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Abstract. This paper examines the feasibility of predicate abstraction
as a method for the reachability analysis of hybrid systems. A hybrid
system can be abstracted into a purely discrete system by mapping the
continuous state space into an equivalent finite discrete state space us-
ing a set of Boolean predicates and a decision procedure in the theory
of real closed fields. It is then possible to find the feasible transitions
between these states. In this paper, we propose new conditions for pred-
icate abstraction which greatly reduce the number of transitions in the
abstract discrete system. We also develop a computational technique for
reachability analysis and apply it to a biological system of interest (the
Delta-Notch lateral inhibition problem).

1 Introduction

A hybrid system has both discrete and continuous transitions, and so has an
infinite number of state transitions over any continuous time interval. Although
there exist methods to calculate the reachable sets of hybrid systems by solving
the system equations, the infinite nature of the state space makes these methods
computationally very expensive. It is appealing, therefore, to find a method by
which we could extract equivalent finite state models of these systems and use
them to find approximate reachable sets of the original systems.

Predicate abstraction has emerged as a powerful technique to extract such
models from complex, infinite state models (Das et al[3], Graf et al[6]). Dis-
crete abstraction and reachability analysis of hybrid systems based on predicate
abstraction have been proposed in earlier work (Tiwari et al[12], Alur et al[1],
Sokolsky et al[11], Lafferriere et al[8]). The extracted finite state model, called
the Abstract Discrete System (ADS), is said to be an over-approximation of the
original system if the original system satisfies any property of interest that is
satisfied by the ADS.

In this paper, inspired by Tiwari et al[12][13], we return to our hybrid model
of Delta-Notch lateral inhibition (Ghosh et al[5]), and attempt to use the above
methods to perform reachability analysis. We propose new conditions for predi-
cate abstraction, beyond those of Tiwari et al[12], that greatly reduce the number
of transitions in the abstract discrete system given a set of polynomials. We then
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develop a computational technique for the reachability analysis of hybrid sys-
tems. Finally, we analyze the Delta-Notch lateral inhibition problem using the
technique thus developed.

This paper is organized as follows: the problem description, modeling, and
analytical results of the Delta-Notch lateral inhibition problem are presented
in Sections 2-3; the predicate abstraction algorithm and its implementation are
described in Section 4 and Section 5 respectively. Conclusions are presented in
Section 6.

2 Delta-Notch Signaling

The biological process under study, intercellular signaling, results in cellular dif-
ferentiation in embryonic tissue, which is a complex control process regulated by
a set of developmental genes, most of which are conserved in form and function
across a wide spectrum of organisms. Found in almost all multicellular organ-
isms from an early embryo stage, intercellular signaling is a feedback network
which interrelates the fate of a single cell and its neighbors in a population of
homogeneous cells. Among the various signaling channels, the Delta-Notch pro-
tein pathway in particular has gained wide acceptance as the arbiter of cell fate
for an incredibly varied range of organisms (Artavanis-Tsakonas et al[2]).

Delta and Notch are both transmembrane proteins that are active only when
cells are in direct contact, in a densely packed epidermal layer for example
(Lewis[9]). Delta is a ligand that binds and activates its receptor Notch in neigh-
boring cells. The activation of Notch in a cell affects the production of Notch
ligands (i.e. Delta) both in itself and its neighbors, thus forming a feedback
control loop. In the case of lateral inhibition, high Notch levels suppress ligand
production in the cell and thus a cell producing more ligands forces its neighbor-
ing cells to produce less. The Delta-Notch signaling mechanism has been found
to cause pattern formation in many different biological systems, like the South
African claw-toed frog (Xenopus laevis) embryonic skin (Marnellos et al[10]) and
the eye R3/R4 photoreceptor differentiation and planar polarity in the fruit fly
Drosophila melanogaster (Fanto et al[4]). An example of the distinctive “salt-
and-pepper” pattern formed due to lateral inhibition is the Xenopus epidermal
layer where a regular set of ciliated cells form within a matrix of smooth epider-
mal cells as seen in Figure 1(a).

3 Model and Analytical Results

To model the regulation of intracellular Delta and Notch protein concentrations
through the feedback network, experimentally observed rules governing the bio-
logical phenomenon have to be implemented. Firstly, since Delta and Notch are
transmembrane proteins, cells have to be in direct contact for Delta-Notch sig-
naling to occur. This implies that a cell is directly affected by, and directly affects
in turn, only immediate neighbors. Secondly, Notch production is turned on by
high Delta levels in the immediate neighborhood of the cell and Delta production
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Fig. 1. (a) Xenopus embryo labeled by a marker for ciliated cell precursors seen as black
dots. Photograph courtesy of P. D. Vize (The Xenopus Molecular Marker Resource,
http://vize222.zo.utexas.edu). (b) Hexagonal close-packed layout scheme for cells
in two dimensional arrays.

is switched on by low Notch concentrations in the same cell. Thirdly, at steady
state, a cell with high Delta levels must have low Notch level and vice versa.
This is essential for differentiation to occur, for cells with high Delta levels in
steady state become ciliated, and cells with high Notch in steady state remain
smooth. Finally, both Delta and Notch proteins decay exponentially through
normal proteolysis. In the model, the cells are assumed to be hexagonal close
packed, i. e. each cell has six neighbors in contact with it (Figure 1(b)). We will
denote as “biologically consistent” our computational results which comply with
these biological observations.

Each biological cell is modeled as a four state piecewise affine hybrid au-
tomaton. The four states capture the property that Notch and Delta protein
production can be individually switched on or off at any given time. It is as-
sumed that there is no command-actuation delay in the mode switching. The
formal definition of the hybrid automaton is given by:

H1 = (Q1, X1, Σ1, V1, Init1, f1, Inv1, R1)
Q1 = {q1, q2, q3, q4}
X1 = (vD, vN )T ∈ <2

Σ1 =

{
uD, uN : uD = −vN , uN =

6∑

i=1

vi
D

}

V1 = ∅
Init1 = Q1 ×

{
X1 ∈ <2 : vD, vN > 0

}

f1(q, x) =





[−λDvD;−λNvN ]T if q = q1

[RD − λDvD;−λNvN ]T if q = q2

[−λDvD; RN − λNvN ]T if q = q3

[RD − λDvD; RN − λNvN ]T if q = q4

Inv1 = {q1, {uD < hD, uN < hN}} ∪ {q2, {uD ≥ hD, uN < hN}}
∪ {q3, {uD < hD, uN ≥ hN}} ∪ {q4, {uD ≥ hD, uN ≥ hN}}
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R1 :




R1 (q1, {uD ≥ hD ∧ uN < hN}) ∈ q2 ×<2

R1 (q1, {uD < hD ∧ uN ≥ hN}) ∈ q3 ×<2

...
R1 (q4, {uD < hD ∧ uN ≥ hN}) ∈ q3 ×<2




where, vD and vN : Delta and Notch protein concentrations, respectively, in
a cell; vi

D: Delta protein concentration in ith neighboring cell; λD and λN : Delta
and Notch protein decay constants respectively; RD and RN : constant Delta and
Notch protein production rates, respectively; hD and hN : switching thresholds
for Delta and Notch protein production, respectively. RD, RN , λD and λN are
experimentally-determined constants. The switching thresholds hD and hN are
unknown and possible ranges for them are derived in Ghosh et al[5], which are
biologically consistent. In the single cell, vi

D = 0,∀i ∈ {1, . . . 6}. The inputs uD

and uN are the physical realization of the protein regulatory properties in the
model outlined before.

The two cell hybrid automaton H2 is the composition of two single cell au-
tomata, to form a model with four continuous states and 16 discrete modes.
Here, v1

D 6= 0 for each of the two cells, and thus the Delta level of each cell is
communicated to its neighbor to control Notch production. Modeling the full two
dimensional layer of cells involves composing N×N single cell hybrid automata.

Both the single and two cell hybrid automata were analyzed in Ghosh et
al[5], to obtain constraints on the range of the protein kinetic parameters and
switching thresholds for biologically feasible equilibria to exist:

hD, hN : −RN

λN
< hN ≤ 0 ∧ 0 < hN ≤ RD

λD

The two cell automaton was also shown to have a Zeno state with a particular
Zeno execution that is an invariant: vD1 − vD2 ∧ vN1 − vN2 .

4 Predicate Abstraction

In this section, we review the predicate abstraction techniques proposed in Ti-
wari et al[12] and propose new conditions to refine transitions in the ADS. We
then develop a method of finding approximate backward reachable sets of the
equilibria. A flow-chart describing this procedure is shown in Figure 2.

Any trajectory of a hybrid system can be resolved into discrete and con-
tinuous transitions. We first consider the predicate abstraction of the continu-
ous state space. A continuous dynamical system can be represented by a tuple
(X, InitX, f, Inv), where X ∈ <n is the set of continuous states, InitX is a set of
initial states, f : X → TX is the continuous dynamics, and Inv is the invariant
set. We assume InitX, f , and Inv are polynomials of continuous states.

4.1 Construction of the Abstract Discrete System

Given a continuous system, following the methods of Tiwari et al[12], we con-
struct the ADS, (Q, InitQ, δ) where Q is a finite set of discrete states, InitQ is
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Fig. 2. Flow-chart describing the process of calculating approximate backward reach-
able sets using predicate abstraction techniques.

the set of discrete initial states, and δ is the set of transitions. We first construct
an initial set P0 which contains polynomials of interest (for example: state vari-
ables, governing equations, invariants, guards, or any properties we may wish to
verify). We then construct a finite set P of polynomials following the inference
rule: if a polynomial p ∈ P , then we add the derivative of p with respect to time,
ṗ, to the set P , if ṗ is not a constant multiple of any existing polynomial in
P . This process may be terminated either when the set P saturates (ie. taking
derivatives of the elements in P adds no new polynomials) or at a convenient
time. Given this finite set P of polynomials, the abstract discrete states (ψi) are
described by conjunctions of all these polynomials evaluated over the domain
{pos, neg, zero} i.e. conjunctions of these polynomial inequalities. An abstract
discrete state is therefore a truth-invariant region in <n for all polynomial in-
equalities from the set P . The larger the number of polynomials in P , the larger
the number of discrete states, and the finer the abstraction.

It is clear from the above that if we begin with n polynomials in our original
system, we could have a total of 3n discrete modes in our abstracted system.
However, many (in fact, most) of these modes are physically infeasible regions,
i.e. there is no solution to the conjuncts of these polynomial inequalities in
real space. For example, consider the set P = {x, x − 1}. Although this would
theoretically allow 23 discrete regions, regions represented by [x < 0

∧
(x−1) > 0]

and [x = 0
∧

(x − 1) > 0] can clearly not exist in real space. We use a decision
making procedure in the theory of closed fields, QEPCAD (Hong[7]), to eliminate
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these modes. Since QEPCAD is restricted to polynomial inputs, we can apply
this procedure only to systems where the dynamics, invariants and initial states
are polynomial functions of the state variables. We are similarly constrained to
verify polynomial properties of the system.

4.2 Derivation of Feasible Transitions

The transition relations (transition map) in the ADS can be obtained using the
three-step process outlined below. The first has been proposed in Tiwari et al[12];
we propose the other two.

1. Transition relations: We add an abstract transition (ψ1, ψ2) ∈ δ if the
signs of the derivatives are consistent with the transition.
For example, for any p ∈ P , If p < 0 is a conjunct in ψ1,

(a) If ṗ < 0, then p < 0 is a conjunct in ψ2.
(b) If ṗ = 0, then p < 0 is a conjunct in ψ2.
(c) If ṗ > 0, then either p < 0 or p = 0 is a conjunct in ψ2.
(d) If the valuation of ṗ < 0 cannot be determined from ψ1, then either

p > 0 or p = 0 is a conjunct in ψ2.

Similar conditions exist for the cases when p > 0 and p = 0 are conjuncts in
ψ1 (Tiwari et al.[12]). The state transitions in the ADS are thus determined
by the signs of the derivatives of polynomials with respect to time i.e. flow
directions. The abstract discrete transitions obtained by the above rules can
be refined by eliminating abstract states and transitions which do not satisfy
invariant conditions.

2. Flow conditions: We include the signs of the derivatives of all the poly-
nomials in the abstraction, and thus eliminate condition (d) in the above
transition relations.
In the abstraction procedure in Tiwari et al[12], we have no information
about the flow direction of some polynomials in P unless it is saturated.
As a result, we allow transitions which arise from the ambiguity in the sign
of these derivatives. On the other hand, if we were to use the sign of these
derivatives in the finding the abstract transitions, but not in forming the
ADS, we could eliminate a large number of infeasible transitions without in-
creasing computational time substantially. This problem was not specifically
encountered in the examples used in Tiwari et al[12] because the system of
polynomials saturated. For a more general system, however, this condition
greatly refines the transition map.

3. Adjacency conditions: We only allow abstract transitions between adja-
cent regions.
The abstraction procedure maps the boundaries of different regions in the
original system onto separate abstract states. We allow an abstraction of a
continuous transition from a state only if it is either transitioning to itself or
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to the abstraction of a boundary adjoining the original state. Even for a one-
dimensional system, physically infeasible discrete transitions (discontinuous
jumps) may occur in the ADS if the adjacency condition is not enforced.

With the two additional conditions, physically infeasible transitions in the ADS
are eliminated and thus the complexity of the ADS may be dramatically reduced.

The predicate abstraction procedure for continuous systems can be easily
extended to hybrid systems by considering discrete states in the original hybrid
system as new abstract discrete states in the ADS as well. Then, discrete states
in the ADS are pairs of the original discrete states and the abstract discrete
states of the original continuous states. The transition relation in the ADS can
be obtained by combining the discrete transitions in the original hybrid systems
and the abstract transitions for continuous states. We find that an ADS is an
over-approximation of the original system, i.e. any transitions that are possible
in the original system are definitely manifested in the ADS.

4.3 Reachability

The reachability analysis is carried out in two phases.

1. Backward reachability in the ADS: Given the transition map, we com-
pute the approximate backward reachable set of each equilibrium in the
discrete state space, i.e. the set of modes that can reach a given equilibrium
mode in the ADS.

2. Continuous state-space representation of backward reachable set:
We combine the regions corresponding to the modes of the ADS that can
reach a particular equilibrium point (mode) and find a continuous state-space
representation of the backward reachable set of that equilibrium point. There
are several ways to do this; we use QEPCAD for this in this paper.

5 Implementation

In this section we perform reachability analysis of the Delta-Notch model using
the methods outlined above. We consider a model in which the protein kinetic
parameters (λ’s and R’s) are set to unity. We assume that the switching thresh-
olds are hD = −0.5 and hN = 0.2 which were found in Ghosh et al[5] to be in
the range which produces sensible biological results. We compute reachable sets
using predicate abstraction with the new conditions. In this reachability anal-
ysis, self-loops in the transition map are eliminated in all modes except those
which correspond to the equilibria of the original system.

5.1 Single-cell Hybrid Automaton

The single-cell Delta-Notch lateral inhibition problem has two state variables
(vD and vN ) and 5 polynomials (the state variables, their derivatives, and a
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switching line). We impose the additional condition that vD and vN (Delta and
Notch concentrations) are positive. For the case where uN ≥ hN , we find that
the invariant boundaries correspond to sections of the switching lines themselves,
and are polynomials in our original set, and is hence discrete modes of the ADS.
The backward reachable set of the equilibrium (vD = 0, vN = 1) is simply the
positive quadrant, as expected from Ghosh et al[5].

5.2 Two-cell Network

In the two-cell Delta-Notch lateral inhibition problem, we begin with 12 poly-
nomials (state variables: vD1 , vN1 , vD2 , vN2 , their derivatives: v̇D1 , v̇N1 , v̇D2 , v̇N2 ,
and the switching conditions: vN1+uD, vD1−uN , vN2+uD,vD2−uN ) in 4 dimen-
sions. These polynomials are those that are derived from the dynamic equations
and the switching conditions alone. We assume that the input threshold values
satisfy the conditions proposed by Ghosh et al[5], i.e.,

hD, hN : −RN

λN
< hN ≤ 0 ∧ 0 < hN ≤ RD

λD

As in Ghosh et al[5], we find that uD = −0.5 and uN = 0.5 satisfy these condi-
tions. However, the abstraction in this form alone is not enough for us to find the
invariant regions, since the boundaries of these regions do not correspond to any
of the polynomials in the original set. From phase portrait analysis, we include
projections of the invariant boundaries (vD1 − vD2 and vN1 − vN2 ) and their
derivatives as predicates in our polynomial set. We now have 18 polynomials
in 4 variables. The system has 2 equilibrium points, (vD1 = 1, vN1 = 0, vD2 =
0, vN2 = 1) and (vD1 = 0, vN1 = 1, vD2 = 1, vN2 = 0). Performing reachability
analysis on this transition set, we find that we can divide the infinite state space
into four sets: Set 1 is the backward reachable set of the first equilibrium, Set 2
is the backward reachable set of the other equilibrium, Set 3 is the invariant set
and Set 4 is a region of ambiguity which is backwards reachable from either equi-
librium. We also have an explicit way of mathematically describing the different
sets in higher dimensions.

Set Backward Reachable Set of Equivalent region
1 vD1 = 1,vN1 = 0,vD2 = 0,vN2 = 1 (vD2−vD1 ≤ 0)∧(vN2−vN1 ≥ 0)∧{[(vD1 6= 1∨vN1 >

0∨vD2 > 0∨vN2−vN1 6= 1)∧vN2 6= vN1 ]∨[vD2−vD1 <
0 ∧ vN2 = vN1 ]}

2 vD1 = 0, vN1 = 1, vD2 = 1, vN2 = 0 (vD2−vD1 ≥ 0)∧(vN2−vN1 ≤ 0)∧{[(vD1 6= 0∨vN1 <
1 ∨ vD2 6= 1 ∨ vN2 6= 0) ∧ (∧vD2 6= vD1 )] ∨ [(vN1 >
1 ∧ (vN1 > 0 ∧ vD2 = vD1 )) ∧ vN2 6= vN1 ]}

3 Neither equilibrium (Invariant region) vD2 − vD1 = 0 ∧ vN2 − vN1 = 0
4 Either equilibrium (Ambiguous region) [(vD2 − vD1 ≥ 0) ∧ (vN2 − vN1 ≥ 0)] ∨ [(vD2 − vD1 ≤

0) ∧ (vN2 − vN1 ≤ 0)]

However, we find that when we take the projections on the vN1 = vN2 or
vD1 = vD2 planes, this region of ambiguity (Set 4) disappears. Since it is diffi-
cult to visualize regions in 4 dimensions, we study projections along planes of
interest. A comparison to the phase portraits analyzed in Ghosh et al[5] is shown
in Figure 3. Since the system is deterministic, we know for certain that Set 4
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Fig. 3. Comparison of projections on the vN1 = vN2 plane, from predicate abstraction
(left) and simulations from [5] (right).

must be an empty set. However, with the chosen predicates, we can only reduce
the region of ambiguity to one-eighth of the infinite continuous state space. We
believe that adding more polynomials relevant to the dynamics of the system
(obtained from further analysis and simulation) will help us further prune this
ambiguous region. We are currently working on addressing this issue.

We must comment, at this point, on the restrictions imposed on the com-
plexity of the problem by the use of QEPCAD for predicate abstraction. The
time-complexity of the quantifier elimination procedure employed here is doubly
exponential in the number of variables, and polynomial in the number of polyno-
mials in our set. This restricts us to problems in a small number of dimensions.
Also, since we are dealing with a large number of polynomials in each step of our
elimination procedure, we employ a hierarchical application of QEPCAD while
eliminating physically infeasible modes.

6 Conclusions

Predicate abstraction has been proposed as a means of finding approximate back-
ward reachable sets of the equilibria of hybrid systems in this paper. Since the
Abstract Discrete System (ADS) is an over-approximation of the original sys-
tem, this reachability analysis is conservative. We have proposed new conditions
in checking for feasible transitions in the ADS, which greatly reduces the num-
ber of transitions in the discrete transition map. We have also implemented this
as a computational technique for the reachability analysis of the Delta-Notch
lateral inhibition system. Approximate backward reachable sets for this system
are computed efficiently and elegantly using this technique. However, we find the
fact that the accuracy of reachability analysis using predicate abstraction greatly
depends on the choice of polynomials for abstraction makes it important to have
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information about a given system a priori (from analysis and simulations) to get
good results in the reachability analysis.
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