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Abstract— Outlier detection, or the identification of observa-
tions that differ significantly from the norm, is an important
aspect of data mining. Conventional outlier detection tools
have limited applicability to networks, in which there are
interdependencies between the variables. In this paper, we
consider the problem of identifying unusual spatial distributions
of nodal signals on a graph. Leveraging tools from graph signal
processing and statistical analysis, we propose a methodology to
identify outliers in graph signals in a computationally efficient
manner. Specifically, we examine a projection of the graph
signal into a lower dimensional representation that enables
easier outlier identification. Additionally, we derive analytical
expressions for the outlier bounds. We apply our technique by
identifying off-nominal days in the context of the US airport
network using aviation delay data.

I. INTRODUCTION

Outlier or anomaly detection – the identification of data
points that differ in a significant manner from the majority
of the observations – is an important problem in data
analysis, for a number of reasons. When such data points
are included while training models, the resulting models
can be unrepresentative of the real system. Furthermore,
several commonly-used algorithms (for example, linear or
logistic regression, and AdaBoost) are particularly sensitive
to outliers. Anomaly detection also plays an important role
in system health monitoring and diagnosis. Outliers could
correspond to valid observations resulting from unusual,
off-nominal, or unexpected events in the system. In such
cases, outliers represent interesting observations that merit
further investigation. These situations motivate the need to
identify outliers, and to provide interpretable rationales for
them being classified as such. When the data corresponds to
observations of a networked system, an observation may be
an outlier not only because of its absolute value (for example,
too large or too small), but also because it corresponds to
an unusual distribution of values across the nodes of the
network. The growing ubiquity of networked systems in
science and engineering further motivates the development
of outlier identification methods for signals on networks.

In this paper, we consider the problem of identifying out-
liers in data obtained from networked systems. We abstract
the network interactions in the form of a graph with N ver-
tices, and consider the data observations as signals supported
on the vertices. Thus, each element of the observation vector
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(also referred to as a data point or a graph signal vector) is
a scalar value associated with a graph vertex. The strength
of the interdependencies between the signal values at pairs
of nodes determines the edge weights of the graph.

Outlier detection in graph signals poses a different set of
challenges when compared to anomaly detection in other
types of data. The underlying relationships between the
signals at different vertices of the graph result in a narrower
class of “nominal” data points compared to the situation
when the signal at each vertex is independent of that at other
vertices. Therefore, conventional outlier detection techniques
for multi-dimensional data sets that test whether the norm of
the data vector is outside a certain range of values would
be overly conservative for graph signals. Simply using the
magnitude of the signal at a vertex is not sufficient to detect if
the observation is an outlier or not. A particular observation
of the graph signal may be considered an outlier because
the spatial distribution of the signal magnitudes across the
vertices significantly differs from other observations within
the data set. In our work, we formalize these different notions
of outlier characteristics, and derive criteria for detecting
outliers in graph signals.

A. Prior work

Several techniques exist to detect outliers in multidimen-
sional data sets. One approach is to identify clusters, and
any observation that falls far away from a cluster is defined
as an outlier [1]. Alternatively, an underlying multivariate
statistical distribution of the data is assumed, and tests are
performed to see if an observation lies at the extremes of the
distribution [2], [3]. Techniques from signal processing such
as filtered wavelet transforms for multidimensional data sets
have also been considered [4]. In our work, we propose and
analyze an outlier detection method that extends the above-
mentioned signal processing techniques to analyze the spatial
distribution of data in the graph domain.

Previous literature related to graph-based data have used
information theory to identify structural features [5] and spa-
tial outliers [6]. One particular characteristic, Total Variation
(TV), a measure of the smoothness of a signal supported on
a graph, has been used as a feature vector for classification
[7]. While the outlier detection problem has been addressed
in several contexts (for example, time-series data [8]), it
has received little attention in the context of graph signals.
Our work attempts to fill this gap by using TV as a metric
to identify graph signals with off-nominal or unexpected
spatial distributions across the vertices. For a comprehensive
overview of general graph signal processing techniques, we
refer the reader to [9].



B. Contributions

We define a new notion of an outlier in a high-dimensional
dataset originating from a networked system. We extend prior
works in outlier detection on graph signals by considering
the spatial distribution of the signals rather than only using
the signal magnitude. Specifically, we make a distinction
between two kinds of outliers – outliers in scale and outliers
in spatial distribution – to aid in the interpretability of
our approach. We develop analytical bounds on the Total
Variation (TV) of the graph signal in order to identify
outliers. Furthermore, we derive analytic expressions for the
mean and variance of the TV for a multivariate Gaussian
signal on a graph. The proposed methodology can identify
multiple outliers simultaneously, provide insights as to why
a particular observation was identified as an outlier, and
is computationally inexpensive. The availability of such
analytic expressions allows us to perform outlier detection
even in the case of limited datasets, when there is insufficient
data for empirical techniques. Finally, we extend our results
to a “partial information” setting, where the exact strength of
the interaction between adjacent graph vertices is unknown.
Through simulations, we provide further intuition for the
bounds and relationships that we characterize. Finally, we
demonstrate our methodology using real-world air traffic
delay data.

II. SETUP AND NOTATIONS

Consider a data set with M observations OM =
{x(1), . . . ,x(k), . . . ,x(M)}, with each observation x(i) ∈ RN×1

and x(i) =
(

x(i)1 , . . . ,x(i)N

)ᵀ
. We drop the superscript when

talking about a generic observation or data point, and refer
to it as x. The N elements (or features) of x are not
independent, and their pairwise interactions are captured
using an undirected graph G = (V,E) with |V |= N vertices
and adjacency matrix A describing the edges E. We assume
that the interaction between any two elements is symmetric,
hence A = Aᵀ. The observation x can equivalently be consid-
ered as signals xi supported on vertices i ∈ V on the graph
with connectivities and weights given by A.

The empirical mean of the signal at vertex i is µ̂i =
1
M ∑

M
k=1 x(k)i . For each pair of unique vertices (i, j) and given

the set of observations OM , we can compute the sample
Pearson correlation coefficient, denoted as ri j|OM :

ri j|OM =
∑

M
k=1

(
x(k)i − µ̂i

)(
x(k)j − µ̂ j

)
√

∑
M
k=1

(
x(k)i − µ̂i

)2
√

∑
M
k=1

(
x(k)j − µ̂ j

)2
. (1)

In terms of notation, bold-face fonts indicate vectors, random
variables are given in upper case, and a “hat” represents an
empirically-derived quantity. The graph signal vector x are
assumed to be specific realizations of a random variable X =
(X1, . . . ,XN)

ᵀ ∈ RN×1, where X is a multivariate Gaussian
random variable X iid∼ N (µµµ,Σ). µµµ ∈ RN×1 is the vector of
means and Σ ∈ SN×N is the positive semi-definite covariance

matrix. The correlation coefficient between the signals on
two adjacent vertices i and j is given by

ρi j =
E[(Xi−µi)(X j−µ j)]√

E[(Xi−µi)2]E[(X j−µ j)2]
. (2)

The sample correlation coefficient, ri j|OM , is a consistent
estimator of ρi j, i.e., lim

M→∞

(
ri j|OM

)
= ρi j. The combinatorial

graph Laplacian corresponding to an adjacency matrix A =
[ai j]∈RN×N is given by L= D−A, where D = [di j]∈RN×N

is a diagonal matrix with dii = ∑ j ai j.

Definition 1. The Total Variation (TV) of a signal x sup-
ported on the vertices of a graph with adjacency matrix A
and graph Laplacian L is defined as:

TV(L,x) =
1
2 ∑

i 6= j
ai j(xi− x j)

2 = xᵀLx. (3)

For notational brevity, since the TV is always defined with
respect to some graph Laplacian, we will write TV(x) when
examining the observation of a particular signal’s TV, and
TV(X) for the TV as a derived random variable.

The TV can be interpreted as a measure of the smoothness
of a graph signal. A higher value of the TV means that there
is more variation of the signal across edges. Specifically,
edges with a higher weight would contribute more to the TV
when the signal values differ at the vertices joined by those
edges. For the results in this paper, we set the edge weights
(ai j) of the graph to be the correlation between signals on
pairs of vertices (either ρi j or its estimate).

III. TV AS A METRIC FOR OUTLIER DETECTION

We now present two definitions of outliers, and argue
that these outliers can be identified through examining the
smoothness of a graph signal via the TV metric. Recall that
all the observations of our graph signal vector x are assumed
to be realizations of the random variable X iid∼N (µµµ,Σ). If the
magnitude, or scale, of each measured vertex signal differs
significantly from historical observations, i.e., if ‖x‖ differs
by a significant amount relative to E[‖X‖], then we call this
observation an outlier in scale or a scale outlier. This is the
most intuitive definition of an outlier for multidimensional
data: Observations that differ significantly in magnitude
compared to what is expected.

Definition 2. An observation is considered to be an outlier
in scale or a scale outlier of level k if

‖x‖ /∈
[
E[‖X‖]− k

√
Var[‖X‖], E[‖X‖]+ k

√
Var[‖X‖]

]
,

for some k≥ 0. In other words, an observation is considered
an outlier in scale if the norm of x does not lie within k
standard deviations of its expected value.

Note that ‖•‖ : RN → R≥0 is any valid norm map given
a properly-equipped metric space. On the other hand, if the
spatial distribution exhibited in a graph signal x is unex-
pected given historical observations, then the observation of
that signal is called an outlier in distribution or distribution



outlier. Furthermore, we formalize the following notions of
strong and weak outliers in distribution:

Definition 3. An observation x is considered a strong
distribution outlier or a strong outlier in distribution of level
k if TV(x) /∈ [A,B], where:

A = E [TV(X) | ‖X‖= ‖x‖]− k
√

Var [TV(X) | ‖X‖= ‖x‖]
B = E [TV(X) | ‖X‖= ‖x‖]+ k

√
Var [TV(X) | ‖X‖= ‖x‖].

In other words, we say that an observation is a strong outlier
in distribution if the value of its TV does not lie within k
standard deviations of its expected value, where both the
expectation and standard deviation are conditioned on the
magnitude or norm of x.

Definition 4. An observation x is considered a weak distri-
bution outlier or a weak outlier in distribution of level k if
TV(x) /∈ [A′,B′], where:

A′ = E [TV(X)]− k
√

Var [TV(X)]

B′ = E [TV(X)]+ k
√

Var [TV(X)]

The definition of a weak outlier in distribution is similar
to the strong equivalent, except that it corresponds to the
unconditioned probability distributions.

We now motivate the intuition behind using TV as an
outlier detection metric. The edge weights of the graph
are given by the correlations of pairwise adjacent vertex
signals. If the correlation is low, then any observed difference
in the signal magnitudes is in some sense expected, and
the contribution of that pair of vertex signals to the TV
given by ρi j(xi− x j)

2 is small since ρi j is small. However,
if the realized TV is large, then it means that (xi − x j)

2

was significantly larger than usual, indicating an unusual,
or rare distribution of signals across two vertices. Thus, an
observation that can be considered an outlier can be identified
by deviations in its TV, summed across all unique pairs of
vertices (i, j) ∈V ×V . As we will see later, this idea can be
extended to other values of ρi j as well, and forms the basis
for identifying weak outliers in distribution.

While TV by itself is a useful metric to classify graph
signals with an unexpected spatial distribution across ver-
tices, a more faithful metric that considers only the spatial
distribution and not the influence of signal magnitude is
desirable. This requires conditioning the TV on ‖X‖= ‖x‖,
leading to the definition of strong outliers in distribution. For
classifying strong outliers in distribution, the bounds now
fluctuate dependent on the realized ‖x‖ .

In order to perform a tractable and interpretable analysis
using the definitions, we make some assumptions regarding
the observations x. We consider only the 1-norm, i.e. ‖x‖=
∑i |xi|, and assume that all vertex signals are non-negative.
This assumption is generally acceptable, as it is true that for
many physical systems, the vertex signals is always a non-
negative quantity (e.g., delays at an airport, number of cars
at an intersection, etc.). These two assumptions allow us to
express ‖x‖ as ∑i xi.

A notional representation of the various bounds for strong
and weak outliers in distribution and scale is shown in
Figure 1. While deriving explicit analytical bounds for strong
outliers in distribution remain an open challenge, we have
successfully obtained analytical expressions for the bounds
on weak outliers in distribution (Section IV). Via simulation,
we evaluate empirically-derived bounds for strong outliers in
distribution, and show that the gap between the strong and
weak outlier bounds depends on µµµ and Σ. To summarize,
examining TV(x) as a function of ‖x‖ provides a low-
dimensional projection of a complex, networked data set
with pairwise interdependencies, and enables the detection
of outliers in distribution and scale.

TV #
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Fig. 1. Notional representation of bounds that we will derive analytically
(outliers in scale and weak outliers in distribution), and empirically (strong
outliers in distribution).

While the values for the mean and variance of the TV can
be obtained from the set of observations OM , our contribution
lies in deriving analytical closed-form expressions for such
bounds. This is useful for two reasons: (1) Even though we
have accurate information about the means and variances of
signals at each node, there may be insufficient data points
to reliably estimate the expectation and variance of TV; (2)
We can obtain intuition regarding how the properties of the
signals (data set), i.e. µµµ and Σ, determine the bounds for
outlier detection.

IV. BOUNDS FOR OUTLIER DETECTION

In this section, we derive analytic expressions for the ex-
pectation and variance of the TV for the case with “complete
information” (that is, ρi j is known) as well as the “partial
information” case (where only bounds on ρi j are known).
Finally, we also present the bounds for outliers in scale.

A. Expectation and variance of TV given complete informa-
tion

We first compute the expectation of the TV for a random
graph signal X. Note that computing the expectation does not
require the distribution to be a multivariate Gaussian, only
that it has a finite mean and variance.

E[TV(X)] = E

[
1
2 ∑

i6= j

{
ρi j(Xi−X j)

2}]
=

1
2 ∑

i6= j

{
ρi j
(
E
[
X2

i
]
+E

[
X2

j
]
−2E [XiX j]

)} (4)



Substituting E [XiX j] = µiµ j +ρi jσiσ j from (2) and E
[
X2

i
]
=

µ2
i +σ2

i in (4), we get

E[TV(X)]=
1
2 ∑

i6= j

{
ρi j
[
(µi−µ j)

2 +(σ2
i +σ

2
j −2ρi jσiσ j)

]}
.

(5)
Equation (5) gives the contribution of each edge to the TV.

The contribution of each edge – alternatively, of each unique
pair of vertices – depends on the difference in signal means,
variances, and correlation. We examine some specific cases
that impose certain conditions on the means, variances, and
correlations:

1) If there is no correlation between the signals at any
two vertices, i.e. ρi j = 0 for all vertices i 6= j, then
E[TV(x)] = 0.

2) If there is perfect correlation between the signals at
any two vertices, i.e., ρi j = 1 for all vertices i 6= j,
then E[TV(x)] = 1

2 ∑i6= j
{
(µi−µ j)

2 +(σi−σ j)
2
}

.
3) If the means are the same for all signals, i.e.,

µi = µ j for all vertices i 6= j, then E[TV(X)] =
1
2 ∑i 6= j

{
ρi j

[
σ2

i +σ2
j −2ρi jσiσ j

]}
.

4) If all pairwise vertex signals have the same means
(µi = µ j), variances (σi = σ j = σ), and correlation
coefficient (ρi j = ρ) for all vertices i 6= j, then

E[TV(X)] = ∑
i6= j

{
ρσ

2(1−ρ)
}
= N(N−1)ρσ

2(1−ρ). (6)

The computation of the variance of the TV is more involved.
While we can derive a closed-form analytic equation, it
cannot be expressed in a simple form. The outline of the
derivation is as follows:

Var [TV(X)] = E
[
TV(X)2]−E [TV(X)]2 . (7)

The second term, E [TV(X)]2, is known from (5). The first
term can be expanded as

E
[
TV(X)2]= 1

4
E

(∑
i6= j

{
ρi j(Xi−X j)

2})2
 . (8)

Expanding (8) and using linearity of the expectation operator
gives us an expression in terms of E

[
X4

i
]
, E
[
X3

i X j
]
, and

E
[
X2

i X2
j

]
. We know E

[
X4

i
]
= µ4

i +6µ2
i σ2

i +3σ4
i . The ana-

lytical expression for higher-order moments of the product
of dependent Gaussian random variables was derived in [10],
with a more implementable form that also accounts for non-
zero means given in [11].

Proposition 1 (Isserlis (1918) and Kan (2008)). Suppose
X = (X1, . . . ,XN)

ᵀ ∼N (µµµ,Σ), where Σ is an N×N positive
semi-definite matrix. For non-negative integers s1 to sN , we

have

E

[
N

∏
i=1

X si
i

]
=

s1

∑
ν1=0
· · ·

sN

∑
νN=0

[s/2]

∑
r=0

(
s1

ν1

)
· · ·
(

sN

νN

)

×


(

hhhᵀΣhhh
2

)r
(hhhᵀµµµ)s−2r

r!(s−2r)!

 ,

where s = s1 + · · ·+ sN and hhh =
( s1

2 −ν1, ...,
sN
2 −νN

)ᵀ.
Proof. See [10] and [11]. �
Substituting the results from Proposition 1 in the ex-

pansion of (8), we can obtain an analytical expression for
Var[TV(X)] as a function of µµµ and Σ. While the variance of
the TV involves a significant number of terms and cannot be
written in a simple algebraic form, it can be easily evaluated
symbolically and numerically using a computer. We give the
following case when we can evaluate the variance of the TV
easily:

Proposition 2. If E[TV(X)] = 0 and ρi j ≥ 0, ∀i, j (or ρi j ≤
0, ∀i, j), then Var[TV(X)] = 0.

Proof. Since TV(X) ≥ 0 (or TV(X) ≤ 0), E[TV(X)] =
0 =⇒ TV(X) = 0. Hence, Var[TV(X)] = 0. �

However, note that E[TV(X)] = 0 is not a necessary
condition for Var[TV(X)] = 0. If ρi j = 1, µi 6= µ j, and
σ2

i = σ2
j , then E[TV(X)] 6= 0 and E[TV(X)] depends on

(µi−µ j)
2. However, the random variable Xi−X j will always

be a constant, and thus Var[TV(X)] = 0 still holds.
The analytic expressions we derived for the expectation

and variance of the TV allow us to compute the bounds
given in Definition 4, thereby delineating weak outliers in
distribution.

B. Expectation and variance of TV given partial information

We consider the setting where the mean and variance of
the signal at each vertex is known, i.e., µµµ and σ2

i is known
for all vertices i ∈V , but the correlation between any pair of
vertex signals, ρi j, is not known precisely. This can happen
in real systems if a data-reporting agent at each vertex can
only obtain local vertex information and does not share
information with other agents. In such cases, we can only
obtain marginal information regarding individual means and
variances at every vertex. While the exact interdependency
between two pairwise vertices may not be available, we
develop a theory regarding detecting outliers in graph signals
using only an approximate bound on the nature of the
interaction. Specifically, we assume that the observations are
drawn from a multivariate Gaussian distribution with a fixed
µµµ ∈ RN×1 and Σ ∈ SN×N , but the precise value of ρi j is
unknown.

For the propositions we construct and prove in this section,
we require all the correlation coefficients to have the same
sign, i.e. all ρi j ≥ 0 or all ρi j ≤ 0, ∀i, j ∈ V . We con-
sider the former, and introduce the following projections of
the correlation coefficients into the non-negative half-plane:



ρ
+
i j = max

{
0, ρi j

}
and r+i j|OM

= max
{

0, ri j|OM

}
. A similar

projection can be defined for non-positive correlations, and
all results follow analogously.

We derive tight bounds on E[TV(X)] and Var[TV(X)]
when we are only given bounds on each correlation coeffi-
cient 0≤ νi j < ρi j < εi j ≤ 1. We first present the setup leading
to the two propositions that quantify the corresponding
bounds on E[TV(X)] and Var[TV(X)].

Every edge between unique pairs of vertices i and j in a
graph obtained from the set of observations OM is assigned
a weight r+i j|OM

. Note that r+i j|OM
is a consistent estimator of

ρ
+
i j , since the projection into the non-negative half-plane can

be alternatively defined by piecewise affine transformations
[12]. However, the estimator is biased, and we have from
[12] that

E[ri j|OM ] = ρi j

(
1−

1−ρ2
i j

2M
+O

(
1

M2

))
. (9)

Additionally, ri j|OM is a random variable with a valid prob-
ability density function f (ri j|OM |ρi j) that has an explicit
form expressible in terms of the Euler gamma function Γ(x)
[13], [14]. It is important to note that the probability density
function is dependent only on the number of observations
M, and independent of any new realizations of the random
variables Xi and X j. We will make use of this fact in the
proofs for our propositions.

With the above setup, we can now redefine TV for an
unobserved graph signal vector X ∼N (µµµ,Σ) with respect
to the graph Laplacian L∈ SN×N constructed using OM . Note
that TV(X) is a derived random variable,

TV(X) =
1
2 ∑

i6= j

{
r+i j|OM

(Xi−X j)
2
}
. (10)

In Proposition 3, we provide bounds on E[TV(X)], and in
Proposition 4, we proceed to derive bounds on Var[TV(X)].

Proposition 3. Suppose that 0 ≤ νi j < ρ
+
i j < εi j ≤ 1 for all

unique pairs of vertices i, j ∈V . Then, there exists scalars δ1
and δ2, with δ2 ≥ 0, such that max{0,δ1} ≤ E[TV(X)]< δ2.

Proof. Since ri j|OM is a random variable dependent only on
M previous observations, and Xi,X j are currently unobserved
random variables, the expectation operator factorizes over the
expression for the TV (from (10)):

E[TV(X)] =
1
2 ∑

i6= j

{
E
[
r+i j|OM

]
E
[
(Xi−X j)

2]}
=

1
2 ∑

i6= j

{
E
[
r+i j|OM

](
(µi−µ j)

2 +σ
2
i +σ

2
j −2ρ

+
i j σiσ j

)}
.

(11)

Since the bias of r+i j|OM
is given in (9), for any M, there exists

a γi j > 0 that is a function of M (and lim
M→∞

γi j = 0) such that

∣∣∣E[r+i j|OM

]
−ρ

+
i j

∣∣∣< γi j (12)

⇔ ρ
+
i j − γi j < E[r+i j|OM

]< ρ
+
i j + γi j. (13)

We can use the fact that νi j < ρ
+
i j < εi j in order to rewrite

the bounds of (13),

max
{

0,νi j− γi j
}
≤ E

[
r+i j|OM

]
< εi j + γi j. (14)

The maximum operator is included since νi j − γi j can
be negative, but we know that the expectation of a non-
negative random variable TV(X) is bounded below by 0.
We aim to use (14) in conjunction with the bounds on ρ

+
i j

to bound (11). We focus first on deriving the upper bound;
such an upper bound is given by evaluating (11) for the
largest-possible contributions from the positive terms, and
the smallest-possible deductions from the negative term. This
gives:

E[TV(X)] =
1
2 ∑

i6= j

{
E
[
r+i j|OM

]
︸ ︷︷ ︸
<εi j+γi j

(
(µi−µ j)

2 +σ
2
i +σ

2
j
)

−2 E
[
r+i j|OM

]
ρ
+
i j︸ ︷︷ ︸

<νi j max{0,νi j−γi j}

σiσ j

}
.

(15)

Therefore, this gives the upper bound E[TV(X)]< δ2, where

δ2 =
1
2 ∑

i 6= j

{
ε̃i j
(
(µi−µ j)

2 +σ
2
i +σ

2
j
)
−2ν̃

+
i j νi jσiσ j

}
(16)

along with rewriting ε̃i j = εi j + γi j and ν̃
+
i j =

max
{

0,νi j− γi j
}

.
To get the lower bound, we evaluate (11) for the smallest-

possible contribution from the positive terms and the largest-
possible contribution in terms of magnitude from the negative
terms. This gives E[TV(X)]> δ1, where

δ1 =
1
2 ∑

i 6= j

{
ν̃
+
i j
(
(µi−µ j)

2 +σ
2
i +σ

2
j
)
−2 ε̃i jεi jσiσ j

}
(17)

Note that δ1 and δ2 are functions of the bounds on ρ
+
i j and

M, so we have that

lim
νi j→ρ

+
i j

εi j→ρ
+
i j

(δ1) = lim
νi j→ρ

+
i j

εi j→ρ
+
i j

(δ2) = E[TV(X)]. (18)

�

Proposition 4. Suppose 0≤ νi j < ρ
+
i j < εi j ≤ 1 for all unique

pairs of vertices i, j ∈ V . Then, there exists scalars δ3 and
δ4, with δ4 ≥ 0, such that max{0,δ3} ≤ Var[TV(X)]< δ4.

Proof. The idea behind the proof is similar to the proof
for Proposition 3. We expand Var[TV(X)] as done in (7) and
(8). Proposition 1 can then be used to obtain the appropriate
higher-order moments. This gives Var[TV(X)] as a scalar



quantity that depends on E
[
r+i j|OM

]
and ρ

+
i j . Finally, these

two terms can be bounded appropriately to obtain the desired
bounds on Var[TV(X)]. �

Using Propositions 3 and 4, we can compute the worst-
case bounds for weak outliers in distribution of level k, given
by TV(x) /∈

[
max

{
0,δ1− k

√
δ4
}
, δ2 + k

√
δ4
]

=⇒ x is a
weak outlier in distribution.

C. Bounds for outliers in scale

We derived bounds for E[TV(X)] and Var[TV(X)] in the
previous subsection in order to examine weak outliers in
distribution. Here we focus on bounds for outlier in scale.
Recall that we are assuming x has non-negative entries,
allowing for the redefinition of the 1-norm as ‖X‖1 = ∑i Xi.
We have that the expectation of ‖X‖ is:

E

[
∑

i
Xi

]
= ∑

i
E [Xi] = ∑

i
µi. (19)

Similarly, the variance of ‖X‖ is:

Var

[
∑

i
Xi

]
= ∑

i
Var [Xi]+∑

i 6= j
ρi jσiσ j. (20)

In the setting with complete information, since the corre-
lations are known, the expression for the variance simplifies
to Var [∑i Xi] = 111ᵀΣ111. In the setting with partial information,
if we know that the correlations are bounded by 0 ≤ νi j <
ρi j < εi j ≤ 1, we get that

∑
i

σ
2
i +∑

i 6= j
νi jσiσ j <Var

[
∑

i
Xi

]
<∑

i
σ

2
i +∑

i6= j
εi jσiσ j. (21)

Finally, we note that the TV can be bounded by the
Rayleigh quotient since the graph Laplacian is a Hermitian
matrix. Let λmax be the largest eigenvalue of L, then we have

TV(x) = xᵀLx≤ λmax ‖x‖2
2 ≤ λmax ‖x‖2

1 . (22)

However, the upper bound provided by the Rayleigh quotient
is not useful for outlier detection as it is extremely conserva-
tive in practice. The bounds that we have obtained are much
tighter than the ones that would be derived via the Rayleigh
quotient.

V. GENERAL NETWORK SIMULATION RESULTS

We aim to convey two ideas via simulations: First, we
compute the bounds on strong distribution outliers using
simulations, and compare them against the theoretically-
derived weak distribution outlier bounds. We observe that
the difference between these two bounds depends on the
underlying µµµ and Σ of the data, and we show two examples
to highlight that dependency. Second, we provide some
more intuition on the partial information case by empirically
evaluating the mean and variance of the TV for a range of
ρ . We observe non-monotonic variations with ρ which are
difficult to predict a priori, highlighting the importance of
our analytical bounds from Propositions 3 and 4.

A. Strong and weak bounds on TV in simulated networks

Using two simulations, we examine the performance gap
between bounds on strong outliers in distribution versus
bounds on weak outliers in distribution. We also demonstrate
the utility of distinguishing outliers using TV rather than the
underlying distribution, as the former can provide much more
useful interpretations, particularly in a networked setting.
The idea for both simulations is to assume a value of
µµµ and Σ and generate normally-distributed M = 1× 106

observations. The data points are plotted on a TV(x) versus
‖x‖ plot, and the quantities Ê [TV(X) | ‖X‖= ‖x‖] and
V̂ar [TV(X) | ‖X‖= ‖x‖] required for obtaining the bounds
on strong outliers in distribution are computed empirically by
binning ‖x‖ and conditioning on each bin. The theoretically-
derived bounds for weak distribution outliers and scale out-
liers are also plotted. Additionally, we color each observation
by the density obtained from evaluating the probability
density function value of the realized x. Note that if only
the underlying distribution was used for outlier detection,
all black-colored trials could be considered as outliers. This
stands in contrast to the bounds provided by our derivations.

In the first simulation, we choose N = 2, σ1 = σ2 = 1,
ρ12 = 0.5 and µµµ = (545.34, 582.13)ᵀ. The results in Figure
2 shows that the bounds for the weak and strong outliers
in distribution are very close. Thus, the computation of
the weak distribution bounds theoretically would be a good
approximation to the strong distribution bounds.

Fig. 2. TV versus 1-norm of the graph signal for a generic bi-vertex
graph, with scale outlier, weak outlier in distribution, and empirically-
derived strong outlier bounds. Each observation (‖x‖ ,TV(x)) is colored
by its probability density fX(X = x).

For the second simulation, we have that N = 30, and we
estimate µµµ and Σ from a real-world data set of air traffic
delay signals (see Section VI). We see that the weak outliers
in distribution bounds tend to be overly-liberal (for low
values of ‖x‖) or overly-conservative (for large values of
‖x‖) in terms of distinguishing outliers. This behavior is



expected, as the weak bounds are not conditioned on ‖x‖.
For future work, we are interested in deriving an analytical
strong outlier in distribution bound. Figure 3 also shows
the usefulness of TV as an outlier-distinguishing metric
over simply using the density of the underlying distribution;
the former takes into account pairwise interactions and the
strength of that interaction, whereas the latter does not.

Fig. 3. TV versus 1-norm of simulated graph signals within a 30-vertex
graph; data set from the US air transportation network.

B. Expectation and variance of TV as a function of ρ

Through simulations, we demonstrate the utility of our
analytical bounds on E[TV(X)] and Var[TV(X)] for the
setting with partial information regarding correlations. Using
the results from Section IV-A, it is theoretically possible –
although computationally intractable – to evaluate the exact
expectation and variance of the TV for a set of discretized
values of ρi j ∈ [νi j,εi j] ⊆ [0,1] given the signal mean and
variance at each vertex. The intractability is apparent in two
locations: First, the search space is exponential in the number
of edges, and a discretization of ρi j into Nρ intervals for
each edge requires NN×(N−1)

ρ evaluations for E[TV(X)] and
Var[TV(X)]. Secondly, the evaluated functions are not con-
vex in ρi j, indicating that methods such as gradient descent
cannot be used to obtain worst-case bounds. We demonstrate
this non-monotonic behavior in Figure 4. However, since
our bounds derived in Propositions 3 and 4 are tight, this
allows for a computationally efficient strategy to evaluate the
optimization over the search space of 0≤ νi j < ρi j < εi j ≤ 1.

For the simulations depicted in Figure 4, we draw M =
5×104 data points from a multivariate Gaussian distribution
with N = 5,σi = 10, ∀i, and ρi j = ρ, ∀i, j where we vary ρ

independently within the interval [0,1]. We consider four ex-
amples, each initialized with a different µµµ . These four exam-
ples have differing ranges for the values of the vertex signal
means, parameterized by a “tolerance factor” η . We choose
η ∈ {0,0.1,0.25,1.5} and µi

iid∼ 100(1−η)+200ηXU , where
XU

iid∼ Unif(0,1). Higher η indicates that signals have higher

! = 0 ! = 0.1

! = 1.5! = 0.25

Fig. 4. Empirically-derived curves for the expectation and variance of TV
as a function of correlation and parameterized by µµµ via η .

baseline difference in terms of magnitudes across a pair of
vertices.

If η = 0, then µi = µ j for all unique pairs of vertices
i, j ∈V , and we degenerate to the case depicted in (6) where
E[TV(X)] is quadratic in ρ . For larger tolerances η , we see
that E[TV(X)] becomes monotonic and closer to a linear
function, as depicted in Figure 4. The dotted lines in Figure
4 show the ±

√
Var[TV(X)] bounds around the expected TV.

Figure 4 highlights the dynamic behavior of the bounds as
a function of ρ , even in our relatively constrained setting of
ρi j = ρ, ∀i, j ∈V .

We conclude this section with a few remarks. The sim-
ulations confirm that empirical results shown in Figure 4
match theoretical predictions (not shown for simplicity)
from the previous section. At ρ = 1, all four examples had
zero variance since σi = σ , ∀i ∈ V . If the variances were
allowed to vary, i.e. σi 6= σ j, then Var[TV(X)] 6= 0 at ρ = 1.
Furthermore, we emphasize that our derived bounds are tight
and characterize the exploration of the entire search space
of variations in correlation. However, not all choices of ρi j
lead to a valid positive semi-definite covariance matrix Σ.
Enforcing this constraint analytically may result in tighter
bounds, and is an open problem.

VI. AIR TRAFFIC DELAY NETWORK EXAMPLE

High delays at major airports are known to have signifi-
cant economic impacts; when analyzing system performance
involving multiple airports and routes, airport-centric delay
metrics, such as the sum of all inbound arrival delays and
outbound departure delays, are commonly used. However,
due to the strong underlying network connectivity, the delays
at some airports are highly correlated with delays at other
airports. This real-world context is isomorphic to the problem
setting of this paper: Identifying signal outliers within a
networked and interdependent system.

Airport delays can take on two forms: (1) The obvious
problematic scenario when delays are high across all airports;
(2) a subtler scenario when delays are high, but with an



unexpected distribution across a specific set of airports. The
former corresponds to outliers in scale and can be identi-
fied via classical metrics, whereas the latter corresponds to
outliers in distribution and is significantly more difficult to
identify.

To derive the theoretical weak outlier bounds for this case
study, we use µµµ and Σ estimated from a data set of the
daily total delay (in minutes) at the top 30 US airports (by
enplanement) from 2008 to 2017. The resultant weak outlier
bounds are plotted in Figure 5. Out of a total 3,653 days
(data points), 101 days (2.8%) were classified as outliers in
scale, 550 days (15.1%) were classified as weak outliers in
distribution, and 60 days (1.6%) were classified as outliers in
both scale and distribution, all at a level of k = 2. The days
we have identified as outliers – particularly ones with high
total delays but low TV, and vice versa – are very interesting
operationally. The insights gained through this type of outlier
detection could help air traffic flow managers make better
decisions regarding network flow management and develop
robust models for delay dynamics [15].

Fig. 5. Identifying outlier days in air traffic delay data from the US air
transportation network. Days with large amounts of total delay are outliers
in scale (sc.), days with an unexpected spatial distribution of delays are
(weak) outliers in distribution (dis.), with some days exhibiting both outlier
properties.

VII. CONCLUSION AND FUTURE WORK

We defined and derived bounds for identifying outliers
with respect to both scale and spatial distribution for net-
worked data. We used the Total Variation (TV) of a graph

signal as the metric to perform outlier detection. In a Gaus-
sian setting, we derive analytical expressions and bounds for
the expectation and variance of the TV. We demonstrated the
usefulness of our bounds and definitions using simulations,
and showed the applicability of the proposed methodology
through a case study of the air transportation network. While
our work takes preliminary steps towards providing a theo-
retical characterization of TV as a useful measure for outlier
detection, there are several interesting research directions
and open problems to be solved. One such direction is
the derivation of analytical expressions for the bounds on
strong distribution outliers, given by E [TV(X) | ‖X‖= ‖x‖]
and Var [TV(X) | ‖X‖= ‖x‖]. Another direction arises from
the simulations in terms of quantifying the gap between the
bounds on strong versus weak outliers as a function of µµµ

and Σ. Finally, we would like to investigate using x/‖x‖ as a
scale-independent metric to identify outliers in distribution.
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