mix change are the 
gate-holding time, takeoff delay, and the takeoff 



sequence. By comparing Figure 14 with Figure 6, we 
can see that the more heterogeneous fleet mix ratio 
leads to increased runway delay due to the separation 
requirements. The number of takeoff order changes 
also increases by about 10% for all the cases. The 
computational performances are similar.  

 

Figure 12. Average Taxi-out Times for Scenario 2 

 

Figure 13. Average Taxi-in Times for Scenario 2 

 

Figure 14. Average Takeoff Delay for Scenario 2 

SIMMOD simulations were also run with the 
optimized pushback times. The simulation results in 
Figure 15 show that the taxi-out time can be reduced 
up to 53 s/aircraft with just pushback time control, 
compared to the NoGH case. Furthermore, the 
additional taxi-out time reduction from RTA control 

increases from 16 s/aircraft (Figure 10) to 30 
s/aircraft, because the average runway separation 
time between takeoffs and the resultant waiting time 
in the departure queue increase with more heavy 
aircraft.  

 

Figure 15. RTA Control vs. Pushback Time 
Control Only 

Scenario 3 
In Scenario 3, we consider more realistic flight 

schedules with demand fluctuations. It is assumed 
that the air traffic demand has two peaks which are 4 
h in length, and varies with time (either 4, 8, 12 or 16 
aircraft per 15 min for each runway), while the total 
hourly demand rate is 160 aircraft/h as before. 
Arrivals are out of phase with departures. Fleet mix 
ratio and other assumptions are the same as in 
Scenario 2. For this experiment, 27 different sets of 
flight schedules were generated and optimized in 
eight optimization cases. 

The average gate-holding times, taxi-out times, 
and taxi-in times for the eight optimization cases are 
summarized in Figure 16 and 17. Although the time 
held at the gate significantly increases with the new 
traffic pattern in Scenario 3, the optimized taxi times 
are similar to those in previous scenarios. However, 
the FPSr case shows the lower takeoff delay in this 
scenario, as shown in Figure 18. This is because the 
FPSr case allows unlimited position changes in the 
takeoff sequence. It is justified by the graphs in 
Figure 19 showing that the excessive position 
changes more than 3 position shifts are observed 
more frequently in the FPSr case.  



 

Figure 16. Average Taxi-out Times for Scenario 3 

 

Figure 17. Average Taxi-in Times for Scenario 3 

 

Figure 18. Average Takeoff Delays for Scenario 3 

Although the FPSr case provides a better 
optimization result than the other cases in the three-
step approach, its computational performance is 
weak. Figure 20 shows the total runtimes of the eight 
different cases for Scenario 3. Each bar is subdivided 
into the average runtime of the CPS algorithm and 
the average runtimes of the MILP model by 
optimization time window. Given a time limit of 10 
min for the MILP, the FPSr case often reaches the 
time limit with a suboptimal solution. 

 

 

Figure 19. Takeoff Order Changes for Scenario 3 

 

 

Figure 20. Total runtimes for Scenario 3 

The optimization and simulation results shown 
in Figure 21 compare the average taxi-out times per 
departure for the 0CPS, FPSr, and NoGH cases. In 
Scenario 3, the taxi time savings from optimization 
are bigger than for the other scenarios. When we use 
the optimized pushback time schedule from the 0CPS 
case, we can reduce the taxi-out time by 4.4 
min/aircraft and 5.5 min/aircraft by using pushback 
time control and RTA control, respectively.  



 

Figure 21. RTA Control vs. Pushback Time 
Control Only 

Comparison of Aggregate Queue-based Control 
and Aircraft Trajectory-based Control 

Aggregate queue-based control of departures is a 
simple strategy that can easily be implemented under 
current operational procedures [18]. In this section, 
the aggregate queue-based control is applied to the 
flight schedules in Scenario 3 and compared with the 
individual aircraft trajectory-based optimization 
approach. The detailed application of the queue-
based control to DTW is described in [19]. 

Departure queue control parameters for two 
departure runways were chosen to be N*

22L = 15 and 
N*

21R = 14. In this condition, 14 flights would be held 
at their gates on average. The total gate-holding time 
for a 4-hour flight schedule was 57.9 min, consisting 
of 51.5 min and 6.4 min for flights taxiing toward 
runways 22L and 21R, respectively. The average 
gate-holding time was 0.2 min, while the average 
gate-holding time of flights held was 4.1 min.  

Figure 22 illustrates the average taxi-out times 
from four different control approaches, namely, RTA 
control, pushback time control, aggregate queue-
based control, and no control. For a reasonable 
comparison, the pushback times adjusted by the 
queue-based control were implemented in the same 
SIMMOD simulation environment. According to the 
simulation results, queue-based control provides 
relatively small taxi time savings with only a few 
departures held at gates, compared to the other 
control approaches. However, there is no additional 
takeoff delay, whereas the pushback time control 
from the trajectory-based optimization experiences 
the takeoff delay of 1.1 min/ac. 

 

Figure 22. Comparison of Departure Control 
Approaches 

Conclusions 
This paper proposed and compared two different 

optimization approaches to simultaneously 
scheduling runway and taxiway operations. The 
evaluation of these optimization methods using 
various flight schedules showed that both approaches 
could save taxi-out time significantly and mitigate 
taxiway congestion. It was shown that the optimized 
taxi time was not affected by the fleet mix ratio of the 
flights, whereas the takeoff delay was impacted due 
to the runway separation requirements depending on 
the aircraft types. During peak times, the integrated 
approach provided the better optimal schedule at the 
cost of computational performance.  

Fast-time simulations using SIMMOD showed 
that significant taxi-out time savings could be 
obtained by only controlling the pushback times 
determined by optimization. Additional taxi time 
reduction could be achieved by controlling the 
passage times at the taxiway intersections. 
Simulations at DTW showed that aggregate queue-
based control could get a smaller level of taxi-out 
time savings than individual aircraft trajectory-based 
control. However, by contrast, more aggressive queue 
control could save enough taxi time without 
additional takeoff delay.  
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