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Abstract— This paper proposes an Eulerian model of traffic
flows in the National Airspace System (NAS) and presents a
distributed feedback control approach for managing the flows.
The main contribution is the development of a model that
reflects the way that air traffic controllers regulate traffic flows
into their facilities, and of a feedback control approach that
provides them with decision support, in a distributed manner
that is consistent with the existing communication structure.
The focus is on developing techniques that guarantee that the
aircraft queues in each airspace sector, which are an indicator
of air traffic controller workload, are kept small. It is shown
that the problems of scheduling and routing aircraft flows in
the NAS can be posed as the fluid approximation of a network
of queues, and that under appropriate conditions, a MaxWeight
policy can be used to determine a distributed feedback control
law that stabilizes the system. Extensions to the problem of
airport arrival/departure management, and to traffic flows that
are driven by demand are also described.

I. INTRODUCTION

The current levels of congestion in the National Airspace
System (NAS) with the associated delays, and the predicted
increases in demand, motivate the more efficient utilization of
system resources and capacities. Scheduling flights in order
to best balance the capacity of and demand for resources, also
known as traffic flow management, involves the coordination
of operations in a large number of facilities, such as airports
(there are about 650 airports with at least one commercial do-
mestic operation per day) and airspace sectors (541 low, 490
high, and 231 super-high altitude sectors in 2007). Traffic
flow management in today’s NAS is typically performed by
air traffic controllers (ATCs) using a complex set of ad-hoc
rules, which results in a significant increase in ATC workload
as the traffic demand increases, and which unfortunately does
not provide performance guarantees. Consequently, there
has been an increasing trend towards introducing a greater
degree of automation and decision support for air traffic
management, using optimization methods.

Most optimization-based methods proposed for air traffic
management have traditionally focused on open-loop policies
and periodic reoptimization [1], [2]. In these methods, given
a fixed time horizon and based on available information,
a schedule is decided for each aircraft traveling through
the system. By solving large-scale integer programs, the
optimal solution is determined that specifies the position of
every aircraft at each instant. Besides the inherent complexity
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Fig. 1. Sector boundaries for enroute sectors in the continental US. The
markers denote the top 30 airports.

of scheduling approximately 40,000 flights a day in this
manner, controlling such as system using open-loop policies
has potential disadvantages. Weather in particular is a major
source of disturbances. Due to the typical travel times of
cross-country flights, such traditional traffic flow manage-
ment techniques require planning horizons of 5-6 hours,
which are arguably beyond the limits of even state-of-the-art
weather forecasting tools. Moreover, using these centralized
algorithms at a more tactical level (say 5-20 min or perhaps
to an hour ahead of operations) would require a complete
transformation of the current air traffic control system, where
local control authority is distributed between air traffic facili-
ties such as airports and enroute sectors (which each have an
ATC responsible for sector traffic planning). As an aircraft
passes from its origin airport to the departure terminal-area,
and through a series of sectors to the arrival terminal-area
to its destination airport, responsibility is transferred from
one ATC to another through a series of handoffs as they
cross consecutive sector boundaries (Fig. 1). Neighboring
sector controllers communicate with each other to coordinate
handoffs. ATCs control the rates at which aircraft enter
their airspace by regulating handoffs into their sector from
the neighboring sectors. The approach presented in this
paper models these local interactions between neighboring
facilities, and uses feedback control to provide decision
support for ATCs, within the existing control architecture
of the NAS [3].

The many advantages of feedback control make closed-
loop control policies for the NAS very attractive. Early
attempts to introduce a limited amount of feedback can be
found in [4], building on the previous integer programming-
based formulations. More recently, researchers have started
developing new models that are not as detailed in specifying
trajectories in both space and time for each aircraft, and



that are therefore more tractable for the purpose of control.
These aggregate models, called Eulerian models, are gaining
popularity [5], [6], [7], [8], [9] and have been shown to have
reasonable predictive capabilities [7]. Some first attempts at
feedback control using Eulerian models have also been made,
both in the context of centralized traffic flow management
[6], and in a decentralized setting for networks with a single
origin and destination [10].

These Eulerian models suggest strong parallels between
approaches to air traffic flow management and the research
on the control of stochastic networks. A survey of control ap-
proaches for other complex networks, such as semiconductor
manufacturing systems or the internet [11], shows that dis-
crete formulations based on deterministic integer programs
or stochastic controlled Markov chains have been considered
intractable and too detailed for the purpose of controlling
realistic networks. As a first approximation, the discrete
effects are usually neglected and continuous traffic flows
are considered instead, much like Eulerian models of the
NAS. For stochastic networks, these models used for control
purposes are also called fluid models. However, unlike many
Eulerian models of the NAS that involve Partial Differential
Equations [7], fluid models for stochastic networks yield
Ordinary Differential Equations (ODEs), thereby simplifying
the analysis and control synthesis tasks significantly. These
fluid models aim at capturing the average behavior of the
system and are usually sufficiently tractable to design a first
control policy. Unmodeled components and variability in the
dynamics must be accounted for by modifying this basic
policy adequately, similar to a robust control approach.

In this paper, we propose a lumped parameter model of the
NAS in the spirit of the two-dimensional Eulerian model of
Menon et al. [6]. However, our model is adapted to using
standard network control tools, whereas they focused on
linear systems theory. Our main objective is to develop a
model that reflects the control structure in the current system,
where facility (airport or sector) level traffic planning is done
locally through coordination with neighboring facilities. In
particular, the constraints on the system state (each sector
contains a positive number of aircraft) and allocation rates
(e.g. departure and arrival rates at airports [12], or limits
on the rate of handoffs between sectors) play a major role
in network control, yet they are neglected in most previous
approaches [5], [6], [7]. We also note that queuing network
models of the NAS have been proposed before, but generally
with a view towards performance prediction and analysis,
and not control [13], [14], [15], [8].

A tractable control design procedure for the NAS will
most likely involve a hierarchical design, which is also the
structure currently adopted [16]. Using a MaxWeight policy
[11], we propose distributed feedback control laws for traffic
flow planning at different facilities. The resulting flow rates
will provide guidance to ATCs for implementation at the
tactical scale of less than 5 min (which places emphasis
on conflict detection and maintaining adequate separation
between aircraft), although an increased level of automation
at this time-scale is also possible. For example, a control
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Fig. 2. Two triangular sectors of the NAS. Each node contains several
queues, one for each path (section II-B) or each destination (section II-C).
The links between nodes or queues are directed.

policy can suggest that an ATC decreases the flow rate of
aircraft through a particular metering point. The actual choice
of action (such as a speed change, vector for spacing, a
holding pattern, etc.) required to achieve this objective is left
to the discretion of the ATC. We believe that the flexibility
of our model and its conformance to current inter-facility
coordination procedures would allow it to be implemented
on the existing system, instead of requiring a complete
redesign of the system. The ability to handle uncertainty
in our model is also important since it is not possible to
account deterministically for all details and disturbances in
a tractable model, which is necessary for control purposes.

The rest of the paper is organized as follows. In Section II,
we present a new Eulerian model of the National Airspace
System that reflects the way that flows in the current system
are controlled by ATCs. We consider two variants of the
model, one that addresses the scheduling of flights with
no rerouting, and the second that considers the problem
of simultaneous scheduling and routing. In Section III, we
adapt well-known network control techniques to the models
proposed in Section II. This allows us to develop control
policies that can be easily used to provide decision support to
ATCs, since they are consistent with the distributed manner
in which flow rates into air traffic control facilities are
controlled today, although in an ad hoc manner. In Section
IV, we present extensions of these models, and in Section
V, we present simulations of representative scenarios to
illustrate the proposed approaches.

II. EULERIAN MODEL OF THE NAS

A. Graphical Model

We describe a two-dimensional lumped-parameter model
of a sector of the NAS, as depicted on Fig. 2, which can be
used to build a NAS-wide model for traffic flow management.
Extension to a three-dimensional model is straightforward.



Before we proceed, we should emphasize that it is possible
to easily modify the described framework and add other
elements of interest. For example, we describe in section IV-
A how to add traffic sources and sinks at airports, following
the airport model of Gilbo [12]. The simulations in section
V are performed using a simplified variation of the model,
the main idea being to model the airspace as a network of
queues that can be used for control.

We assume for simplicity on Fig. 2 that the two-
dimensional model of the NAS has been triangulated into
sectors. Menon et al. [6] have proposed a similar idea of
controlling aircraft count in airspace “surface elements”, in
contrast to some other approaches based on one-dimensional
models and focusing on jet routes and Victor airways. The
particular shape of the sector is not important for our
purposes and using the current geometry of the sectors is
straightforward, as done in our simulation in section V. For
the problem of model parameter identification, which we do
not address in this work, but necessary to integrate with the
tactical control level, it is useful to have sectors matching
the existing geometry. We note that the complexity of the
parameter identification problem and of the interactions
between different traffic flows within a sector increases with
the complexity of the sector geometry and the size of the
sector. On the other hand, having numerous smaller sectors
simplifies the identification problem and limits the number
of coupling constraints between traffic flows, but increases
the number of variables in the control problem. Therefore, a
right balance must be found in the modeling process, a point
which we do not address in this paper.

We model the NAS as a network. In the model shown
on Fig. 2, there are 2 nodes per sector boundary, one in
each sector. A node in a sector represents a portion of the
airspace of that sector. Formally, if we start with the sector
graph where edges are sector boundaries and vertices are
the points where two or more of these sector boundaries
join, then the network that we construct is the associated line
graph [17], with every node doubled. This line graph has one
node per edge of the sector graph and one edge between two
nodes representing adjacent sector graph edges. To node i we
can potentially associate a maximum capacity Ci, which is
the maximum number of aircraft that can be present in the
associated region of the airspace. The capacity of a node
depends on the experience of the ATC, the weather, and can
be time varying and evolve randomly. For tractability in the
control design, and especially since capacity is often not a
hard constraint, it might also be preferable not to impose a
node capacity and instead to simply verify a posteriori that
a given control law respects these capacities. Ensuring that
airspace capacities are respected in critical regions can then
be done in our framework by adding a higher cost per plane
transiting through this region (via the matrix D in (8) below).
The links between the nodes represent abstractly the airspace
as a shared resource. To each node we associate a set of
queues, each containing a subset of the aircraft currently in
the corresponding region, and aircraft move between queues
at different nodes as dictated by the flow rates on the links,

under air traffic control. We describe two models, without
and with aircraft rerouting respectively.

B. A Model for Scheduling with No Routing

If the flight plans are predecided and cannot be changed by
the ATCs, the remaining task is the scheduling of traffic via
flow rate control. We denote by P the set of travel paths
or flight plans. A given flight chooses one of these paths
once and for all when filing its flight plan before departure.
On the network model, the flight path corresponds to a path
through a set of links. For a given link (i, j), there is one
buffer at its origin node i for each flight path that uses the
link. Let m ∈P be a flight path that uses the link between
nodes i− and i followed by the link between nodes i and i+.
At node i, the content of the buffer for m varies according
to the controlled random walk (CRW) on N := Z≥0

Qm
i (t +1) = Qm

i (t)+Am
i (t +1) (1)

+Mm
i−i(t +1;Qm

i−(t))U
m
i−i(t)−Mm

ii+(t +1;Qm
i (t))Um

ii+(t),

where Qm
i (t) is the number of aircraft in region i on path m

at time t, Mm
i j (t;X) ∈ N are random variables depending on

the random variable X modeling the transitions of aircraft
between regions and conditionally independent given X ,
Am

i (t) ∈N are i.i.d. random variables that are 0 except when
i represents the departure region for path m and that model
new aircraft taking off having filed path m in their flight
plan. Um

i j (t) ∈ {0,1} are variables under the control of the
ATCs, subject to certain constraints assumed to be linear and
written

U(t) ∈ {0,1}, CU(t)≤ 1, ∀t ≥ 1, (2)

where C is called the constituency matrix [11]. For instance
Um

ki (t) = 1 means that the ATC responsible of node k should
let the aircraft present at that node with destination m
progress toward node i. Note that implicit in (1) is an
absorbing boundary condition at 0 which imposes that Qm

i
remains non-negative. Also we must have Um

i j (t) = 0 if
Qm

i (t) = 0. More details on the control constraints are given
in paragraph II-E.

C. A Model for Simultaneous Scheduling and Routing

It is possible to add routing control to the previous model.
For this purpose, we now differentiate the aircraft only by
their destination. We denote the destination by m, with 1≤
m ≤ l f where l f is the number of destination airports. At
node i, there is now one buffer for each possible destination
instead of one buffer for each path. The number of aircraft
at node i with destination m evolves according to the CRW

Qm
i (t +1) = Qm

i (t)+Am
i (t +1)+ ∑

k∈I(i)
Mm

ki(t +1;Qm
k (t))Um

ki (t)

− ∑
j∈O(i)

Mm
i j (t +1;Qm

i (t))Um
i j (t), (3)

where I(i) and O(i) are the in- and out- neighbors for
node i, respectively, and the variables Am

i now model an
external source of aircraft at node i, such as an airport, with
destination m. Clearly, (3) is a generalization of (1). The



constraints on the control variables are again assumed to be
of the form (2). We also impose Qm

i (t) = 0 and Um
ji (t) = 0

for all nodes j ∈ I(i) if starting from node i there is no route
to the desired destination m.

D. Fluid Model

For the purpose of analysis and control synthesis, the
following so-called fluid approximation of the CRW (1) or
(3) is useful. To fix ideas, we work with (3) in the following,
which is the more general form. We associate to this CRW
the constrained deterministic ODE

d+

dt
qm

i (t) = α
m
i + ∑

k∈I(i)
µ

m
ki (q

m
k )ζ m

ki − ∑
j∈O(i)

µ
m
i j (q

m
i )ζ m

i j , (4)

where d+

dt denotes the right-derivative, and the number of
aircraft qm

i (t) ∈R+ with destination m and present at node i
at time t is now approximated by a continuous quantity. The
control variable ζ m

i j is called the rate allocation through the
link (i, j) for path m and the vector of these rates is subject
to the linear constraints

0≤ ζ (t)≤ 1, Cζ (t)≤ 1,∀t, (5)

corresponding to (2). This approximating ODE can be
postulated for our purposes, in the spirit of the previous
Eulerian approximation of Menon et al. [5], and aims at
capturing the mean behavior of the stochastic model (3).
Note however that the connection can be made more formal,
and an interpretation of (4) is in terms of a functional law
of large numbers for a sequence of stochastic networks, see
[18]. To connect (4) with (3) in simulations, we take αm

i to
be the mean of Am

i (t) and µm
i j (q

m
i ) to be the mean of Mm

i j (t;X)
given X = qm

i j.

E. Flow Rates and Constraints

To a link between nodes i and j and for destination m (or
path m) is associated a maximum flow rate µm

i j (q
m
i ) in (4),

which depends on the number of aircraft qm
i with destination

m in the portion of airspace corresponding to node i, although
other forms of dependencies could be used. Typically, if qm

i
is small, µm

i j (q
m
i ) is approximately the inverse of the expected

time for an aircraft to travel between the regions represented
by nodes i and j, that is, the expected travel time in the
absence of any delaying control issued by the ATC. As qm

i
increases, the rate µm

i j increases but remains bounded due to
the required separation distance between aircraft. Assume for
example that a single route is used by the aircraft traveling
from i to j. Then µm

i j is bounded by the inverse of the time
necessary for an aircraft to travel the separation distance
between itself and the previous aircraft. For example, with a
separation distance of 5 nm (nautical miles) and an aircraft
speed of 450 knots, this gives a rate of 1/40 aircraft/sec at
high densities. Typically we expect the rate curve to have
a shape similar to the one shown on Fig. 3. We aggregate
the trajectories of all aircraft traveling through the region
of the airspace represented by a particular link, and we can
determine µm

i j (q
m
i ) empirically based on historical data. The

variations in traveling times among aircraft are treated as

number of aircraft qm
i

link flow rate µm
i j (q

m
i )

Fig. 3. Typical shape of the flow rate for a link between two nodes.

a stochastic quantity in the corresponding CRW model (3).
Note that usually Eulerian models assume a particular rate
curve µm

i j linear in qm
i , see e.g. [5], [10]. This assumption

is particularly unrealistic when a region contains a large
number of aircraft, and we relax it here. Our model and
analysis can handle any flow rate curve, as specified by the
user. In practice, the maximum rates µm

i j of the links can also
vary in time and stochastically to capture the effect of the
weather and variations during the day, but this interesting
aspect is not treated in this paper. For a boundary between
two sectors the maximum flow rates µm

i j are also bounded by
the maximum number of aircraft that are allowed to cross
between boundaries per time unit (handoffs), as fixed by
formal agreement between sectors [19].

ATCs can issue orders, such as aircraft speed change,
vector for spacing, holding pattern, which modify the time
it takes for an aircraft to travel a particular region of the
airspace, that is, to travel from one node to the next in
our model. In this way, they affect the flow rates of aircraft
through the network. These orders correspond to controlling
the rate allocation vector ζ , so that the actual flow rate
through link (i, j) for destination m at time t is ζ m

i j (t)µm
i j (q

m
i ).

At the border between two sectors, the allocation rate also
controls the rate of handoffs to the next sector. There are
linear coupling constraints of the form (5) between the rate
allocations. For example, the required separation between
aircraft translates into a capacity constraint for link (i, j)
of the form ∑m ζ m

i j ≤ ri j. These constraints can also capture
the effect of intersecting routes for example, and could be
determined empirically, as in the case of airport capacities
[12]. Indeed increasing the flow rate on one route is likely
to require a decrease in the flow rate on intersecting routes.
The same framework can be used to handle traffic flow
management around airports, as explained in section IV-
A. Finally, we see that having a finer grid partitioning the
airspace, although increasing the number of variables in the
model, allows for refined controls available to the ATCs.
Hence it should be beneficial to divide each sector into
smaller regions to further help the task of the controllers.
Spatial aircraft separation places a lower bound on how small
these regions can be made in practice.

F. General Formulation

In the previous sections we have seen that, after discretiza-
tion of the airspace, we obtain a fluid network with dynamics



which can be written in matrix form as

d+

dt
q(t) = B(q)ζ (t)+α (6)

q(t)≥ 0, ζ (t) ∈ U,∀t, with U = {u : u≥ 0, Cu≤ 1},

where B(q) is obtained from (4). Note that we are writing
informally here a constrained differential equation, with qi
remaining 0 if we have qi = 0 and q̇i < 0. We also denote
by U(x) the state dependent control constraint set such that
ζ respects the state constraint at q(t) = x, i.e. ζ m

i j = 0 if
qm

i = 0 (or if ∑m qm
j = C j, if a capacity constraint is enforced

at node j). Clearly U(x) ⊂ U. System (6) is then the fluid
model associated to a discrete stochastic model of the form

Q(t +1) = B(t +1;Q(t))U(t)+A(t +1), (7)
Q(t)≥ 0,U(t) ∈ N, CU(t)≤ 1, ∀t.

Starting with the network of paragraph II-A, additional
nodes can be added to model additional features without
changing the general form of the equations. For example,
to model transition through certain fixes in the airspace
where traffic is metered, we just add two nodes and a link
between them, with the capacity of the link determined by
this metering. More examples are provided in section IV.

III. DISTRIBUTED CONTROL USING MAXWEIGHT

A number of control techniques for the network model
(6) and (7) have been investigated in the past decades [11].
We remark that the state and control constraints, neglected
in the original work of Menon et al. [5], in fact play a
fundamental role in the analysis of a network’s stability
and performance. For example, simple scheduling problems
typically correspond to a square invertible constant matrix
B, which implies controllability of a version of model (6)
neglecting the control constraint U, yet in practice not all
such models are stabilizable. Their subsequent work used
model predictive control to cope with these constraints [6],
but result in centralized policies that are potentially hard to
implement in the current distributed form of the NAS traffic
flow management system. We now present a well-known
and widely-used distributed control policy for the network
models (6) and (7). For this section, we assume that the
only allocation rate constraints are of the form

U := {ζ : ζ ≥ 0, ∑
m

ζ
m
i j ≤ ri j, ∀(i, j)}.

A. MaxWeight for Routing and Scheduling

The celebrated MaxWeight policy for the network model
(6) (or similarly for (7)) can defined as the policy which, for
state q of the system (representing the size of all the queues
at all nodes), applies the control

φ
MW (q) ∈ arg min

ζ∈U(q)
〈B(q)ζ +α,Dq〉, (8)

for D a fixed positive definite diagonal matrix. It corresponds
to maximizing the rate of decrease of the Lyapunov function
V (q) = 1

2 qT Dq, since dV/dt is given by the right hand side
of (8). If D = I, this is called the back-pressure policy [20].

The only difference with traditional network models is that
the matrix B in our model is state-dependent.

Now recall that the matrix B(q) is obtained from the model
(4), or its equivalent in the case of no routing. Then (8) leads
to

argmin
ζ

∑
(i, j)

∑
m

ζ
m
i j µ

m
i j (q

m
i )[Dm

j jq
m
j −Dm

ii qm
i ].

For each link (i, j), the maximal back-pressure is defined
as Θi j(q) := maxm µm

i j (q
m
i )(Dm

ii qm
i −Dm

j j qm
j ). Then we see

that if Θi j(q)≥ 0, the MaxWeight policy in state q for link
(i, j) gives strict priority to buffers achieving the maximal
back pressure:

l f

∑
m=1
{ζ m

i j : µ
m
i j (q

m
i )[Dm

ii qm
i −Dm

j jq
m
j ] = Θi j(x)}= ri j. (9)

This policy is attractive because it has a simple form, and it
can be implemented at each node in the network based solely
on buffer levels at the node and its neighbors. In practice, this
means that it can be implemented directly by the controllers
who only need to talk to the controllers in the neighboring
sectors, similar to the way traffic is managed in the current
system. The MaxWeight policy (9) also defines directly a
control law for the discrete model (3). This policy indicates
to an air traffic controller to give priority in a particular
region to aircraft going to a certain destination over other
aircraft, based on the information available to the controller
and his/her neighbors.

B. Stability of MaxWeight

The MaxWeight policy with state-independent matrix B
is also known to be stabilizing for any network that is
stabilizable [11]. The case of a state-dependent matrix B(q)
is somewhat more complicated and we only provide a suffi-
cient stabilizability condition here. Recalling the discussion
leading to Fig. 3, with few aircraft in the system, the flow
rates µm

i j (q
m
i ) are low and the number of aircraft in the system

can grow. At high loads, the rates µm
i j (q

m
i ) are higher, and

for the network to be stable these rates should be sufficiently
high to keep the queues bounded. Formally, we will use the
following definition of stability

Definition 1: The fluid model (6) is said to be stabilizable
if there exists constants K and T such that, for any initial
condition q0,

‖q(t)‖∞ ≤ K, ∀t ≥ T‖q0‖∞.

Proposition 2: Assume that there exists a positive con-
stants C and ε such that for all q with ‖q‖∞ >C, there exists
ζ ∈U such that〈

B(q)ζ +α,D
q
‖q‖∞

〉
<−ε.

Then the network (6) is stabilizable and the MaxWeight
policy (8) is stabilizing.

Proof: This follows from Lyapunov’s direct method
using the Lyapunov function V (q) = 1

2 qT Dq.
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Fig. 4. Airport capacity region: any pair of arrival/departure allocation
rates within the filled polytope is achievable. This polytope is determined
empirically and depends on the airport runway configuration [12].

Remark 3: Under the same condition as in proposition 2,
the MaxWeight policy is stabilizing for the CRW model (7)
as well in a precise sense, by adapting [11, chap. 8].

Remark 4: If B(q) := B is a state-independent matrix, the
condition of proposition 2 (with C = 0) is also necessary for
stability.

IV. ADDITIONAL EXAMPLES

A. Airport with Traffic Control at an Upstream Arrival Fix

It is undesirable to have a large number of aircraft waiting
to land in holding patterns in close proximity of an airport.
We can however control the rate of aircraft by setting a
miles-in-trail (MIT) or minutes-in-trail (MinIT) requirement
at certain arrival fixes [16]. The arrival and departure rates
at the airport are subject to linear constraints as described
by Gilbo [12], [21].

Consider the network model shown in Fig. 5. The equa-
tions for its fluid model are

d+

dt
q f = α

s−µ
f
ζ

f ,
d+

dt
qa = µ

f
ζ

f −µ
a
ζ

a,

d+

dt
qd = α

d−µ
d
ζ

d , q(t)≥ 0,

where q f , qa and qd are the number of aircraft upstream
of the arrival metering fix, and in the arrival and departure
queues of the airport.

Here µa,µd are constant rates, inverse of the average
required separation time between two aircraft landing or
taking-off at the airport respectively [22]. The maximum
aircraft flow rate at the arrival fix µ f is also assumed to be
constant. The allocation rates are subject to the constraints
0≤ ζ ≤ 1 as well as additional linear constraints

C
[

ζ a

ζ d

]
≤ 1,

as shown on Fig. 4. The goal is to minimize a cost function
c(q(t)) over time (for all t if possible, or a time integral of
this cost otherwise), for example

c(q) = c f q f + caqa + cdqd .

If ca is sufficiently large then an optimal control will keep
the fluid level in the arrival queue qa to 0 by reducing ζ f

appropriately. If this queue is maintained to 0, we can write

ζ
a =

µ f

µa ζ
f ,

from
airspace
sector arrival

fix
µ fq f

airportarrival
queue

µaqa

µd

departure
queue
qdto airspace sector

Fig. 5. Network Model of an Airport.

deduce the constraints linking ζ f and ζ d and simply op-
timize over these two controls. [11] presents a number of
available control techniques for such a model.

B. Traffic Driven by Demand Instead of Arrival Rates

While the discussion so far has focused on systems in
which the traffic flows are driven by the arrival of flights at
originating airports that need to serve different destinations,
there are potential scenarios in which we would like to
schedule and route traffic flows that are driven by demand
at the destination airports. This is most frequently seen on
days in which severe weather has been forecast at one of
the severely congested airports (for example, New York’s
La Guardia airport) in the system. In such scenarios, traffic
flow management will need to coordinate with the airlines
in order to best schedule the demand for flights into JFK,
before the airport is closed because of weather. In other
words, the demand for service into JFK will drive (pull)
the traffic flows in the system, rather than the push model
that we have considered in the previous discussions. A more
detailed discussion of these two types of network models,
and associated control techniques, can be found in [11].

V. SIMULATION

We consider the airspace surrounding San Francisco air-
port (SFO) in simulating representative scenarios using the
approaches described in this paper. As a first step, we con-
sider departures from Los Angeles (LAX) and other airports
in southern California into SFO and Seattle (along with
Portland and other airports in the Pacific northwest), aircraft
flows from SEA to SFO, and flights from Las Vegas (LAS) to
SFO. The airspace modeled is primarily within the Oakland
Air Route Traffic Control Center (ZOA). The airspace sector
boundaries and the traffic routes being considered are shown
in Figure 6.

We simulate the behavior of the system under MaxWeight
control, with and without routing. The simulations include
capacity constraints on the number of aircraft allowed in
each sector, which correspond to the maximum number of
aircraft that can simultaneously be present in a sector. We
model two routes between LAX and SFO, a short one and
a long one that merges with other routes coming from LAS
and the points East. Traffic on the short route between LAX
and SFO competes with the traffic going from LAX to SEA.
Fig. 7 shows, for a sample trajectory of the stochastic systems
(1) and (3), the number of aircraft on each of the two routes
LAX-SFO in the first sectors after leaving LAX. In both
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Fig. 6. Airspace region considered in the simulations, with routes. The
routes are colored based on the origin-destination pairs.
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Fig. 7. Aircraft count (y-axis) over a 10 hour interval (x-axis is time)
in the south sectors of the LAX-SFO routes. Left: short route. Right: long
route.

cases we use the back-pressure policy, i.e., D = I in (9).
We note in Fig. 7(b) that the the back-pressure policy with
routing tends to balance the load on both routes evenly, which
may not be optimal from the point of view of operating
costs or passenger delay, if one route is significantly faster
than the other. Fig. 7(a) on the other hand assumes a
fixed predetermined fraction of aircraft on each route. The
knowledge that one route is shorter and therefore preferable
can be incorporated in the MaxWeight policy with routing by
increasing the weight Dii for the first buffer i on the longer
route, thereby prioritizing routing on the shorter route (which
has lower buffer weight).

VI. CONCLUSION

The increasing levels of congestion in the NAS motivate
the development of decision support tools for air traffic
controllers to aid them in managing traffic flows into and
out of their facilities. The main contribution of this paper
is the development of an Eulerian model of traffic flows in
the NAS that reflects the current manner in which air traffic
controllers regulate traffic flows and coordinate with their
neighbors, and the subsequent development of a distributed
feedback control law for the system. The proposed model
can also provide insight into the behavior of the system as
it responds to capacity and demand disruptions, and helps

in developing appropriate responses in the event of severe
weather or airport closures.
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