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The problem of tracking and managing the identities of multiple targets is discussed and applied to the passive

radar tracking of aircraft. The targets are assumed to be commercial aircraft switchingmodes during flight, and are

thus well modeled by hybrid systems. We propose a computationally efficient algorithm based on joint probabilistic

data association for target-measurement correlation. We use the results of this algorithm to simultaneously

implement an identitymanagement algorithm based on identity-mass flow, and amultiple-target tracking algorithm

based on the residual-mean interacting multiple model algorithm. Together, they constitute the multiple-target

tracking and identity management algorithm. The multiple-target tracking and identity management algorithm

incorporates suitable local information about target identity, when available, in a manner that decreases the

uncertainty in the system as measured by its statistical entropy. For situations in which local information is not

explicitly available, a technique based on multiple hypothesis testing is proposed to infer such information. This

algorithm allows us to track multiple targets, each capable of multiple modes of operation, in the presence of

continuous process noise and of spurious measurements. The multiple-target tracking and identity management

algorithm is demonstrated through various scenarios that are motivated by air traffic surveillance applications.

I. Introduction

T HE multiple-target tracking problem deals with correctly
tracking several targets using a collection of noisy sensor

measurements that are collected at each instant in time. The identity
management problem tries to associate target identities with these
tracks, or state estimates. Although closely related, the two problems
have traditionally been studied independently. In this paper, we
propose an algorithmic framework for multiple-target tracking and
identity management, which is, to our best knowledge, the first
attempt to combine the two problems in a systematic way.

The current air traffic surveillance system uses data from radar
measurements to track aircraft. In spite of a substantial improvement
in technology, the radar system is still vulnerable to several chal-
lenges, such as the large number of aircraft, extraneous measure-
ments from clouds, birds, and other objects, as well as “phantom”

blips [1]. Another issue that poses a challenge is the growing number
of general aviation aircraft. These aircraft do not transmit their
identities unless their transponders are switched on, and even then,
the transponders are fraught with problems [2]. Because air traffic
controllers are instructed not to issue orders to aircraft unless they
are certain of their identity [3], it becomes essential that they have
access to reliable track data with the associated aircraft identities, so

that they can maintain safety in the flow of aircraft. The
simultaneous execution of both tasks would be useful for air traffic
surveillance, because air traffic control advisories are based on
estimates of the aircraft situation data, which consist of the state
estimates and identity estimates for all the aircraft in the relevant
region of airspace. In the current air traffic control system, if a
controller detects a conflict but does not know the identity of the
aircraft involved in the conflict, he or she tries to identify the
aircraft through voice communications [4]; there is no automated
algorithm available for simultaneous aircraft tracking and identity
management. Although the chief emphasis of this work is in the
development of an advisory tool for air traffic controllers, the
theory we develop is applicable to tracking problems in more
general sensor networks [5–8]. The applications of the proposed
algorithm include land, sea, air, and space surveillance for military
use; and collision avoidance, navigation, and image processing for
civilian use.

In practice, the target tracking and identity management problem
is complicated by the limitations in the quality of available
information about the targets, as well as the presence of signals,
known as clutter. The behavior of the targets also adds complexity to
the problem: target interactions increase the uncertainty in the
system. These issues motivate the development of a combined target
tracking and identity management algorithm that can be deployed in
cluttered environments.

For multiple-target tracking in clutter, we have to decide which
measurement is associated to which target and which measurements
are clutter. This problem has been addressed by several data
association algorithms, which associate measurement data with
targets [1,9]. One such algorithm is the joint probabilistic data
association (JPDA) algorithm in which target kinematic information
(position and velocity) is used for associating measurements with
targets. However, the JPDA algorithm is computationally expensive,
and might be impractical when tracking many aircraft in a cluttered
environment [10]. For this reason, several modified versions of the
JPDA algorithm have been proposed [10–12]. The approximate
JPDA algorithm proposed in [10] is useful for multiple-target
tracking, but unfortunately may not result in a marginal probability
distribution of measurement-target associations, which represents
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the physical constraint that there is only one measurement from one
target.Wepropose amodified version of the approximate JPDA [10],
which satisfies this physical constraint.

Assignment algorithms have also been used to overcome the
computational complexity of data association in multiple-target
tracking problems [13,14]. These algorithms minimize the sum of
distances between measurements and the expected target positions.
This implies that, like the nearest-neighbor data association
algorithm, these algorithms select the measurement that is closest to
the predicted measurement, without considering all possible
measurement-target correspondences. Therefore, they lose some of
the advantages of the JPDA algorithm, which considers all possible
correlations between measurements and targets. As an alternative,
we propose the use of data association probabilities, computed by our
modification of the approximate JPDA algorithm, as weighting
coefficients for the assignment problem. We then use the extended
Munkres algorithm [15,16] to maximize the overall data association
probability. In this way, we can consider measurement-target
correlation like JPDA.

Most currently available multiple-target data association and
tracking algorithms emphasize the need to track several targets
simultaneously, yet they do not address the need to distinguish
between the different targets, and indeed, often lead to target-
swapping while tracking. In this paper we propose an identity
management algorithm, which can use local attribute information
about targets to keep track of the identities of the targets. In some
situations in which local identity information from sensors is not
readily available, we obtain this information using the multiple
hypothesis testing (MHT) algorithm [17,18] to discern the identities
of the targets when the targets are close to each other, and therefore
their identities are mixed. By logically combining these algorithms,
we develop the multiple-target tracking and identity management
(MTIM) algorithm, which can keep track of multiple aircraft and
their identities.

The rest of this paper is organized as follows: In Sec. II, we
introduce the multiple-target tracking and identity management
problem, and discuss the basic components of the algorithmic
framework that we propose to solve it. Section III describes the
multiple-target tracking and identity management algorithm for a
cluttered environment. We describe, in Sec. IV, the use of the
algorithm for a special case in which there is no clutter. Simulations
for multiple-aircraft tracking scenarios are presented as demon-
stration of the ability of the proposed algorithm for simultaneous
multiple-target tracking and identity management to perform in
cluttered and noncluttered environments. Finally, conclusions are
presented in Sec. V.

II. Algorithmic Framework

In this section,we consider the problemof associating a time series
of measurements to the tracks ofmultiple targets, andmanaging their
identities. The MTIM algorithm approaches this problem using the
structure shown in Fig. 1 at each time step. Throughout the paper, we
assume that the number of targets is known and constant, though in
recent work we have developed algorithms that can deal with the
unknown and time-varying numbers of targets [8,19,20]. The
algorithm is broken up into three stages as shown in Fig. 1.

The first stage is “measurement validation and data association,”
which consists of matching incoming measurements to the targets.
Suppose there areN targets. Given state predictions and covariances
of the N targets and L (� N) measurements from the current time
step, the data association block is used to generate anL � Nmatrix of
association probabilities. Note that for noncluttered environments,
L� N, and for clutter, L � N. Entries in this matrix represent the
probability of a given measurement (indexed by the row) having
originated from a given target (indexed by the column). Because
there are N targets, we should select N measurements from L
measurements because only one measurement can originate from a
target. In scenarios with no clutter and no undetected targets, this is
not a problem because the number of measurements equals the
number of targets, that is, the data association matrix is square.

Finally, the data association block uses the state predictions for each
of the targets, obtained from the hybrid state estimation block, to
associate a single measurement with each of the targets (the
measurement assignments).

The “tracking or hybrid state estimation” block executes the
tracking of N targets in parallel. The tracking algorithm for each
target takes as input the hybrid state estimate from the previous time
step and a single measurement for the current time. The hybrid state
estimates from the previous time step are sufficient to compute the
state predictions for the N targets, which are passed on to the
measurement validation/data association block. The measurement
input comes from the data association block. For air traffic
surveillance scenarios, the hybrid state estimate is composed of
position and velocity estimates, their covariances, and a flight mode
estimate. The final output of the tracking/hybrid state estimation
block is the hybrid state estimates for the current time step.

The “identity management” block takes as input the belief matrix
from the previous time step and the N � N mixing matrix output by
the data association block. Entries in the belief matrix represent the
probability that a given target has a given identity. The belief matrix
is initialized to the identity matrix, because it is assumed that all
targets are initially uniquely identified. The mixing matrix stores
interaction information for a single time step. The ijth element of this
matrix represents the probability that target i at the previous time step
has become target j at the current time step. The identitymanagement
block outputs the belief matrix for the current time step.

The following sections discuss each block and the algorithms used
to implement the different stages in detail.

A. Measurement Validation and Data Association Block

We denote z�k� as a measurement of target position observed at
time k, and ẑ�kjk � 1� as a predicted measurement at time k using the
(continuous) measurement information up to time k � 1.

Definition 1: The validation gate at time k, which we denote ~Vk, is
defined as

~V k��� :� fz�k�jr�k�TS�1�k�r�k� � �2g (1)

where r�k� � z�k� � ẑ�kjk � 1� is the residual, S�k� is its
covariance, and � is a design parameter that determines the size of
the validation gate.

Measurements that lie inside the gate at each time step are
considered validated. The set of validated measurements at time k is
denoted by

Z�k� :� fzi�k�gmk
i�1 (2)

where mk is a random variable that represents the number of
validated measurements at that time step. The validated measure-
ment sequence up to time k is defined as

Zk :� fZ�j�gkj�1 (3)

We make the standard assumption that

Fig. 1 Structure of the MTIM algorithm for one time step.
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p�z�k�jZk�1	 �N �z�k�; ẑ�kjk � 1�; S�k�	

whereN �x; a; b	 denotes a Gaussian random variable xwith mean a
and variance b.

This problem of either associating every validated measurement
with an appropriate target, or identifying it as clutter and discarding
it, is known as data association. We note that the set of validated
measurements could potentially consist of both correct and incorrect
measurements. For example, Fig. 2 shows that measurements z1 and
z3 are validated for target 1 (with predicted measurement ẑ1),
measurements z2, z3, and z5 are validated for target 2 (with predicted
measurement ẑ2), and z4 is not validated for either target at time k. For
data association, we consider the JPDA algorithm [21–23] in this
paper.

The JPDA algorithm is an extension of the probabilistic data
association (PDA) algorithm, used for tracking a single target [1,18]
in a cluttered environment. The JPDA algorithm was proposed for
associating measurements to multiple targets in the presence of
random noise, or clutter. It is a suboptimal approximation of optimal
(Bayesian) filtering, and consists of sequentially associating current
tracks with the most recent observations. The association
probabilities are computed for all possible track-measurement
associations. The JPDA algorithm can be shown to bemore effective
than nearest-neighbor association, in which the single best
association is selected for each target, especially in cluttered
environments [1].

In the PDA algorithm, only one of the (possibly many) validated
measurements is assumed to have originated from the target being
tracked. The other measurements are assumed to be clutter (that is,
false alarms) and are modeled as independent identically distributed
(i.i.d) random variables with uniform spatial distributions. The basic
assumption of the PDA algorithm is that

p�x�k�jZk�1	 �N �x�k�; x̂�kjk � 1�; P�kjk � 1�	 (4)

that is, the continuous state is assumed to be distributed as aGaussian
random variable, whose mean and covariance are given by the latest
predicted state x̂�kjk � 1� and its covariance P�kjk � 1�,
respectively.

The JPDA algorithm is used when the number of targets in a
cluttered environment is known a priori. If there are several targets in
the same neighborhood, measurements from one target can
consistently fall inside the validation gates of neighboring targets,
degrading the performance of the PDA algorithm. This phenomenon
can result in track swapping, where the tracks of the two targets are
swapped, and track coalescence. The key to the JPDA algorithm is
the evaluation of the conditional probabilities of joint events:
measurement j originated from target t, that is, a consistent
association of every target to ameasurement. For example, a possible
joint event� for the example shown in Fig. 2 is that measurement z3
corresponds to target 1, measurement z2 corresponds to target 2, and
measurements z1, z4, and z5 are clutter.

The joint event association matrix can be represented by the
permutation matrix, �� �!jt���	, where � is a mk � �N 
 1�
matrix. !jt � 1 for an event in which measurement j originates from
target t. The first column in � corresponds to events in which the
measurement j does not correspond to any target, that is, !j0 � 1 for
an event in which measurement j is clutter. The clutter is assumed to
be uniformly distributed in the surveillance region of volume V. We
define the following notation:

�t��� �
Xmk

j�1

!jt��� � 1: target detection indicator

�j��� �
XN
t�1

!jt���: measurement association indicator

���� �
Xmk

j�1

�1 � �j���	:

number of unassociated measurements in�

PD: target detection probability of target t

(5)

Then, the marginal association probability, that is, the probability
that measurement j belongs to target t, is given by

�jt �
X
�

pf�jZkg!jt���; where pf�jZkg

� 1

c

�!

V�

Ymk

j�1

fN tj
�zj�k�	g�j

YN
t�1

�Pt
D��t �1 � Pt

D�1��t

N tj
�zj�k�	 �N �zj�k�; ẑtj �kjk � 1�; Stj �k�	

(6)

In the preceding expressions, ẑtj�kjk � 1� denotes the predicted
measurement for target tj with an associated covariance S

tj at time k.
We note here that summing over all possible joint events becomes
computationally intractable as the number of aircraft increases,

because the number of joint events is mk!
�mk�N�1�!. A more thorough

introduction to data association algorithms can be found in [24]. A
more detailed explanation of PDA and JPDA is provided in [21].

B. Hybrid State Estimation Block

Once a measurement is associated to each target, we use a hybrid
estimation algorithm to compute the state estimates of each target
while tracking multiple maneuvering targets as shown in Fig. 1. This
component of the algorithm is therefore called the tracking/hybrid
state estimation block. In this section, we briefly review the general
structure of the interacting multiple model (IMM) algorithm [17,24],
and then amodification of the IMMalgorithm [25,26], which we had
proposed.

In this paper, targets are assumed to be commercial aircraft
switching modes during flight and thus wemodel the dynamics of an
aircraft as a stochastic linear hybrid system [27] with discrete-time,
continuous-state dynamics given by

x�k
 1� � Ajx�k� 
 wj�k� z�k� � Cjx�k� 
 vj�k� (7)

and aMarkov transition of the discrete state (also known as themode)
given by

p�j�k
 1�ji�k�	 ��ij; i; j 2 f1; 2; � � � ; Nmodesg (8)

where x�k� 2 Rn and z�k� 2 Rp are the continuzous-state variable
and the (continuous) output, respectively, at time k. We assume that
the number of modes is Nmodes. The terms wj and vj are the mode-
dependent, uncorrelated, white Gaussian process noise and
measurement noise, with zero means, and covariances Qj and Rj,
respectively.�ij is the (Markovian)mode transition probability from
mode i to mode j, and is assumed to be constant. An advantage of
using a hybrid system as the dynamics of an aircraft is that simple
kinematic models can be used in individual modes because in each
mode, the aircraft dynamics is simple (i.e., straight flight or

z
1

(k|k-1)^

z 2

z
1

z
3

z 4

z 2 (k|k-1)^

z
5

Fig. 2 Validation gates at time k.
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coordinate turn). Without using a complex dynamic model of an
aircraft for tracking, which requires accurate system parameters that
may not be known to surveillance systems, we can improve
performance of aircraft tracking [1,25,26].

Given the system parameters of the model in (7) and (8), hybrid
state estimation requires the estimation of both the continuous state
and the discrete state at time k, using themeasurement sequence up to
time k. The IMM algorithm is a multiple-model-based state
estimation algorithm that computes the hybrid state estimate at every
time step using a weighted sum of estimates from a bank of Kalman
filters, each matched to the dynamics of a different mode of the
system. Figure 3 shows the general structure of the IMM algorithm,
for a stochastic linear hybrid system with two modes. A description
of the different components of the IMM algorithm is as follows:

1) Mixing probability: This is the probability that the system was
in mode i at time k � 1, given the continuous output of the system up
to time k � 1, and given that it is in mode j at time k, that is,

�ij�k � 1jk � 1� � 1

cj
�ij�i�k � 1� (9)

where cj is a normalization constant, and �i�k � 1� is the mode
probability ofmode i at time k � 1, that is, ameasure of howprobable
it is that the system (the target being tracked) is in mode i at time k.
The initial condition�i�0� is assumed given, and is usually obtained
from properties of the system.

2) New initial states and covariances: The input to each Kalman
filter (KFi) is adjusted by weighting the output of each Kalman filter
with the mixing probability as the weight:

x̂0j�k � 1jk � 1� �
XNmodes

i�1

x̂i�k � 1jk � 1��ij�k � 1jk � 1�

P0j�k � 1jk � 1� �
XNmodes

i�1

fPi�k � 1jk � 1� 
 �x̂i�k � 1jk � 1�

� x̂0j�k � 1jk � 1�	�x̂i�k � 1jk � 1�
� x̂0j�k � 1jk � 1�	Tg�ij�k � 1jk � 1�

where x̂i�k � 1jk � 1� andPi�k � 1jk � 1� are the state estimate and
its covariance produced by Kalman filter i at time k � 1, after the
measurement update step.

3) Kalman filter: Nmodes Kalman filters run in parallel [multiple-
model-based (hybrid) estimation]. The outputs of Kalman filter
matched to mode j (KFj) are the continuous-state estimate x̂j�kjk�,

its covariance P̂j�kjk�, and the mode likelihood function �j�k�
described next.

4)Mode likelihood functions: The likelihood function ofmode j is
a measure of how likely it is that the model used in Kalman filter j is
the correct one; it is computed with the residual and its covariance
produced by Kalman filter j:

�j�k� �N �rj�k�; 0; Sj�k�	 (10)

where rj�k� :� z�k� � Cjx̂j�kjk � 1� is the residual of Kalman filter
j, x̂j�kjk � 1� is a state estimate byKalmanfilter j at time k before the
measurement update, and Sj�k� is its covariance.

5) Mode probabilities: The probability of mode j is a measure of
how probable it is that the system is in mode j:

�j�k� �
1

c
�j�k�

XNmodes

i�1

�ij�i�k � 1� (11)

where c is a normalization constant. The probability of each mode is
updated using the likelihood function.

6) Output: The outputs of IMM are the continuous-state estimate
x̂�kjk�, its covariance P�kjk�, and the mode estimate m̂�kjk�:

x̂�kjk� �
XNmodes

j�1

x̂j�kjk��j�k�

P�kjk� �
XNmodes

j�1

fPj�kjk� 
 �x̂j�kjk� � x̂�kjk�	�x̂j�kjk�

� x̂�kjk�	Tg�j�k�
m̂�kjk� � argmax

j
�j�k�

(12)

The continuous-state estimate is a weighted sum of the estimates
fromNmodes Kalman filters and the mode estimate is the mode which
has the highest mode probability.

In this paper, for hybrid state estimation, we use the residual-mean
interacting multiple model (RMIMM) algorithm. RMIMM uses a
new likelihood function by using themean of the residuals to achieve
improved hybrid state estimation performance, especially fast mode
transition estimation. The new likelihood function is given by
[25,26]

�new
j �k� �

8<
:

Nj�k��j�k�P
Nmodes
i�1

Ni�k��i�k�
if �rj�k� ≠ 0

�j�k� otherwise
(13)

where

Ni�k� �
� k �ri�k�k�1 if �ri�k� ≠ 0

1 otherwise
; and

�rj�k� :� E�rj�k�jZk�1	

In the hybrid state estimation block, the RMIMM algorithm is
used to maintain the continuous-state estimate x̂, its covariance
P, and the mode estimate m̂, for each of the N targets being
tracked.

C. Identity Management Block

The trajectories estimated by the hybrid state estimation block do
not clearly show the uncertainty about the identities of targets
accumulated from interactions among crossing or nearby targets. In
this section, we consider identity management, which entails the
assignment of labels (or identities) to targets and the evolution of
these labels over time. As long as the targets remain far apart, this
problem is easily solved. This is easily seen in air traffic surveillance
scenarios, in which air traffic controllers can typically distinguish

KF1

x x1(k-1|k-1),

(k-1|k-1),

P 1 2(k-1|k-1),(k-1|k-1),

(k-1|k-1),(k-1|k-1),

P 2(k-1|k-1)

(k-1|k-1)

^ ^

x P^ x P

z(k)

x 1(k|k), P1(k|k)^

KF2z(k)

(k)

(k) (k)

(k) (k)

(k)

^
x 2(k|k),

(k|k),

(k|k),

P2 (k|k)

Mode
Probability

Update

State estimate
and covariance

combination

x
x

1 P1 (k|k)(k|k)
^

x 2 P2 (k|k)^

P (k|k)

(k|k)
^

^

k-1|k-1Mixing µ

µ

µ

µ

Fig. 3 Structure of the IMM algorithm (for two modes) [33].
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between aircraft when they stay far apart, and have not interacted
with each other. However, the interaction of multiple targets,
especially those aircraft without transponders, which automatically
transmit their own identities, makes the problem complex. A
common approach to solving this problem is to maintain
probabilities of all possible permutations of identity-target
assignments, at each time step in the system. The complexity of
such an algorithm grows exponentially in time, and is not practical to
implement with the current computational capabilities.

We first define two types of matrices that we will encounter while
analyzing identity management algorithms.

Definition 2: A stochastic matrix is one whose columns are
probability vectors, that is, every column sums to 1. Matrix B is
stochastic if

P
iBij � 1, 8 j.

Definition 3: A doubly stochasticmatrix is a stochasticmatrix each
of whose rows also sums to 1. Matrix B is doubly stochastic ifP

iBij � 1, 8 j and
P

jBij � 1, 8 i.
A scalable algorithm for computing and maintaining multiple-

target identity information had been proposed for use for multiple-
target tracking in sensor networks [5,28]. This algorithm maintains
identity information over time, when given information about the
interaction between the N targets, in the form of the marginal
probability distribution of target-identity associations. This
information is stored in an N � N matrix B�k�, known as the
identity belief matrix, where k is the current time step. The entry
Bij�k� represents the probability that target j can be identified as label
i. Because it represents the marginal probability distribution of
target-identity associations, the belief matrix is doubly stochastic.

The evolution of this belief matrix is governed by amixing matrix
M�k�, whose elementMij�k� represents the probability that target i at
time k � 1 has become target j at time k. The belief matrix is updated
as [5]

B�k� � B�k � 1�M�k� (14)

In certain applications, identity information about a target could be
obtained from sensors that can measure its physical attributes, such
as the shape and noise characteristics. For example, in applications of
ad-hoc sensor networks, vision sensors (acoustic sensors) can
measure the shape (noise characteristics) of a target and from this
measurement, its identity can be inferred [29]. This information
about the identity of a target obtained from sensors is called local
information in this paper. Identity management can also use this
target attribute information, if available from local sensors, to
maintain the identity of a target correctly.

In this section, we consider a problem of how local information, if
available, could be used to reduce the uncertainty of the beliefmatrix.
For this, we use the statistical entropy (or Shannon information) of a
probability vector f 2 �0; 1	n, defined as

H�f� :�
Xn
i�1

�fi ln fi

as an uncertainty measure of the probability vector f. Using this, we
define the average entropy of the belief matrix B�k� of the N targets
as

�H�B�k�	 :� 1

N

XN
j�1

H�bj�k�	 (15)

where B�k� � �b1�k� � � � bN�k� 	. The average entropy of the
belief matrix is used as a measure of the uncertainty in the identity
of the N targets. In the belief matrix, because the columns represent
the probabilities of identity belief for each target, the probability
distribution of belief for each target is given by the corresponding
column. Using this definition, we can prove the following
Lemma 1:

Lemma 1: Let �H�B�k�	 be the average entropy over all the columns

of the belief matrix B�k�. Then, �H�B�k�	 � �H�B�k � 1�	, if

B�k� �M�k�B�k � 1�; that is, mixing does not decrease the average
entropy.

Proof: From the definition of average entropy of the system,

�H�B�k�	 � 1

N

XN
j�1

H�bj�k�	 �
1

N

XN
j�1

Hf�M�k�B�k � 1�	jg

� 1

N

XN
j�1

H

��XN!

i�1

�i�iB�k � 1�
�
j

�

� 1

N

XN
j�1

H

�XN!

i�1

�i��iB�k � 1�	j
�

� 1

N

XN
j�1

XN!

i�1

�iHf��iB�k � 1�	jg (16)

where �i is a permutation matrix. But premultiplying by a
permutation matrix simply permutes the rows, so the set of values in
the column does not change:

Hf��iB�k � 1�	jg �H�bj�k � 1�	 (17)

Therefore, we get

�H�B�k�	 � 1

N

XN
j�1

XN!

i�1

�iH�bj�k � 1�	 � 1

N

XN
j�1

H�bj�k � 1�	;

because
XN!

i�1

�i � 1� �H�B�k � 1�	 (18)

□

Corollary 1: Because �H�B�k�	 � 1
N

P
N
j�1 H�bj�k�	 (sum over

columns)� 1
N

P
N
j�1 H�bj�k�	 (sum over rows), the same proof of no

decrease of entropy holds for mixing of the form B�k��
B�k � 1�M�k�.

In the identity management algorithm, we assume that local
information arrives in the form of column updates to the
corresponding columns of the belief matrix. The column of the belief
matrix corresponding to that particular target is replaced by the local
information, which is the marginal probability distribution of the
identity of the target. We preserve that specific column and scale the
rest of the beliefmatrix tomake it doubly stochastic.We compute this
doubly stochastic matrix using a process called Sinkhorn scaling,
which iteratively scales columns and rows of a given matrix; a
detailed description, an analysis, and the rationale behind choosing
this technique can be found in [30]. We now investigate in detail
when the local information should be used to reduce uncertainties of
the identity of the targets.

There are two possible forms of local information, depending on
the level of certainty in the information. The first kind occurs when
the sensor identifies the target with certainty, and the second occurs
when the observation is in the form of a distribution. This can
happen, for example, when signal processing is used to identify a
target, and a statistical footprint of the possible identities of the target
is obtained.

1) Identity-type local information: This is local information that
gives with certainty the identity of one of the targets. In the
implementation, this corresponds to local information in the form of
a column unit vector.

2) General forms of local information: In general, local
information is in the form of a stochastic column vector, that is, a
vector whose elements sum to 1. In this case, clearly, the effect on the
statistical entropy depends on the probability distribution that is
observed as local information, and need not necessarily decrease the
entropy. Consider, for example, the belief matrix

0:8 0:2
0:2 0:8

� �

for two targets. The average entropy of this matrix is 0.5004. If local
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information arrives at column 2 in the form

0:3
0:7

� �

(corresponding to information that target 2 has identity 2 with 70%
probability), then the corresponding doubly stochastic matrix after
Sinkhorn scaling is

0:7 0:3
0:3 0:7

� �

The average statistical entropy of the updated matrix is 0.6109, that
is, the statistical entropy increases when we incorporate information
of this form.

The preceding statements have important implications in the
incorporation of local information. We know that if the system were
conducive toBayesian normalization, then the average entropy of the
system could only decrease with the incorporation of local
information [5]. Because it is computationally quite simple to
compute the average entropy, we only incorporate general local
information if the doubly stochastic matrix after the Sinkhorn scaling
has a smaller average entropy than before the incorporation of the
local information.

The algorithm described in this section is the core of the MTIM
algorithms for scenarios with clutter and without clutter, which will
be presented in detail in the following two sections.

III. Environments with Clutter

In this section we consider a case in which there are extraneous
measurements or clutter. Figure 4 shows the structure of the
algorithm, and the evolution of hybrid state estimates and identity
beliefs through a single time step. In particular, we draw attention to
the difference between thisfigure and the algorithmic framework that
was shown in Fig. 1, namely, that the hybrid state estimation
component has been divided into two modules, the state prediction
block and the state update block as shown in Fig. 4.

The following sections detail each block and present the logic
behind various algorithmic choices.

A. State Prediction

State prediction is carried out for each of the N targets
independently. For each target, the inputs are the state estimates from
the previous time step, and the outputs are the state predictions and
their covariances. The details that follow refer to the procedure used
for a single target.

This block takes as input the continuous-state estimates
x̂i�k � 1jk � 1�, covariances Pi�k � 1jk � 1�, and mode probabil-
ities�i�k � 1� from the previous time step k � 1, where i refers to the
mode of the target. The output of the block is a prediction of the
continuous state and its covariance at time k without information
from time k.

First, the mixing stage of RMIMM is used to combine the state
estimates from the different modes, resulting in new combined initial
states x̂0i�k � 1jk � 1� and covariances P0i�k � 1jk � 1�. These are
inputs to a set of Kalman filters, tuned to each mode. This block
corresponds to just the state prediction step of each Kalman filter.
The outputs of the Kalman filters at this stage are the state
predictions, their covariances, and the residual covariances

x̂i�kjk � 1� � Aix̂0i�k � 1jk � 1�
Pi�kjk � 1� � AiP0i�k � 1jk � 1�AT

i 
Qi

Si�k� � CiPi�kjk � 1�CT
i 
 Ri

(19)

where i is the mode corresponding to each Kalman filter.
Themode estimate m̂�k � 1� from the previous time step is used to

obtain a single continuous-state prediction x̂�kjk � 1� and a single
residual covariance S�k�, corresponding to the aircraft staying in that
mode. Because the predicted state is assumed to have a Gaussian
distribution, the state prediction is themean (center) of the ellipsoidal
validation gate of the target, whereas the residual covariance is the
covariance of the validation gate as shown in Fig. 2. Therefore, S�k�
would be expected to determine the size of the validation gate,
according to (1). However, if the aircraft changes its mode (starts a
maneuver), the Kalman filter has overestimated its confidence in its
state estimate by using the mode estimate from the previous time
step, which results in a smaller S�k� than is appropriate. As a result,
the measurement of the maneuvering target frequently does not fall
inside its validation gate; therefore, the size of the validation gate
must be increased. This increase is obtained by increasing the state
covariance S�k� with an additional term that accounts for the
additional uncertainty that arises from a maneuvering target. This
additional term depends on the state velocity estimate, v̂�k�, and is
given by the expression

Sextra�k� � �2v̂�k�v̂�k�T 
 �2v̂?�k�v̂?�k�T (20)

where v̂?�k� is obtained by rotating v̂�k� by 90 deg in the
counterclockwise direction. The effective residual covariance S0�k�
is then equal to

S0�k� � S�k� 
 Sextra�k� (21)

Because Sextra�k� is positive definite, the region covered by the
validation gate created from S0�k� is larger than that created by S�k�,
as shown in Fig. 5. In this figure, the smaller ellipse is the validation
gate as determined by S�k�, whereas the larger ellipse is that

Fig. 4 Block diagram, showing a single time step of the multiple-target

tracking and identity management algorithm for cluttered environ-

ments.
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maneuvering uncertainty of a target.
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determined by S0�k�. The constants � and � are chosen empirically to
ensure that maneuvers are unlikely to lead to measurements outside
validation gates, and the cross-track term � is chosen to be larger than
the along-track term �. The term Sextra is related to the velocity
estimate of the target because errors in track due to a change in the
flight mode are dependent on the velocity of the target. The outputs
from the state prediction block are therefore the predicted state
x̂t�kjk � 1�, its residual covariance St�k�, and effective residual
covariance S0

t�k� for target t. There areN such sets of outputs, one set
for each target being tracked. The effective residual covariance S0�k�
is used only for measurement validation purposes.

B. Measurement Validation/Data Association

We first define the residual rtj�k� � zj�k� � Ctx̂t�kjk � 1� for

target t and measurement j. The measurement at position zj�k� falls
inside the validation gate if (1) is satisfied, with the residual
covariance S�k� replaced by the effective residual covariance S0�k�.
As in Sec. III.A, measurements that fall within the validation gate of
one of the targets are called validated measurements. Therefore, the
first step is to use the validation gate to choose the validated
measurements. Given the set of validated measurements, a modified,
approximate version of JPDA is used to obtain the association
probability matrix ��k� and the mixing matrix M�k�.

The approximate JPDA algorithm is computationally more
tractable than JPDA [10]. As we saw in Sec. II.A, the JPDA
algorithm requires computing the sum of a joint probability

distribution over mk!
�mk�N�1�! events,which can be very large in cluttered

environments, wheremk is potentially large. Formulating all possible
joint events and summing over them is therefore quite tedious [21],
given the computational limitations ofmost sensor networks. Even in
the context of air traffic surveillance, this task is difficult to perform in
real time in highly cluttered environments. This is the motivation for
approximate data association methods such as the approximate
JPDA.

Let us denote the Gaussian probability density function of the
residual

Gjt�k� :� N t�zj�k�	

Therefore,Gjt�k� is proportional to the Gaussian likelihood function
that represents the closeness between target t andmeasurement j.We
let

Pst�k� :�
Xmk

j�1

Gjt�k�; and Prj�k� :�
XN
t�1

Gjt�k� (22)

Then, the marginal association probability that was described in (6)
can be approximated by the following expression [10]:

�jt�k� �
Gjt�k�

Pst�k� 
 Prj�k� �Gjt�k� 
 Bbias

(23)

In short, (23) places a greater weight on a target that does not fall into
the validation gates of any of the other targets than the weight placed
by the JPDA algorithm on such a target. In the preceding expression,
Bbias is a bias term that is set to zero in most cases, including in all the
examples presented in this paper.

Unlike the association matrix produced by the JPDA algorithm,
the data association matrix computed by the approximate JPDA
algorithm is not necessarily a stochastic matrix and thus it does not
satisfy a constraint that there is only one measurement from one
target. As a result, the accuracy of approximate JPDA may not be
suitable for certain situations. To remedy this, and to improve the
performance of data association, we propose a modification of the
approximate JPDA algorithm, which uses the Sinkhorn algorithm
[30,31] to make the data association matrix ��k� doubly stochastic,
so that it can be used as the mixing matrix for identity management.
We have shown in prior work [32] that the Sinkhorn algorithmwould
minimize a probabilistic distance from the prior constraint-violating
matrix. The modified algorithm keeps the essential characteristics of

the JPDA algorithm with far less computational complexity than
JPDA, while tracking many targets in clutter. We refer to this
algorithm (the combination of the approximate JPDA and Sinkhorn
algorithms) as the modified approximate JPDA (MAJPDA)
algorithm.

Because there are more measurements than targets in a cluttered
environment, it is necessary to choose a square submatrix of the data
association matrix as the mixing matrix. The MAJPDA algorithm
that we propose involves determining both the association
probability matrix and a doubly stochastic, square mixing matrix.

For an environment with clutter, if there are Lmeasurements, the
association matrix � has L rows and N � L columns. The mixing
matrix M�k� must still be a N � N matrix. To choose N rows from
among the L possible rows, we use the extended Munkres algorithm
[16].

The extended Munkres algorithm lends itself to processing the
marginal association probability matrix output by the proposed
MAJPDA. The N numbers chosen from ��k� by the extended
Munkres algorithm correspond to themeasurements zj�k�, which are
the N measurements assigned to the N targets so as to maximize the
sum of association probabilities. The assignment ofmeasurements to
targets is a one-to-one correspondence between measurement j and
target t, that is, j is a function of t, and vice versa. TheN rows of��k�
representing these measurements form anN � Nmatrix. The doubly
stochastic form of this matrix serves as the mixing matrix M�k�.
Then, the data association algorithm can be described as follows:

Algorithm 1: Data Association Algorithm
Given: validated measurements zj�k� (j� f1; � � � ; Lg) and targets

t (t 2 f1; � � � ; Ng) where L � N.
1) Modified approximate JPDA (MAJPDA)

a) Compute the L � N association probability matrix �0�k� �
��0

jt�k�	 using (23).

b) Scaling: Find ��k� � SI��0�k�	 such that
P

L
j�1 �jt � 1 andP

N
t�1 �jt � 1 where the operator SI represents the Sinkhorn

scaling process.
2)Measurement assignments (extendedMunkres algorithm): Find

a permutation � such that

max
��t�

XN
t�1

���t�t subject to 1 � t � N

1 � ��t� � L i ≠ j ) ��i� ≠ ��j�

3) Mixing matrix: M�k� � SI����t�t� for t 2 f1; � � � ; Ng.
The mixing matrix and measurement assignments are then passed

to the belief matrix update and state estimate update blocks,
respectively.

C. State Estimate Update

Given a measurement for target t, namely, zj�k�, the state update
step of the RMIMM algorithm propagates the estimate of the
continuous state x̂t�k � 1jk � 1�, its covariancePt�k � 1jk � 1�, and
the mode probabilities �t�k � 1� to time k. The outputs of the state
estimate update block at time k include x̂t�kjk�, Pt�kjk� and m̂t�k�.
These outputs are then used as inputs to the target tracking and
identity management algorithm at the next time step, k
 1.

D. Identity Management

1. Mixing Matrix

The mixing matrix M�k� from the measurement validation and
data association block is input to the belief matrix update block. The
evolution of the belief matrix is governed by (14). Themixingmatrix
is equal to the identity matrix if none of the targets interacts with
another, that is, there is no uncertainty in the identities of the targets.
The belief matrix at time k is maintained independently of the hybrid
state estimation component of the algorithm, and is only used to
compute the updated belief matrix at the next time step. Apart from
being changed duringmixing events inwhich two targetsmove close
to each other, the belief matrix can also be altered when local
information is received.
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2. Local Information Incorporation

Local information is useful only if its incorporation results in the
uncertainty of the belief matrix being reduced, where uncertainty is
measured as the statistical entropy of the belief matrix as discussed in
Sec. II.C.

In this section, we propose an additional source of possible local
information. The proposed information is automatically generated
whenever targets interact and the entropy of the belief matrix
increases significantly. Without using extra sensors to get attribute
information about the targets to correct target identities, we propose
the use of the multiple hypothesis testing (MHT) algorithm to infer
the local information about interacting targets. The reason for using
MHT is that it uses all the measurements over a time period and
considers all possible target-identity association hypotheses over that
period. Thus, it could provide more accurate target-measurement
association, but its computational complexity grows exponentially as
the number of time steps considered increases. In our
implementation, the MHT algorithm is used only when the
probability of themost likely identity association for a target is below
a preset threshold, which we treat as a design parameter.

The local information about the target identities is derived by
applying the MHT algorithm on the state estimates across two time
steps (or more steps depending on the difficulty of resolving
uncertainty) in this section. Such information is useful in situations
such as the one shown in Fig. 6. In this figure, two aircraft cross at
right angles to each other at time k. Their estimated positions are
marked with “x”s, whereas the radar measurements are marked with
“o”s. The expression x̂t�k� denotes the state (position) estimate for
aircraft t at time k. The measurements za�k�, zb�k�, zc�k
 1�, and
zd�k
 1� are indexed by letters to reflect the fact that from many
possible choices, twomeasurements are chosen byMAJPDA at each
time step to correspond to the two targets. Aircraft A starts at the
southwest corner at time k � 1 and moves to the northeast corner at
time k
 1, whereas aircraft B starts at the northwest corner and
moves to the southeast corner. We assume that aircraft A (and,
respectively, aircraft B) is target 1 (respectively, target 2) with
absolute certainty at time k � 1. In other words, the belief matrix
B�k � 1� is the identity matrix, that is,

B�k � 1� � 1 0

0 1

� �

At time k, the two targets are close together and almost equally
likely to be associated with each of twomeasurements. For example,
aircraft A is target 1 with probability of 0.51 and is target 2 with
probability of 0.49. Then the belief matrix at time k is

B�k� � B�k � 1�M�k� � 0:51 0:49
0:49 0:51

� �

At time k
 1, the aircraft tracks have diverged, and the validation
gates of the two aircraft no longer intersect. Therefore, the mixing
matrix M�k
 1� computed by the proposed MAJPDA (Sec. III) is
the identitymatrix, and the belief matrix at time k
 1 stays the same,
that is,

B�k
 1� � B�k�M�k
 1� � 0:51 0:49
0:49 0:51

� �

The MAJPDA algorithm cannot differentiate between the two
measurements at time k. As a result, the uncertainty (as measured by
the statistical entropy) of the belief matrix is essentially maximum.
This uncertainty remains even after the aircraft separate. This is an
inherent problem in multiple-target tracking, when aircraft move
close to each other. If there were no identity management taking
place, but only JPDA for multiple-target tracking, the marginal
association probabilities in this scenario would be 0.5 for all
associations, and there would be a 50% chance of target swapping.
The advantage of identity management is that we explicitly maintain
beliefs of the identities, and can employ corrective measures through
local information when necessary. In other words, if the aircraft
model could have followed the correct target, then the belief matrix
would not have become uncertain through mixing.

As we will see next, by simply analyzing the dynamics of the two
aircraft, a belief matrix with lower entropy can be determined. The
MHT algorithm is used to obtain a belief matrix with lower entropy
than can be achieved by just MAJPDA and standard belief matrix
updates. The MHT algorithm is discussed in detail in [2,18]. Given
the initial conditions x̂1�k � 1� and x̂2�k � 1�, as well as the
measurements za�k�, zb�k�, zc�k
 1�, and zd�k
 1�, there are four
possible target-measurement matches that can occur; these are
illustrated in Fig. 7. Figure 7a refers to the outcome chosen by
MAJPDA, because target 1 is assumed to have gone through
measurements za�k� and zc�k
 1�. Each plot in Fig. 7 is a
representation of a joint event, composed of the four events
represented by the line segments in the plot. The likelihood of the
joint event that each target actually corresponds to the pair of
measurements associated with it, is equal to the product of the
likelihood of the individual events. The result is four likelihoods for
the four joint events portrayed in the plots of Fig. 7.

To determine the belief matrix, one is only interested inwhether or
not target 1 reaches the expected position of aircraft A at time k
 1.
Therefore, the sum of the likelihoods of the events shown in Figs. 7a
and 7c is the likelihood that target 1 remains identified as aircraft A,
as well as the likelihood that target 2 remains identified as aircraft B;
we denote this quantity l1. The sum of the likelihoods from Figs. 7b
and 7d is the likelihood that the targets swap identities; let this
quantity be denoted l�1. Based on the dynamics of commercial jets
thatwe consider in this example, themaneuvers in Figs. 7b and 7d are
highly unlikely so that MHT computes l�1 � 0.

The doubly stochastic version of the matrix

l1 l�1
l�1 l1

� �

represents the mixing matrix for the two aircraft between time steps
k � 1 and k
 1. Thismatrix, a two-stepmixingmatrix, is denoted as
��k
 1�. For the examplewe have just seen,��k
 1� is the identity
matrix. Therefore, the belief matrix determined by MHT at time
k
 1 is

B0�k
 1� � B�k � 1���k
 1� � l1 l�1
l�1 l1

� �
� 1 0

0 1

� �

The resulting belief matrix B0�k
 1� is the identity matrix, which
has lower entropy thanB�k
 1� that would have been obtained from
the standard multiple-target tracking and identity management
algorithm model described in Sec. II. The local information can
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therefore be incorporated through the identity management block
(Fig. 4).

This example is an ideal case inwhich the new belief matrix has no
uncertainty, i.e., MHT computes the identity matrix. In general the
MHT module attempts to use knowledge of the dynamics of the
aircraft to resolve uncertainty in target-identity associations
probabilistically and thus the belief matrix is a doubly stochastic
matrix. Knowing the Markovian probability of discrete mode
transitions and looking two time steps back, the MTH module can
compute the probability of target-identity associations to use as local
information. Because there is no guarantee that the MHT local
information computed earlier in this paper will always improve the
entropy of the belief matrix, it is only incorporated if this local
information decreases the entropy. This automatic computation of
local information and its incorporation are both carried out before the
information is sent to the identity management component of the
multiple-target tracking and identity management algorithm (Fig. 4).

We note that the framework we introduce in this paper is flexible
enough to accommodate many variations and extensions. For
example, because target-measurement association in the MTIM
algorithm is based onMAJPDA, it has the same limitations as JPDA;
it cannot perform track initiation and termination and the number of
targets is assumed to be known and constant. However, by replacing
the measurement validation/data association block with other
algorithms that can deal with the aforementioned limitations, we can
extend the performance of the MTIM algorithm. We have recently

developed a decentralized version of the MTIM algorithm that can
address some of the preceding limitations [8,19,20].

We now present some simulations to demonstrate how the
proposed techniques for target tracking and identity management
could be implemented, taking into account the practical limitations of
the radar-based sensors that are being used for air traffic surveillance.

E. Simulations

Two examples are presented in this section to demonstrate the
efficacy of the MTIM algorithm in clutter. Both examples are
scenarios in which multiple aircraft are interacting in a cluttered
environment. In both examples, several system parameters are set to
the same values. First, measurement points are made available every
5 s. Measurement covariance R is

�100�2 0

0 �100�2
� �

whichmeans the standard deviation of position error is 100m in both
dimensions. Process noise covariance Q is set to be

0:001 0

0 0:001

� �
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Fig. 7 Possible joint events inMHT.The solid arrows denote the direction ofmovement of the targets. The dotted lines do not denote distances; they give

the association between the labels and the points.
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10 0

0 10

� �

for the turning mode. The large process noise covariance for the
turning mode represents the uncertainty in the transient motion of an
aircraft, yet the straight flight has a small covariance representing the
steady-state motion of the aircraft. The preceding constants are
realistic values for aircraft in clutter and are taken from [34]. Clutter
is uniformly distributed in space and Poisson-distributed in number;
the density of clutter points is 0:5 � 10�6 clutter points per square
meter, or 0.5 points per square kilometer. The validation gate
parameter � is set to 9.2, which would correspond to a 3	 confidence
level if residual covariance S were used. The effective residual
covariance S0 that is actually used is determined with system
constants � and � set to 3 and 6, respectively. The threshold for
initiatingMHT is set to 0.75. In both examples, the target 1 is initially
identified as aircraft A, 2 as B, and so on.

The first example is designed to demonstrate the effectiveness of
the MTIM algorithm in a realistic free-flight scenario. There are six
aircraft flying in both straight and turning modes. We show the
measurements obtained with clutter in Fig. 8 (top). The trajectory
plot in Fig. 8 (center) is set up the same way as that in Fig. 9 (center).
This plot includes realistic accident scenarios. For example, the
intersection of aircraft A and B at coordinates (20, 10) depict a
blunder by aircraft B into aircraft A’s path. Tracking of six aircraft is
successful except for overshoot at the start of a maneuver. The
dashed lines for the target measurements are visible at these
overshoot points. Identity management also performs well; part of
the belief matrix is shown in Fig. 8 (bottom). Only the beliefs for the
first two targets are shown. One can see the interaction between
aircraft A andB at k� 21, which leads to an increase in the statistical
entropy in the belief matrix followed by restoration of the belief
matrix through automated local information incorporation using
MHT. Aircraft A and F have a similar interaction at k� 37; only the
changes in the belief matrix for target A are shown in Fig. 8 (bottom).
The interaction between aircraft B and C at k� 27 is of note because
the interaction is mild. The belief matrix is not changed enough to
trigger the automated local information, so the belief of target 2 is not
restored. Because the interaction is mild, one can confidently label
target 2 as aircraft B. The identity management portion of MTIM
performs successfully.

The next example is an extreme (aerobatic) scenario in which four
aircraft fly at each other directly andmaneuver; this example is useful
in understanding the capabilities of MTIM. Figure 9 (top) shows a
shot of the radar screen including the entire flight data, but without
the trajectories explicitly indicated. This gives us an idea of the
clutter density, as well as how unclear the system is, especially when
the aircraft come close to each other. Figure 9 (center) displays the
actual and estimated positions of four aircraft following symmetric
paths that first converge, thenmaneuver around a common point, and
finally diverge. The dashed lines with dots as markers are the noisy
measurements from the targets. The solid lines with markers as
shown in the legend are the estimated positions found byMTIM. The
fainter dots interspersed throughout the plot are clutter points.
Aircraft A, B, C, and D fly with constant velocity of 200 m=s. All
turns are executed at 3 deg =s. Target tracking is accurate except for
overshoot when aircraft start turning. Indeed, the dashed lines
depicting the noisy measurements are not clearly visible because the
solid lines depicting estimated target positions match them almost
exactly. Figure 9 (bottom) displays the evolution of the belief matrix
in graphical form. The plots, from top to bottom, show the probability
that any aircraft is identified with targets one through four,
respectively. From this figure, it is clear that the belief matrix is
unchangedwhile the aircraft are distant from and not interactingwith
each other. When paths cross, the belief matrix is changed
significantly only if the measurements for both targets happen to
nearly coincide. For example, at k� 30, targets 1 and 2 nearly
coincide, leading to the belief that both targets 1 and 2 are nearly 0.5
aircraft A and 0.5 aircraft B. However, the automated MHT local
information generated by this interaction restores the belief matrix to

nearly identity at the following time step. At k� 30, targets 3 and 4
also interact with equally drastic loss of identity between aircraft C
and D. Again, the local information restores the belief matrix at the
following time step. At k� 32, targets 1 and 3 interact, with similar
jump in belief matrix entropy followed by belief matrix restoration
from local information. Targets 2 and 4 also interact in the same
fashion at k� 32. The scenario depicted in Fig. 9 establishes the
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Fig. 8 Measurement points with clutter (top), aircraft trajectories

(center), and plot of belief information for aircraft A and B (bottom).
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efficacy of the MTIM algorithm in clutter. Indeed, MTIM performs
successfully for both examples shown.

IV. Environments Without Clutter

In this section, we consider a special case in which there are no
clutter or undetected targets. In the absence of clutter, if all targets are
detected, there areN targets andN measurements at every time step;

in other words, the target detection probability PD � 1, the number
of unassociated measurements ���� � 0, and the measurement
association indicator �j��� � 1. Then, the marginal association
probability, given by (6), becomes

�jt�k� �
X
�

�YN
i�1

N �zi�k�	!̂jt���
�

(24)

The tracking algorithm is the same as that described in Sec. II.B. The
mixing matrix, described in (14), represents the degree of mixing of
identities between interacting targets. Because the state estimate for
target j at time k is computed in a deterministicmanner using a hybrid
estimation algorithm, given themeasurement associatedwith target j
at time k, the probabilityMij�k� is the same as the probability that the
measurement associated with target j at time k (let us denote this
measurement t) corresponds to the state estimate of target i at time
k � 1. Indeed, this is equal to the association probability �it�k�.
Therefore, ideally, we would use the association matrix given by
��k� in (24), as the mixing matrix. However, as we saw in Sec. II.C,
the mixing matrix needs to satisfy the physical constraint of being
doubly stochastic, a feature that is lost while computing the marginal
associationmatrix. Using the Sinkhorn scaling process, we construct
a doubly stochastic matrix �0�k� that approximates ��k�, and we use
�0�k� as the mixing matrixM�k� for the belief matrix updates. Then,
the evolution of the belief matrix is governed by (14). Thus, the
MTIM algorithm for an environment without clutter is as follows:

Algorithm 2: Multiple-target tracking and identity management
without clutter

For target t (t 2 f1; � � � ; Ng) at time k,
Step 1:Mixing/interaction: initialize x̂0i�k � 1jk � 1� andP0i�k �

1jk � 1� (for mode i, i 2 f1; � � � ; Nmodeg)
Step 2: Kalman filter i

1) State propagation/prediction

x̂i�kjk � 1� � Aix̂0i�k � 1jk � 1�
Pi�kjk � 1� � AiP0i�k � 1jk � 1�AT

i 
Qi

Si�k� � CiPi�kjk � 1�CT
i 
 Ri

(25)

2) Measurement validation

rij�k�TSi�k��1rij�k� � �2 (26)

where rij�k� � zj�k� � Cix̂i�kjk � 1� (j 2 f1; � � � ; mi
kg) and

mi
k is the number of validated measurements for target i at

time k.
3) Measurement update
a) Compute an association matrix using (24) and a mixing

matrix by making the association matrix a doubly
stochastic matrix using the Sinkhorn scaling process.

b) Update the belief matrix using (14).
c) If local information arrives and it decreases the entropy of

the belief matrix, then update the column corresponding to
the local information, and scale the rest of the matrix using
the Sinkhorn scaling process to make it doubly stochastic.

d) Update the continuous-state estimate and its covariance

x̂ i�kjk�� x̂i�kjk� 1�
Ki�k�
Xmi

k

l�1

�il�k�ril�k�

Pi�kjk�� �I�Ki�k�Ci	Pi�k� 1jk� 1�


Ki�k�
�Xmi

k

l�1

�il�k�ril�k�ril�k�T

�
�Xmi

k

l�1

�il�k�ril�k�
�
�
�Xmi

k

l�1

�il�k�ril�k�
�

T
�
Ki�k�T

(27)
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Fig. 9 Measurement points with clutter (top), aircraft trajectories

(center), and accompanying belief matrix plot (bottom).
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where a Kalman filter gain Ki�k� � Pi�kjk � 1��
CT

i �CiP�kjk � 1�CT
i 
 Ri	�1.

Step 3: Compute mode likelihood functions

�i�k� �N �ri�k�; 0; Si�k�	 (28)

where ri�k� :�
Pmi

k
l�1 �il�k�ril�k�.

Step 4: Compute mode probabilities: �i�k�.
Step 5: Compute outputs: x̂�kjk�, P�kjk�, m̂�k� using (12) and

B�k�. □

In this section, we consider a scenario in which the number of
measurements at each time step equals the number of aircraft being
tracked. We consider a three-aircraft scenario, in which, given the
noisy measurements of the position coordinates of three different
aircraft in random order at every instant of time, we track the aircraft
not only in their state estimates, but also with respect to their
identities. The aircraft fly straight with constant velocity. This is
representative of a scenario in which we might receive local
information about one of the aircraft, based on, perhaps, its physical
attributes such as the shape and noise characteristics of the aircraft.

The simulation results are shown in Fig. 10. Initially, target 1 (2
and 3) is plane A (B and C, respectively). Figure 10b shows the
evolution of the belief matrix. We notice that a decrease in belief
corresponds to interactions between targets, due to their proximity.
This is seen by comparing the trajectories and belief matrix plots in
Figs. 10a and 10b respectively. The first interaction is between
targets 2 and 3, and the belief of target 1 is unaffected. Target 2 then
proceeds to interact with target 1, and the final interaction involves
targets 1 and 3. We can see that there is target-swapping between
targets 1 and 2 in Fig. 10a over a period of time. During this period,
the maximum probability attains a value below 0.5, which implies
that we do not have much confidence in those associations being the
actual ones. In this simulation, local information of the identity type
for target 1 is obtained at time 60, and results in an immediate
improvement of the beliefs of all three targets. Using only local
information (for one aircraft), the proposed algorithm can reduce
uncertainties in the identities of all aircraft. It is evident from the
figures that the algorithm we have proposed maintains an accurate
estimate of the trajectories as well as the identities in the presence
of multiple possible associations of measurements to targets,
provided there are sources of local information, albeit intermittent
ones.

V. Conclusions

We have developed an algorithmic framework for multiple-target
tracking and identity management that can track and manage

identities of multiple maneuvering targets simultaneously. This
algorithm is composed of three different blocks: data association,
tracking/hybrid state estimation, and identity management. For data
association, we have proposed a modified approximate joint
probability density algorithm that can handle many targets with low
computational complexity, yet possesses the main advantages of the
standard JPDA algorithm. For tracking multiple maneuvering
targets, we used the residual-mean interacting multiple model
algorithm based on the hybrid (or multiple) aircraft dynamics
models. For identity management, we developed an algorithm that
can keep track of the identities of targets over time probabilistically.
The proposed algorithm could be used as a supporting tool for
tracking and identifying aircraft in air traffic control. The MTIM
algorithm could increase safety and decrease controllers’ workload
by providing accurate aircraft tracking and identity information even
when the onboard transponders and/or secondary surveillance radars
are malfunctioning and thus identity information is not available, or
there are general aviation aircraft in the air that are not equipped with
transponders. In military applications, theMTIM algorithm could be
used for a passive identification friend or foe (IFF) system that does
not need active interrogation so that aircraft do not expose their
presence to the enemy.

Because the MTIM algorithm uses an approximate version of
JPDA for data association, it has the same limitations as JPDA; it
cannot perform track initiation and termination of an unknown
number of targets. Based on the algorithmic framework proposed in
this paper, we recently developed a decentralized algorithm that can
address the aforementioned limitations. Our future research includes
asynchronous updates between measurements and the performance
improvement of multiple-target tracking by using identity
information.
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