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Abstract. We present a parameter inference algorithm for autonomous
stochastic linear hybrid systems, which computes a maximum-likelihood
model, given only a set of continuous output data of the system. We
overcome the potentially intractable problem of identifying the sequence
of discrete modes by using dynamic programming; we then compute the
maximum-likelihood continuous models using an Expectation Maximiza-
tion technique. This allows us to find a maximum-likelihood model in
time that is polynomial in the number of discrete modes as well as in the
length of the data series. We prove local convergence of the algorithm. We
also propose a novel initialization technique to derive good initial condi-
tions for the model parameters. Finally, we demonstrate our algorithm
on some examples - two simple one-dimensional examples with simu-
lated data, and an application to real flight test data from a dual-vehicle
demonstration of the Stanford DragonFly Unmanned Aerial Vehicles.

1 Introduction

The modeling of systems as stochastic hybrid systems has applications in fields
such as target-tracking, the statistical analysis of time-series data, and systems
biology. These systems frequently exhibit behavior that is a combination of dis-
crete switches and continuous evolution; in addition, the data available in these
applications is usually corrupted by noise. Most target-tracking algorithms for
maneuvering targets, as well as estimators for hybrid systems, depend on the
prior knowledge of a good model for the plant dynamics and noise character-
istics, as well as knowledge of the transition probabilities between the discrete
modes [1, 2]. In this paper, we formulate an algorithm that finds the maximum-
likelihood values of parameters for both the continuous dynamics in each mode,
and the transition probabilities between the modes. We draw broadly on sev-
eral techniques from data association and target tracking [3], motion-capture
and synthesis methods in computer graphics [4, 5] and statistical time series
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analysis [6]. While these techniques are related to classical methods of system
identification for continuous- and discrete-time systems [7, 8], we use them to
develop a method to identify the parameters of a hybrid system. Given only
the continuous- or discrete-time output of the system, our algorithm iteratively
computes the maximum-likelihood parameters for the discrete and continuous
models, and converges to a local maximum-likelihood autonomous stochastic lin-
ear hybrid system model. We propose methods to derive good initial conditions,
so that the local maximum converged to is a suitable model for tracking the
future behavior of the system.

2 Model Structure

We consider a class of hybrid systems, with linear stochastic dynamics in each
discrete mode. An autonomous discrete-time stochastic linear hybrid system [9]
is defined to be:

H :

{

x(k + 1) = Aix(k) + wi(k)
y(k) = Cx(k) + vi(k)

, k ∈ N (1)

where x ∈ Rn and y ∈ Rp are the continuous state and output variables re-
spectively. The index i ∈ {1, 2, · · · , N} represents the discrete state, where N
is the (unknown, but finite) number of discrete modes in the model. The sys-
tem matrices are Ai ∈ Rn×n for i ∈ {1, 2, · · · , N} (assumed unknown), and
C ∈ Rp×n is the measurement matrix (n and C can be determined using a Sin-
gular Value Decomposition (SVD) on the output data, and are therefore assumed
to be known). We denote the covariance of the initial state x(k0) as π0 ∈ RN ,
and assume that the process noise wi(k) and the measurement noise vi(k) are
uncorrelated, zero-mean white Gaussian sequences with the unknown covari-
ance matrices E[wi(k)wi(k)

′] = Qi ∈ Rn×n and E[vi(k)vi(k)′] = Ri ∈ Rp×p
respectively, where E[·] and (·)′ denote expectation and matrix transpose. It is
assumed that wi(k) and vi(k) are both uncorrelated with the initial state, i.e.,
E[x(k0)wi(k)

′] = E[x(k0)vi(k)
′] = 0. Y1:T ∈ Rp×T is used to represent the given

data series, that is, the sequence of p−vectors [y(1), y(2), · · · , y(T )]. We use simi-
lar notation for other sequences of vectors; for example, the sequence of state vec-
tors [x(1), x(2), · · · x(t)] is denoted by X1:t ∈ Rn×t. We denote the set of param-
eters which defines the dynamics for each discrete mode i by θi = {Ai, Qi, Ri}
and the entire continuous model by Θ = {θ1, θ2, · · · , θN}.
Given only Y1:T , we would like to find a model that maximizes the likelihood (L
that the data was generated by this model. To do this, we segment [1, T ] into
the best NS (≥ N) segments, such that each segment corresponds to a single
discrete mode, allowing for modes to be repeated in the data sequence. We label
segment k as lk, representing its discrete mode, (lk ∈ {1 · · ·N}, k = 1 · · ·NS).
We impose the condition that the system stays in a mode for a given minimum
dwell time, Td: this constraint reflects the observation that physical systems do
not exhibit infinitely fast switching; additionally, we have shown in [10] that
a minimum dwell time is necessary to estimate the state of a hybrid system,



once the model is given. We also compute the switching times between modes,
denoted sk, such that segment k spans the time interval [sk, sk+1 − 1], and in
this segment, the system is in mode lk. The minimum dwell time constraint
can be expressed as sk+1 − sk ≥ Td. We denote the switching time sequence by
S = {s1, s2, · · · sNS

}, and the labeling sequence by L = {l1, l2, · · · lNS
} (see Fig-

ure 1). We assume in this paper that the discrete transitions are independent of
the continuous state of the system, the relaxation of this assumption will be the
subject of future work. We also assume that the discrete transitions are Marko-
vian, and we define the Markovian switching matrix M , whose elements are
Mij = prob(lk = j|lk−1 = i). M gives the probability of transition to any mode
at the switching time. The Markovian assumption is reasonable, since systems
frequently exhibit probabilistic patterns in their switching behavior - for exam-
ple, a civilian aircraft is more likely to transition from a turn maneuver mode to
a straight mode than to another maneuver mode. The optimal segmentation of
the data sequence into NS segments can also provide us with the maximum like-
lihood value ofM , so we represent our discrete model by D = {S,L,M}. We use
Ω(·) to denote the parameter space of (·), for example, Ωy represents the param-
eter space of y, and is equal to Rp. Finally, we define the function δ(statement)
to be 1, if statement is true; 0, otherwise. In summary, given a data series (of
length T ) denoted by Y1:T , and knowing the measurement matrix (C), we would
like to find the system parameters, continuous ({Ai, Qi, Ri}, i = 1 · · ·N) as well
as discrete ({S,L,M}), such that the resultant model maximizes the likelihood
that the data series was generated by the model.
For a stochastic linear hybrid system, there are an infinite number of continu-
ous models that can realize a given output sequence. Since the main problem
of interest to us is the design of hybrid estimators, we restrict ourselves to the
class of systems which satisfy the following conditions: (1) We consider the in-
novations form of the model [7, 11], given by x̂(k + 1) = Aix̂(k) + Ki(k)ei(k);
y(k) = Cix̂(k)+ei(k), where the innovations ei(k) = y(k)−Cix̂(k), Ki(k) is the
Kalman filter gain and x̂ is the state estimate, and we assume Ai −KiCi is sta-
ble [11]. (2) We require that the stochastic linear hybrid system be identifiable.
This condition, while not overly restrictive, roughly ensures that the models are
distinct enough so as to be distinguished from each other using their continuous
outputs. This would also give us a class of transformations for the continuous
model which would explain the given output. The conditions for identifiability
for a deterministic linear hybrid system have been derived in [12], these can be
extended quite naturally to stochastic linear hybrid systems.

3 Parameter Inference Algorithm for Stochastic Linear

Hybrid Systems

In this section, we propose an algorithm for hybrid system model inference, assess
its complexity, and prove its convergence to a local optimum. The structure of
the algorithm (for one iteration) is given in Figure 2.
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Fig. 1. Example of a three mode hybrid model, showing model parameters.

3.1 Expectation Maximization

For the sake of clarity, we first briefly describe the traditional Expectation-
Maximization (EM) algorithm [13]. Given general observed data Y ∈ ΩY , we
could postulate probability density functions (pdfs) g(Y |ψ), which depend on
parameters ψ. The Expectation-Maximization algorithm is a method of finding
a valuation of ψ that maximizes g(Y |ψ) given the observed Y . Suppose we knew
that the observations were in fact incomplete data, for which the underlying
complete data Z ∈ ΩZ had corresponding pdfs f(Z|ψ). (For example, in the
case of a stochastic linear system, the observations form the incomplete data,
while the observations together with the state variables form the complete data).
Denoting the vector of parameters by Ψ = (ψ1, · · ·ψd), if the mapping from
ΩZ 7→ ΩY were many to one, we could write

g(Y |Ψ) =

∫

ΩZ(y)

f(Z|Ψ)dZ (2)

To find the model that is most likely to have generated the data, the EM al-

gorithm iteratively computes logL(Ψ)
4
= log f(Z|Ψ), updating the parameter fit

(Ψ) at every step. We compute logL(Ψ) instead of L(Ψ), because for many ex-
ponential families, including systems which are Gaussian, the logarithm of the
likelihood is easier to compute than the likelihood itself; and since the logarithm
is a monotonic function, maximizing the log-likelihood is equivalent to maxi-
mizing the likelihood. However the complete data Z is not available in practice
(we only have the data we actually measure), and so we use the expectation of
the log-likelihood, i.e., EΨ{logL(Ψ)|Y }, derived using the current fit for Ψ . For
example, in the case of stochastic linear systems, these expectations can be com-
puted using Kalman recursions. Therefore it is the expectation of the likelihood
that is maximized; hence the name Expectation-Maximization.
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Fig. 2. Structure of the Parameter Inference Algorithm for Stochastic Linear Hybrid
Systems.

Algorithm 1 (Classical (G)EM Algorithm [13])
Let Ψ (0) be some initial value of Ψ .
Repeat:

1. E- Step: Compute

Q(Ψ |Ψ (k))
4
= EΨ(k){logL(Ψ)|Y } = EΨ(k){log f(Z|Ψ)|Y }, (3)

where EΨ (·) denotes the expectation derived using the parameter set Ψ .
2. M- Step: Choose Ψ (k+1) to be any value of Ψ ∈ ΩΨ which maximizes
Q(Ψ |Ψ (k)), i.e.,

Q(Ψ (k+1)|Ψ (k)) ≥ Q(Ψ |Ψ (k)), for all Ψ ∈ ΩΨ (denoted EM); (4)

or any value that satisfies the less restrictive condition:

Q(Ψ (k+1)|Ψ (k)) ≥ Q(Ψ (k)|Ψ (k)) (denoted Generalized EM (GEM)). (5)

until L(Ψ (k+1))− L(Ψ (k)) converges to ε, where ε ∈ R is arbitrarily small.

The EM algorithm is a special case of the GEM algorithm (5). The EM algorithm
maximizes the conditional expectation at every iteration, while the GEM only
ensures its increase. Under fairly general conditions, such as the boundedness
of the likelihood functions, several properties of the EM and GEM algorithms,
including convergence, have been proved in [13, 14]. In particular, it can be shown



that a sequence of likelihoods obtained using the GEM algorithm will converge
to a local optimum [14]. We will use this property to prove the convergence of
the algorithm that we propose for stochastic linear hybrid systems, which have
Gaussian and bounded likelihoods.
The two main issues with the implementation of any version of the Expectation-
Maximization algorithm are: (1) the pdf f(Z|Ψ) (or its conditional expectation)
is sometimes difficult to compute; (2) since the convergence is to a local max-
imum, a good choice of initial conditions is necessary. We develop methods to
alleviate both of these problems in the application of EM to the inference of
stochastic linear hybrid systems.

3.2 Parameter Inference Algorithm for Stochastic Hybrid Systems

In order to fit into the form of the standard EM algorithm [13], we note that we
wish to find the maximum likelihood solution to our model parameters, i.e.,

{D,Θ} = arg max
{D,Θ}

L(Y1:T |D,Θ) (6)

L(Y1:T |D,Θ) is analogous to the function g(Y |ψ) in (2). As in the case of the
classical EM algorithm, rather than work with this density function, we define
the complete data as the combination of the sequence of state variables (X)
and the observations (Y ), from system (1), and denote it by Z. In other words,
z(k) = {x(k), y(k)} ∈ Rn × Rp. The algorithm can be written as follows:

Algorithm 2 (Parameter Inference Algorithm for Stochastic Linear
Hybrid Systems)
Assume an initial continuous model Θ(0) and an initial discrete model D(0).
Iterate the following until the convergence of the likelihood to a local maximum:

1. Step 1: Find the globally optimal segmentation points (S) and their respec-
tive labels (L), assuming the model parameters of the current iteration (k).
Then, update the switching probability matrix M , using:
Mij =

∑NS

k=2 δ(lk−1 = i)δ(lk = j), normalized such that
∑NS

j=1Mij = 1.

This gives us the maximum-likelihood discrete model, D(k+1).
2. Step 2: Fit new maximum-likelihood models into the segmented time se-

quences; i.e., for the computed {S,L} fit the best Θ(k+1).

Drawing an analogy to the classical EM algorithm (Algorithm 1): Ψ = {D,Θ}.
Then, we would like to maximize the expectation

Q(Ψ |Ψ (k)) = EΨ(k){logL(Ψ)|Y } = ED(k),Θ(k){log f(Z|D,Θ)|Y }.

Wemay rewrite Algorithm 2 in terms of the different conditional likelihoods max-
imized in each step. The algorithm begins with an initialization of D(0) and Θ(0).
Then, we iterate the following until the convergence of ED(k),Θ(k){log f(Z|Ψ)|Y }
to a local maximum:



In Step 1, we maximize ED(k),Θ(k){log f(Z|D,Θ(k))|Y }; this allows us to com-

pute the conditional expectation ED(k+1),Θ(k){log f(Z|Θ,D(k+1))|Y }.

In Step 2, we maximize ED(k+1),Θ(k){log f(Z|Θ,D(k+1))|Y }, and compute the

conditional expectation ED(k+1),Θ(k+1){log f(Z|D,Θ(k+1))|Y }.
Algorithm 2 no longer falls into the classical EM framework, since we do not
compute the expectation in one step and maximize it in the next. In Algorithm 2,
in Step 1, we assume a continuous model and compute the best discrete model for
this continuous model. In Step 2, we assume this discrete model, and compute the
maximum-likelihood continuous model. While both steps correspond to either
an E-step or an M-step, the expectation computed in one step is maximized in
the next, and vice versa. Since the likelihood function is changed at every step,
it is not clear that the convergence properties of classical EM or GEM hold in
this case, and thus the convergence of Algorithm 2 must be analyzed.

Theorem 1. Algorithm 2 iteratively generates a sequence of models, whose like-
lihoods satisfy the model-likelihood sequence conditions (5) of the Generalized
Expectation-Maximization Algorithm [13, 14]. Therefore the algorithm is guar-
anteed to converge to a local maximum.

Proof. Let us consider the likelihood sequence generated. For iteration k+1, we
would like to prove that the model parameters {D(k+1), Θ(k+1)} satisfy (5), i.e.,

Q(D(k+1), Θ(k+1)|D(k), Θ(k)) ≥ Q(D(k), Θ(k)|D(k), Θ(k)). (7)

We can rewrite Algorithm 2 as follows:
Step 1: Maximize ED(k),Θ(k){log f(z|D,Θ(k))|Y1:T }: compute D

(k+1) such that

Q(D(k+1), Θ(k)|D(k), Θ(k)) ≥ Q(D,Θ(k)|D(k), Θ(k)), for all D ∈ ΩD. (8)

Step 2:Maximize ED(k+1),Θ(k){log f(z|Θ,D(k+1))|y}: compute Θ(k+1) such that

Q(D(k+1), Θ(k+1)|D(k), Θ(k)) ≥ Q(D(k+1), Θ|D(k), Θ(k)), for all Θ ∈ ΩΘ (9)

Combining (8) and (9), we get

Q(D(k+1), Θ(k+1)|D(k), Θ(k)) ≥ Q(D(k+1), Θ|D(k), Θ(k)), for all Θ ∈ ΩΘ

≥ Q(D(k+1), Θ(k)|D(k), Θ(k))

≥ Q(D(k), Θ(k)|D(k), Θ(k)), (10)

thus proving (7). Since in the case of stochastic models with Gaussian noise, the
likelihood functions are bounded, the sequence will converge to either a station-
ary point (saddle surface) or a local maximum. Such a convergence to a saddle
surface can only occur in the continuous step (Step 2). However, in the case
of linear Gaussian systems, we can show that the Hessian is always negative
definite, ruling out convergence to a stationary point. Therefore the sequence
converges to a local maximum, proving the convergence of the parameter infer-
ence algorithm for hybrid systems. (Note that the convergence criterion is the
convergence of the likelihood, and not the model parameters [14]. However, we
prevent oscillations between different discrete models with identical likelihoods
by updating the discrete model only when the likelihood increases.)



4 Implementation of Parameter Inference Algorithm for

Hybrid Systems

Algorithm 2 is of little use if we cannot efficiently compute the likelihoods. In
this section, we describe the actual likelihood functions chosen, as well as the
procedures used to maximize them. The problem of maximizing the likelihood in
Step 1 is potentially intractable, since we need to find the maximum likelihood
hypothesis from O(NT ) potential segmentations. However, it is fortunately pos-
sible in this case to compute the solution, by formulating a dynamic program of
polynomial complexity [4]. In Step 2, we need to iteratively compute the model
parameters to maximize the likelihood of the dynamics in each of the modes.
We use an algorithm which iteratively maximizes this likelihood using a form of
the EM algorithm [15].

4.1 Step 1: Maximizing the likelihood of the discrete model

Suppose we have initial values of Θ and D (we leave the discussion of details of
the initialization for Section 4.3). We want to find globally optimal segmentation
points (S) and labels (L). To achieve this purpose, we employ the following
dynamic programming algorithm [4]:
Let us define a reward function Lmaxn(t) as the maximum value of likelihood
that can be derived from dividing Y1:t into n segments. Lmaxn(t) is achieved by
the optimal segmentation of Y1:t into n parts. Let us define LastModen(t) and
LastStartn(t) to be the label (mode) and start time of the final segment in this
optimal segmentation.
Clearly, the optimal segmentation is the one that maximizes the likelihood of
the entire data set, i.e., has likelihood max1≤n≤b T

Td
c Lmaxn(T ), and NS is the

number of segments in this “optimal” segmentation. Then, for Td ≤ t ≤ T ,

Lmax1(t) = max
1≤i≤N

L(Y1:T |θi), and LastMode1(t) = argmax
i
L(Y1:T |θi) (11)

Also, while 1 ≤ n ≤ b T
Td
c, and nTd ≤ t ≤ T ,

Lmaxn(t) = max
1≤i≤N

(n−1)Td<b≤t−Td

[Lmaxn−1(b− 1)MliL(Yb:t|θi)]

[LastModen(t), LastStartn(t)] = argmax
i,b
[Lmaxn−1(b− 1)MliL(Yb:t|θi)](12)

where l = LastModen−1(b − 1). In other words, the maximum likelihood de-
rived from segmenting a sequence into n parts is the maximum product of the
likelihood resulting from segmenting a smaller sequence into n − 1 parts in the
best manner, multiplied by the likelihood of the new sequence, multiplied by the
probability of the corresponding mode switch. A schematic representation of this



dynamic programming algorithm is given in Figure 3. Therefore, the required
optimal solution to the segmentation is

Lmax(T ) = max
1≤n≤b T

Td
c
Lmaxn(T ) (13)

and the optimal number of segments is NS = argmaxn Lmax(T ). We can also
find the optimal segmentation ({S,L}) corresponding to this solution. We note
that

s1 = 1; sNS+1 = T + 1; sn = LastStartn(sn+1 − 1), for NS ≥ n > 1 (14)

lNS
= LastModeNS

(T ); ln−1 = LastModen−1(sn − 1), for NS ≥ n > 1 (15)

We now also update the switching matrix, using the labels from the optimal
segmentation
Mij =

∑NS

k=2 δ(lk−1 = i)δ(lk = j), normalized such that
∑NS

j=1Mij = 1.
This algorithm solves the optimal segmentation problem with a complexity of
O(NT 3), if we know the likelihood function L(Y1:t|θi). In the case of stochastic
linear systems with Gaussian noise, it is possible to simply express the likelihood
function in terms of the residuals of a Kalman filter. Given θi, we can design
an optimal estimator for the continuous dynamics in the form of a Kalman
filter. Given the predictions for the continuous state variables E(x(k)|Y1:k−1) =
x(k|k − 1), and their covariances P (k|k − 1), we can express the likelihood as :

logL(Y1:t|θi) = −
1

2

t
∑

k=1

log |Σki| −
1

2

t
∑

k=1

(ri(k))
′Σ−1
ki ri(k) (16)

where ri(k) = y(k) − Cix(k|k − 1) is the residual at time k, with a covari-
ance Σki = CiP (k|k − 1)C

′
i + Ri. It can be shown ([13, 14]) that maximizing

Tbsn−1

il = LastMode (b−1)
n−1

(b−1)n−1L max L (Y(b:t) | θ )iMli

L maxn(t)
i,b

=  max { }(b−1)n−1L max Mli L (Y(b:t) | θ )i

s1 t

Fig. 3. Dynamic Programming Algorithm for Step 1.

L(Y1:t|Θ,M) over {Θ,M} is equivalent to maximizing E[logL(Z|{Θ,M})|Y ],
where Z is the “complete” data, i.e., the joint likelihood of the observed vari-
ables (Y1:t, and the state variables X1:t). Given the optimal segmentation (S,L),
the function we would like to maximize is the sum of the conditional likelihood
functions for the data in each segment. To do this, we update the models in Step
2 to be the maximum (conditional) likelihood values for the data of each of the
segments.



4.2 Step 2: Finding the maximum likelihood continuous model

For each mode, we fit the maximum likelihood model, using a form of the EM
algorithm proposed in [15, 6]. We demonstrate this for one of the segments which
we (in Step 1) have labeled as mode i. Suppose the data output of this sequence
is Yb+1:b+n, where b + 1 < b + n < T, n > Td. Then, the desired log-likelihood
for this segment can be written as

logL(Zb+1:b+n|θi) = −
1

2
log |Σ| −

1

2
(x(b)− µ)′Σ−1(x(b)− µ)−

n

2
log |Qi|

−
1

2

b+n
∑

k=b+1

(x(k)−Aix(k − 1))
′Q−1
i (x(k)−Aix(k − 1)) (17)

−
n

2
log |Ri| −

1

2

b+n
∑

k=b+1

(y(k)− Cix(k))
′R−1
i (y(k)− Cix(k))

where, as before, Zb+1:b+n is the joint (“complete”) data, namely, the observed
variables Yb+1:b+n, and the continuous state variables, Xb+1:b+n; µ and Σ are the
mean and covariance of the initial values in that segment of the continuous state
variable, i.e., x(b). Then, as explained earlier, the maximum likelihood solution
is the one that maximizes the function

Q(µ,Σ,Ai, Qi, Ri) = E[logL(Zb+1:b+n−1|θi)|Yb+1:b+n] (18)

In computing the conditional expectation in (17), we need to compute the follow-
ing conditional means and covariances, which are easily obtained using Kalman
recursions [16]: xb(k|s) = E[x(k)|Yb+1:b+s], P

b(k|s) = cov(x(k)|Yb+1:b+s), and
P b(k, k− 1|s) = cov(x(k), x(k− 1)|Yb+1:b+s). We define the following quantities:

A
4
=
∑b+n
k=b+1

(

P b(k − 1|n) + xb(k − 1|n)xb(k − 1|n)′
)

B
4
=
∑b+n
k=b+1

(

P b(k, k − 1|n) + xb(k|n)xb(k − 1|n)′
)

C
4
=
∑b+n
k=b+1

(

P b(k|n) + xb(k|n)xb(k|n)′
)

As shown in [15], taking conditional expectations on (17), we get:

Q(µ,Σ,Ai, Qi, Ri) = −
1
2 log |Σ| −

1
2 tr
{

Σ−1
(

P b(b|n) + (x(b)− µ)(x(b)− µ)′
)}

−n2 log |Qi| −
1
2 tr
{

Q−1
i (C − BA

′
i −AiB

′ +AiAA
′
i)
}

−n2 log |Ri|

− 1
2 tr
{

R−1
i

∑b+n
k=b+1

[

(y(k)− Cix
b(k|n))(y(k)− Cix

b(k|n))′

+CiP
b(k|n)C ′i

]}

where tr denotes the trace of a matrix. It can be shown, as in ([15]), that at
iteration r, the choice of parameters that maximizes Q(Ai, Qi, Ri) is:

Ai(r + 1) = BA
−1 (19)

Qi(r + 1) =
1

n

{

C − BA−1B′
}

(20)

Ri(r + 1) =
1

n

b+n
∑

k=b+1

[(y(k)− Cix
b(k|n))(y(k)− Cix

b(k|n))′

+CiP
b(k|n)C ′i]

(21)



Therefore Step 2 consists of the following EM algorithm: For each of the models,
for the corresponding optimal segment(s) from the E-step, we repeat the follow-
ing until the estimates and the log-likelihood converge to a local maximum.

1. Compute the means and covariances of the continuous state estimates using
a Kalman filter.

2. Find the new iterates of parameters using (19), (20) and (21).

The converged values of the (continuous) model parameters (Θ) are the maxi-
mum likelihood model parameter fits to the segmented data sequence.
As shown in [17, 7], for a large number of samples, the difference between the
estimate and the true model (local maximum it converges to) tends in distribu-

tion to a zero-mean Gaussian with a covariance given by −
[

∂2L
∂Θ2

]−1
. Therefore,

the inverse of the Hessian of the likelihood function gives us a measure of the
uncertainty of our parameter estimates.

4.3 Initialization

We have already mentioned that the EM algorithm is only guaranteed to con-
verge to a local minimum. The optimal solution is a function of how “good” the
initial guesses of the parameters are. We present here a novel method of initial-
izing the continuous parameters. Since we know that the system stays in a mode
for at least a time Td, we fit in the maximum likelihood model for mode 1 by
applying the method of the Step 2 described earlier, to Y1:Td

. Given a state esti-
mate and measurement for the current time step, and a model for the dynamics,
the Kalman filter gives us a prediction for the measurement at the next time
step, as well as a region of uncertainty around it, in the form of a covariance
matrix. We call the ellipsoidal region defined by the predicted estimate and the
covariance, the validation-gate. We iteratively proceed, one time step at a time,
and compare the measurement at every time step with the validation-gate from
the Kalman filter prediction from the previous time step. If the measurement
falls outside the validation gates of all previously identified modes propagated
from the previous time step, we initiate a new mode into the system. Doing
this repeatedly, we estimate the number of modes (N), the initial segmentation
(S,L), and the initial M . If the stochastic hybrid system is identifiable, then
the Kalman filter validation gates will be distinguishable, and the algorithm will
find the correct number of modes; if not, it will only give us a possible model
that would explain the output data.

5 Examples

Examples 1 and 2: We first present two illustrative 1-D examples to explain
the proposed algorithm. We use simulated data generated from the stochastic
linear hybrid system x(k + 1) = aix(k) + v(k); y(k) = cix(k) + w(k) [9]
where i ∈ {1, 2, 3}, a1 = 0.5, a2 = 1.0, a3 = 1.1, and ci = 1, for i = 1, 2, 3.
The noise covariances are 1.0 and 0.1 respectively. The switching times in the



original system are at 39s., 56s., and 79s. The results of the parameter inference
algorithm for hybrid systems for this 1-D example are given in Figure 4. The
algorithm correctly identifies three discrete modes, and correctly detects the
switching times. It also converges to a model consistent with the actual model.
This is illustrated by the following extracts from the algorithm output:
Parameter a1 a2 a3 Q1 Q2 Q3 R1 R2 R3 Transitions

True Value 0.5 1.0 1.1 1.0 1.0 1.0 0.1 0.1 0.1 [39 56 79]

Estimate 0.5014 1.0564 1.1023 1.547 1.2547 1.436 0.0939 0.0455 0.156 [39 56 79]

We realize that the estimates of the dynamical parameters (ai) are more critical
to this method than the noise covariances, which are statistical, and therefore
whose values will depend on the number of trials of data available. Clearly, there
is a very good match in the actual and inferred values of the system dynamics and
switching times. This is further illustrated by another example, this time with
data generated by a system with parameters a1 = 1.3, a2 = 1.5, a3 = 0.6666,
and ci = 1, for i = 1 · · · 3. In this case, with the same switching times as before,
the system parameters are identified correctly.

System Parameter a1 a2 a3 Switching Times

True Value 1.3 1.5 0.6666 [39 56 79]

Estimated Value 1.3 1.5 0.6666 [39 56 79]

The training data and the results of the mode-detection are shown in Figure 5,
along with the error plots. The error is the difference between the estimate of
the continuous state from the inferred model, and the actual continuous state.
Example 3: We apply the algorithm to data obtained from the DragonFly
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Fig. 4. Training data, with output of proposed algorithm for hybrid systems, for 1D
Example (1). Left: Data sets, as a function of time. The different markers correspond
to different identified discrete modes. Center: Mode transitions inferred from data set.
Right: Estimation error plot.

Testbed at the Hybrid Systems Laboratory, at Stanford University. These are
Unmanned Aerial Vehicles (UAVs), and the data we use are the position and
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Fig. 5. Left: Training data, with output of Algorithm 2, for 1D Example (2). The
different markers correspond to different identified discrete modes. Right: Estimation
error plot.

velocity estimates. The data shown in this paper corresponds to a Dual-vehicle
Flight Test. Aircraft 1 is referred to as the evader, and Aircraft 2 as the blunderer.
The purpose of this experiment that produced this data was to demonstrate
algorithms for provably safe closely-spaced parallel approaches [18]. However,
we now use this data for a different purpose: given only the x− and y− position
and velocity measurements, i.e., no discrete or continuous state information, we
build a model of the system which estimates the different modes of flight and
the continuous states. While applying Algorithm 2 to Aircraft 1, we identify
three discrete modes, with four distinct segments in the data. The switching
times are estimated to be at t = 9, 20 and 39 seconds. Comparing this to the
times when the autopilot actions were initiated, we find that the system mode-
transition commands were issued at t = 21 and t = 39 seconds. This further
validates the performance of the algorithm we have proposed. We are also able
to identify the other segments (and their modes) in the data sequence. In both
aircraft trajectories, the initial segment (Mode 1) corresponds to the localizer-
capture segment in which the aircraft first moves into autopilot, and attempts
to capture the localizer trajectory (straight line). Mode 2 corresponds to the
localizer-tracking segment. Now that the two aircraft are flying parallel to each
other, at t = 18 seconds, the blunderer (Aircraft 2) transitions to a mode that
causes a potential conflict with the evader. Detecting this potential conflict, at
t = 21 seconds, the evader initiates a maneuver command to avoid the blunderer.
At t = 39 seconds, the manual pilot takes over from the autopilot and flies the
aircraft back. The trajectories are plotted in Figure 5, along with the norm error
of the smoothed estimates compared to the true data, the convergence plots,
and the mode transition sequences.
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Fig. 6. Parameter Inference Algorithm for Stochastic Linear Hybrid Systems, applied
to Dual-Vehicle Flight Test data. Top: (right) Training data, inferred modes, estimates.
(left) Mode transition sequence. Bottom (left) Error plots. (center) Convergence of
continuous model. (right) Convergence of hybrid model.

6 Conclusions

We have proposed an algorithm that determines a maximum-likelihood hybrid
system model, given only the continuous output of the system. With an intelli-
gent choice of initial conditions, we also compute physically realistic models. We
have applied these methods to the analysis of flight data from our UAV testbed
(DragonFly) and obtained models that allow us to track the vehicles. These
methods will have a wide-range of applications ranging from system identifica-
tion for the many modes of an aircraft, to the problems of modeling biological
systems as hybrid systems for the purpose of analysis. These techniques also
provide a means of determining the parameters of a system that are required for
the efficient design of hybrid estimators, as well as algorithms for multiple-target
tracking and identity management [2].
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