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Abstract— Adverse weather can reduce airport capacity.
When the number of arriving aircraft exceeds this reduced
capacity, flights can get delayed. A Ground Delay Program
(GDP) is a strategy by which aircraft landing slots can be
redistributed so that the flights are delayed on the ground
itself and not in the air. This increases safety, reduces the
fuel consumption and hence the operating costs for airlines.
In this paper, we present six algorithms that perform this
slot reassignment. These algorithms differ in the extent to
which slots can get re-arranged in real-time and the amount of
information that the airlines must reveal to the central planner
during the implementation. These two features of the algorithm
are called as stability and privacy respectively. The efficiency
of these six algorithms, measured in terms of the expected
delay cost for flights, is compared using operational data for La
Guardia Airport in New York. A two-step Receding Horizon
Static (2-step RHS) model is shown to be a good compromise
based on present expectations of privacy and stability in the
system.

I. INTRODUCTION

Airports are capacitated resources that are constrained by
the rate at which aircraft can take off or land [1], [2]. The
capacity of an airport can vary significantly depending on
factors such as wind, runway configuration, and the visibility
[3]. Adverse weather can decrease the rate at which aircraft
can land (also called as the airport arrival capacity). If
such capacity decrease is not accounted for, aircraft will
continue to arrive at the vicinity of the affected airport, but
will be placed in an airborne queue until they are able to
land. The airborne holding increases the operating costs for
airlines (due to fuel burn), increase Air Traffic Controller
(ATC) workload and decreases safety. If a decrease in
airport capacity is predicted in advance, the demand-capacity
imbalance can be better managed by initiating a Ground
Delay Program (GDP). This traffic management strategy is
based on the premise that it is safer and less expensive to
delay an aircraft prior to departure, on the ground, than in
an airborne queue near the destination airport. Once a GDP
is initiated, flights that are departing to the impacted airport
get revised departure times, ensuring that they will be able
to land without significant airborne delays [4], [5], [6], [7].

Optimally assigning revised departure times has two
main practical challenges. Firstly, since the airport capacity
forecast is probabilistic (which may be represented using
scenario trees), the optimal reassignment is a stochastic
optimization problem. The solution can therefore be highly
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dynamic, meaning that the optimal departure times for flights
may change as we get more certain information about the
capacity. Secondly, a GDP trades off airborne delay for
ground delay. Hence, the optimization requires a knowledge
of flight-specific costs for airborne and ground delay. For
example, if the cost for an hour of ground delay for a flight
is one-third that of an hour of airborne delay, that flight
would prefer up to 3 hours of ground delay, to an hour of
airborne delay. However, the competitive nature of the airline
industry makes such flight-specific delay costs proprietary in-
formation, since they may be used to deconstruct scheduling
strategies.

Privacy in the context of a GDP denotes the amount of
information that needs to be shared by a participating airline.
We refer to a GDP that requires the airlines to share less or
no information about their delay costs as one which respects
airline privacy concerns. If the airlines have to report their
delay costs to the central planner, then the GDP does not
permit airlines to maintain a high level of privacy. If a
GDP does not change the flight schedules frequently, and
sticks to a prescribed reassignment, then we refer to the
GDP allocation as more stable. On the other hand, if the
GDP schedule got updated every hour, it is less stable. In
this paper, we present different approaches to implementing
GDPs that provide varying degrees of flexibility in terms of
airline privacy and stability. We show that a new approach,
called the 2-step Receding Horizon Static formulation (2-step
RHS) is a good compromise between the conflicting require-
ments of more stability, privacy and optimality. Further, we
define two important metrics (Price of Stability and Price of
Privacy) that quantify the loss in system efficiency due to
higher privacy and stability requirements.

A. Current structure of a GDP

We first describe how GDPs are currently implemented
(Fig. 1) in the US by the Federal Aviation Administration
(FAA). When a reduced airport capacity is anticipated, the
FAA initiates a GDP by issuing a start time, an end time,
and a prescribed arrival rate for the duration. For example,
the FAA may issue a GDP for Los Angeles airport between
3-6 pm, with arrival rates of 30, 30 and 40 landings/hour,
for each hour for the 3-hour period. Once the GDP is
initiated, the flights are reassigned slots so that they match
the prescribed arrival rate. This is done on a first-scheduled
first-served basis (also known as Ration by Schedule or
RBS). All flights that are arriving during the GDP period are
now assigned a revised departure time. The RBS allocations
are not made considering the flight-specific delay costs of
each aircraft since the airlines do not share this information.
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Fig. 1. Steps in the implementation of a GDP.

Once the RBS allocations are made, the next step, called
Collaborative Decision Making (CDM) allows the airlines
to use their private information to improve the efficiency of
the allocation. The first component of CDM is intra-airline
swaps. Delay-sensitive flights can be swapped within an
airline and assigned to low delay slots, based on the private
flight-specific costs. The second component of CDM is Slot
Credit Substitution. If an airline cannot utilize an assigned
slot or decides to cancel its flight, it can release the slot and
request a new slot at any preferred time in the future.

This current GDP implementation has two important fea-
tures:

1) Uncertainties in the capacity estimate (which may be
due to weather) are abstracted out and a deterministic
departure time is given to the aircraft. Consequently,
there is no need for any real time communication
during the GDP between the airlines and the FAA and
the revised takeoff time does not change. The issue
occurs when the capacity does not pan out as expected,
and then the FAA will have to revise the GDP rates
(or even cancel it).

2) The FAA does not have have access to airline specific
information, like the delay cost of each flight. The FAA
introduced the second step of intra-airline substitution
to incorporate more flexibility in decision making
while respecting airlines privacy concerns.

B. Prior literature

Existing literature on GDPs focused on two aspects. One
relates to obtaining an optimal arrival rate from scenario trees
(which is the role of the central planner in Fig 1) and the
other focuses on privacy and equitable allocation of slots.

The earliest models computed an optimal arrival rate for
a given flight schedule based on a probabilistic capacity
scenario tree [6]. The advantages of this approach was that
no private cost information was required from airlines and
once the allocation is made, it is followed irrespective of any
future updates in the capacity forecast. A further refinement,
where the departure slot is dynamically allocated based on

evolving capacity information is described in [7] and [4].
An important point about these models is that they assume
no further intra-airline swaps or slot credit substitution
procedures which are presently employed. Hence they are
not reflective of the actual practical costs of implementing
such a algorithm. Recently, formulations that obtain a landing
slot allocation while accounting for a future CDM step have
been developed [5].

Fairness and equity in resource allocation has been studied
in the air traffic flow management setting [8], [9], [10]. In
the context of GDPs, one could explicitly enforce equality
among flights of different duration [11], reduce exemption
bias [12] or incorporate a Ration By Distance formulation
[13]. The mediated bartering model [14], [15] and Top
Trading Cycles Algorithm [16] address the intra-airline slot
exchange process. Cox and Kocenderfer [17], [18] proposed
a CDM compliant Markov Decision Model. However the
computational complexity of such an approach poses a
challenge, even when simple cost functions are chosen.

There are two questions not addressed in previous liter-
ature. One is related to privacy- If airlines did not display
such a strong sense of privacy and if they were willing to
share information to the central planner (and not to other
competing airlines), what is the increase in efficiency? The
second is- How do algorithms that partially use updated ca-
pacity information perform? We address these two questions
and put them into a formal perspective using the notions of
stability and privacy.

C. Potential GDP architectures

A GDP architecture where airlines have privacy constraints
involves two steps. The first step is where the central planner
(the FAA in USA) decides on an optimal arrival rate based on
a probabilistic capacity scenario tree. In the second step, the
airlines use their private flight-specific delay costs to swap
flights and run slot substitutions in case of cancellations.
Thus, a GDP structure that incorporates privacy concerns is
run in two stages and we refer to it as a 2-step algorithm.
If privacy is not a concern, the airlines would submit their
flight specific cost to the central planner and the optimal
reassignment can be obtained in a single step. A GDP
architecture where privacy is not a concern is called a 1-
step algorithm.

With regard to various degrees of stability, we consider
three models. The static model is the most stable, and
there are no updates or changes to the revised landing
slots once they are made. On the other end, we have a
dynamic formulation, where flight revisions are made as
and when new capacity information is available. The third
model is a Receding Horizon Static (RHS) formulation. It
involves running the static formulation repeatedly and is
more stable that the dynamic model but less stable that the
static formulation.

In this paper, we present six formulations (1 and 2-step
variants of static, dynamic and RHS) and compare their
efficiency. We will discuss the tradeoffs between efficiency,
privacy and stability. Further, we will illustrate why a 2-step



Fig. 2. Scenario tree representation of uncertain airport capacity. Each
branch(scenario) q has an associated probability πq [19].

RHS formulation is the best compromise by simulating a
GDP at New York City’s LaGuardia airport.

II. GDP FORMULATIONS

In this section, we describe all the 1-step formulations
(airlines do not have privacy concerns) followed by the 2-
step formulations (airlines have privacy concerns).

In these formulations, the uncertain capacity is represented
using a scenario tree. Fig. 2 shows a structured scenario tree.
It is easy to see that any scenario tree that does not have more
than two branches at any time instant can be represented
using this structure. The numbers in each of the nodes is the
airport arrival capacity for that time interval. T is the length
of the GDP and Q as the set of all possible scenarios. In this
paper, we use a scenario tree structure as in Fig. 2, and for
this structure, |Q|= T . A scenario tree is the set (Mq,t ,πq),
where Mq,t is the arrival capacity of the airport at the discrete
time t ∈ {1, . . . ,T} in scenario q∈Q and πq is the probability
of scenario q occurring. For example, in Fig. 2, in the third
time interval (t=3) the capacity is 20 with probability 0.7 (if
either S3, S4 or S5 occurs) and 40 with probability 0.3 (if
either S1 or S2 occurs).

A. No privacy concerns

The central decision maker (FAA) has a list of flights f
along with their schedule information (the arrival time arr f ,
departure time dep f , and flight duration dur f ), the scenario
tree (Mq,t ,πq) and the flight-specific delay cost. Cg

f ,n is the
cost of ground holding flight f for n time steps. Ca is the
cost of holding one aircraft in the air for 1 unit of time. For n
time steps, the air hold cost of an aircraft is nCa. The air-hold
cost is assumed to be constant for all flights. When airlines
release information about their flight specific cost, there is
no need for the CDM step and the flight assignment is done
through a single integrated optimization (a 1-step algorithm).

Truthful reporting is not guaranteed in 1-step algorithms.
If an airline A1 was indeed more delay sensitive than airline
A2, then flights of A1 will be delayed lesser than flights of
A2. This would also create an incentive for airlines to lie
about the true cost of their flight. We assume that when
airlines do not have privacy concerns, they would report

costs truthfully. Developing algorithms that induce truthful
revelation of preferences is an open problem.

Once a 1-step slot assignment is given to an airline, the
airline would not obtain a lower cost even if it did any
internal substitution (because if such a swap was possible,
then the central allocation is not optimal). Also, if all airlines
reported their true costs to the FAA, then the total delay costs
will be lower than the 2-step process.

1) 1-step static: X f
t is a 0-1 variable that is 1 when flight

f reaches the destination airport at time t. This is the time
when it joins the landing airborne queue and the actual
landing time may be at t or later depending on the state
of the airborne queue. Wq,t is the airborne queue at time t in
scenario q. The optimal solution to a GDP of length T with
Q scenarios is given by

min ∑
f

T+1

∑
t=arr f

Cg
f ,t−arr f

X f
t +Ca

∑
q

πq

T

∑
t=1

Wq,t (1)

such that
T+1

∑
j=arr f

X f
j = 1,

arr f−1

∑
j=1

X f
j = 0 ∀ f (2)

Wq,t ≥Wq,t−1−Mq,t +∑
f

X f
t ∀q, t (3)

X f
t ∈ {0,1} ∀ f , t (4)

Wq,t ≥ 0 ∀q, t (5)

The objective function (1) minimizes the sum of the
flight-specific ground holding and expected air holding costs.
Constraint (2) ensures that all flights do not take off before
their schedule and (3) describes the evolution of the airborne
queue. The 1-step static formulation is ideal when airlines
report true cost of delay and prefer to obtain a deterministic
take-off time for their flights (i.e. a stable solution).

2) 1-step dynamic : X f
q,t is a 0-1 decision variable that is

1 when flight f reaches the destination airport at time t in
scenario q. Wq,t is the same as Section II-A.1.

min ∑
q

πq

[
∑

f

T+1

∑
t=arr f

Cg
f ,t−arr f

X f
q,t +Ca

T

∑
t=1

Wq,t

]
(6)

such that
T+1

∑
j=arr f

X f
q, j = 1,

arr f−1

∑
j=1

X f
q, j = 0 ∀ f ,q (7)

Wq,t ≥Wq,t−1−Mq,t +∑
f

X f
q,t ∀q, t (8)

X f
q1,t = X f

q2,t ∀t and q1,q2 ∈ Gt−dur f (9)

X f
q,t ∈ {0,1} ∀ f ,q, t (10)

Wq,t ≥ 0 ∀q, t (11)

The dynamic solution allocates a take-off time to each
aircraft in real time. Hence, the decision variable X f

q,t is
a function of the scenario q. However, a decision at the
take-off time t for any flight f can only incorporate all



the information available till t. The decision to ground hold
or take-off can not depend on scenarios that cannot be
distinguished at t. This is enforced by constraint (9) and Gt
is the set of all scenarios that are indistinguishable at time
t. For example, in Fig. 2, at t = 3, we cannot distinguish
between S3, S4 and S5. Therefore, G3 = {S3,S4,S5}

3) 1-step RHS: This architecture involves planning the
GDP in two stages. The first stage is from time t = 1 to
t = t̃ and the second stage is from t = t̃ to t = T . The time
t̃, with 1 < t̃ < T , is called the update time. Two coupled
static problems are solved corresponding to the two stages.
The first stage corresponds to the first static solution and is
applicable until time t̃. In the second stage, which runs from
t = t̃ to T , a different static solution is implemented. At the
update time t̃, because certain capacity scenarios are realized,
either of the two cases occur- a scenario gets realized and
can be uniquely identified (the resolved scenario), or the
scenarios are still ambiguous (the unresolved scenarios). The
sets Qres represents scenarios that could possibly get resolved
at the update time and Qunres represents the scenarios that
cannot be resolved at the update time. In Fig. 2, if the update
time is t̃ = 3, then the scenarios S1 and S2 are resolved and
scenarios S3−S5 are unresolved.

For update time t = t̃, Qres = {1, . . . , t̃ − 1} is the set
of resolved scenarios and Qunres = {t̃, . . . ,T} is the set of
unresolved scenarios when the scenario tree structure is as
Fig. 2. X f

q,t and Wq,t are defined previously in II-A.2. For a
given update time t̃, the optimal slot allocation is

min ∑
f

∑
q

πq

T+1

∑
t=arr f

Cg
f ,t−arr f

X f
q,t +Ca

∑
q

πq

T

∑
t=1

Wq,t (12)

such that

T+1

∑
j=arr f

X f
q, j = 1,

arr f−1

∑
j=1

X f
q, j = 0 ∀ f ,q ∈ Q (13)

Wq,t ≥Wq,t−1−Mq,t +∑
f

X f
q,t ∀t,q ∈ Q (14)

X f
q,t ∈ {0,1} ∀ f , t,q ∈ Q (15)

Wq,t ≥ 0 ∀t,q ∈ Q (16)

X f
q1,t = X f

q2,t ∀ f , t < t̃ +dur f and q1,q2 ∈ Q (17)

X f
q1,t = X f

q2,t ∀ f , t ≥ t̃ +dur f and q1,q2 ∈ Qunres (18)

Constraint (17) ensures that stage 1 solution is independent
of q (i.e it is a static solution) and Constraint (18) ensures
that the stage 2 solution for unresolved cases is independent
of Qunres. Each of the resolved scenarios to have their own
solution.

Once this algorithm is run, each flight gets a revised take-
off time in stage 1 or stage 2. Stage 1 flights have a scenario
independent takeoff time. Stage 2 flights will get their take-
off times assigned to them at t = t̃, which depends on the
scenario information at that time. It is important to note that
there is no computation to be done in real time at t̃. The
optimal update time t̃ can be computed by enumerating the

total cost for all values of t̃. For more details on the RHS
formulation, we refer the readers to [20].

B. Privacy concerns

Privacy concerns of airlines are addressed by having a
2-step GDP process. An initial allocation is done using
an average ground and air delay cost for all flights. This
allocation is communicated to the airlines, and they have
the flexibility to make any internal slot substitutions using
private delay cost information. An important feature of 2-
step GDP architectures is that they are more fair than their
corresponding 1-step solutions. This is because airlines are
not distinguished based on their operating cost structures.
An airline that leaves ample buffer between flights and is
not very sensitive to additional delay is not penalized by
getting more delay.

1) 2-step static: Since flight specific cost information
is not available to the central planner, the optimization
described in Section II-A.1 is solved with Cg

f ,n = Cg
n . For

example, the cost of ground holding for each time period
can be 1 unit and the cost for air holding can be 2.5 units.
This gives an optimal solution X f

t . The result, which includes
the ground delay for each flight as well as its expected air
hold time is communicated to the airlines.

Using flight-specific costs, each airline would like to swap
slots internally such that delay-sensitive flights occupy low-
delay slots and delay-insensitive flights occupy the high-
delay slots. The airline thus solves a minimum-cost allo-
cation problem for the CDM step.

Let a ∈ A denote the set of airlines and Fa denote
the set of aircraft operated by airline a. The initial flight
corresponding to slot sk is fk. The cost of assigning any
flight fi ∈ Fa to slot associated with flight fk (slot sk) is
given by

C fi,sk =Cg
fi,grd(sk)

+Ca
fi,air(sk)

fi, fk ∈Fa (19)

grd(sk) and is the ground delay assigned to slot sk and air(sk)
is the average air delay of the slot. Xi,k is a binary variable
that is 1 when flight fi is swapped and allotted to slot sk.
The optimization problem finds the minimum cost, scenario-
independent assignment of flights to slots.

min ∑
f∈Fa

∑
k: fk∈Fa

X f ,kC f ,sk (20)

such that

∑
f∈Fa

X f ,k = 1 ∀k : fk ∈Fa (21)

∑
k: fk∈Fa

X f ,k = 1 ∀ f ∈Fa (22)

X f ,k ≤ f eas( f ,k) ∀ f ∈Fa, k : fk ∈Fa (23)
X f ,k ∈ {0,1} ∀ f ∈Fa, k : fk ∈Fa (24)

f eas( f ,k) is 1 if the flight f can be allocated to slot sk.
The condition for feasibility is that the flight cannot take off
before its original published time, i.e. f eas( f ,k) = 1 if and
only if f , fk ∈Fa and dep( f )≥ dep( fk)+grd(sk).



2) 2-step dynamic: The first step is a dynamic slot allo-
cation similar to the one described in Section II-A.2 and
an average ground hold cost of Cg

f ,n = Cg
n is used. The

optimal solution X f
q,t prescribes the takeoff-time for each

aircraft for all scenarios. Communicating the ground hold for
each aircraft in all scenarios to the airlines is impractical.
Instead, we suggest that the central planner communicates
the following information to the airlines regarding each of
their flights:

1) Minimum ground holding time: The minimum ground
hold that will be assigned to a slot s across all scenarios
is grdmin(s) .

2) Expected ground holding time: This is the average
ground holding time that will be assigned to the slot.
For a slot s, the expected time is grd(s).

3) Expected air holding time: The airborne queue that a
slot will experience is dependent on the scenario, and
the mean wait time for a slot s is denoted as air(s).

Finally, depending on which scenario materializes, the the
actual departure time for each flight is updated through the
course of the GDP. While the full scenario specific schedule
is not known to the airline, it can make swaps based on
grdmin(s), grd(s) and air(s) for all slots s it owns. This
optimization is similar to the one presented in Section II-
B.1. The feasibility space for swaps is more restricted in the
dynamic model [5] as the slots are dependent on the flight
duration. Consequently, f eas( f ,k) = 1 if and only if f , fk ∈
Fa and dep( f ) ≥ dep( fk)+ grd(sk) and dur( f ) = dur( fk).
We emphasize that the slot substitution with a dynamic
formulation, is more restrictive than the static formulation.
Only flights with the same flight duration can be swapped
in the dynamic model and this is not a requirement for the
static model slot substitution [5].

3) 2-step RHS: It is possible to obtain a 2-step RHS
solution by setting Cg

f ,n =Cg
n for the optimization in Section

II-A.3. However, we introduce a slightly different formula-
tion here. In the 1-step RHS, the static solution of the first
stage is aware that a second stage static optimization will be
performed. Thus, the solution jointly optimizes over both
static formulations. This would results in longer duration
flights getting higher delays when they are scheduled around
the update time t̃. We avoid this flight-duration specific
solution by running two sequential optimization. The primary
motivation for this is to allow for maximum flexibility in
slot substitutions (the second step in the 2-step RHS) and to
maintain more fairness across flights of different duration.
We describe the first step (performed by the central planner)
in the 2-step RHS (more details in [20]).

1) Solve the static problem (with Cg
f ,n =Cg

n) involving the
full duration of GDP (till T )

2) Identify all aircraft taking off before t̃ as stage 1 flights
and allot them a deterministic ground holding time.

3) The flights not taking off in stage 1 are the stage 2
flights.

4) Solve the static optimization (with Cg
f ,n = Cg

n) for all
the stage 2 flights with the time horizon being t̃ to T .

Do this for each of the scenarios that can get resolved
in stage 2 as well for the set of unresolved scenarios.

5) These set of flights will get a scenario dependent
ground holding time (which is same for all q∈Qunres).

The key part here is that the first static is planned indepen-
dently of the second static optimization and this gives us the
desired flexibility to swap flights within a stage independent
of their duration. After this first step, the airlines are given
the following information for each of its flights fk ∈Fa - the
stage stage( fk), grdmin(sk), grd(sk) and air(sk). For flights
fk in stage 1, grdmin(sk) = grd(sk) because the holding is
deterministic. The feasibility condition is f eas( f ,k) = 1 if
and only if f , fk ∈Fa and dep( f )≥ dep( fk)+grd(sk) and
stage( f ) = stage( fk). The rest of the optimization is same
as in Section II-B.1.

III. RESULTS

From the nature of the formulations, it is clear that the
2-step models respect airline privacy more than the 1-step
models. Also, for both the 1 and 2-step versions, the dynamic
model is the least stable, RHS model is more stable and
the static model is the most stable. In this section, we
comment on the efficiency, measured in terms of total delay
costs, of these six models with varying privacy and stability
properties. We make the following observations.

1) For the 1-step models, the delay costs will always
follow the order 1-step static < 1-step RHS < 1-
step dynamic. This can be seen from the optimization
formulations itself. All optimal static solutions are fea-
sible solutions to the RHS and dynamic optimization.
Similarly, the optimal RHS solution is feasible for
the dynamic formulation. Hence the costs follow the
inequality.

2) 2-step solutions usually have a lower delay cost then
the corresponding 1-step solution. Intra airline swaps
will always decrease the cost, but each airline must
own a large enough number of flights, with high cost
variability for such swaps to be made.

3) While the 1-step static always has a higher cost than
the 1-step dynamic, the same trend is not true for the
2-step case, because of the different slot substitution
flexibility of the static and dynamic model [5]. Depend-
ing on the intensity and duration of the GDP, either of
them could have a lower cost. Theoretically, we cannot
predict the cost of the RHS formulation in relation to
the static or dynamic model.

Two step models incorporate privacy requirements and are
expected to have a higher delay cost. The Price of Privacy
is defined as the additional cost (in percentage) that a 2-step
model has over the corresponding 1-step model. Similarly,
a more stable model is expected to lead to poorer system
performance, and hence higher cost. The Price of Stability
is defined as the additional cost (in percentage) that a model
has over the corresponding dynamic solution cost (which is
the least stable). It is the additional price we pay for having
a stable GDP allocation.



We evaluate these models using publicly-available sched-
ule data [21] for LaGuardia Airport (New York City) on
Feb 17, 2014. A 7 hour GDP from 7 am till 2 pm is
simulated with the schedule arrival demand being 24, 31, 31,
36, 31, 32 and 36 for these 7 hours. The nominal capacity
is 40 landings/hour and the reduced weather capacity is 20
landings/hour (similar to Fig. 2). We generate 2∗T −1 = 13
different probability distributions for the GDP of length
T = 7. The branch q of the scenario tree is such that
the capacity improves after time t = q. Each branch has a
different expected duration of reduced capacity.

Denote S = {1,2, ...,2T − 1} as the set of scenario trees.
Corresponding to every scenario tree s ∈ S, there is an asso-
ciated probability πs

q for every branch q in the scenario tree
s. In every distribution, some of the branches are assigned a
probability of 0.01 (almost no occurrence) and the remaining
probability is split between the other branches.

For the first T distributions, s = 1, ...,T ,

π
s
q =

{
1−0.01×(T−s)

s ∀q ∈ {1, ...,s}
0.01 ∀q ∈ {s+1, ...,T}

(25)

For the next T −1 distributions, s = T +1, ...,2T −1,

π
s
q =

{
0.01 ∀q ∈ {1, ...,s}
1−0.01s

T−s ∀q ∈ {s+1, ...,T}
(26)

To summarize, we create 13 different scenario trees, each
with a different expected duration of reduced capacity. The
ground hold cost for each aircraft is drawn from a normal
distribution with mean 1 and standard deviation 0.25. The
cost of air holding a flight is set at 2.5. The flights are
randomly distributed between 10 airlines (to simulate the
intra-airline substitutions in a 2-step model).

Fig. 3 shows the cost for all the six algorithms across
different probability distributions (equivalently, the expected
duration of reduced capacity). For all the 1-step models,
the costs follow the expected order of dynamic ≤ RHS ≤
static. Also, as the expected duration of the GDP increases,
the cost incurred is higher because more flights would be
delayed if low capacity persists for longer. For the 2-step
solutions, lower duration GDPs result in lower cost for
dynamic model. As the expected GDP duration increases, the
dynamic solution becomes more expensive. This is because
more flights are affected and a greater swap flexibility of
the static model becomes a more dominant factor than the
benefits of an initial dynamic allocation. The 1-step dynamic
is the socially optimal allocation, meaning that it gives the
lowest total delay cost. The 2-step static is at the other end of
the spectrum, and give the individual agents, airlines in this
case, the most fair and equal allocation of resources while
respecting their privacy.

Fig. 4 shows the impact of privacy and stability require-
ments. The static model is the least sensitive to privacy
requirements. The 2-step static cost increases by less than
5% for most of the scenario trees. The 2-step dynamic model
has the highest cost increase due to privacy, i.e. the highest
increase in cost in comparison to the corresponding 1-step

Expected duration of reduced capacity
0 2 4 6 8

C
o
st

0

50

100

150

200

250
RHS 1-step

Static 1-step

Dynamic 1-step

Expected duration of reduced capacity
0 2 4 6 8

C
o
st

0

75

150

225

300
RHS 2-step

Static 2-step

Dynamic 2-step

Fig. 3. Delay cost comparison for all the 1-step (left) and 2-step
(right) models. The x-axis is the expected reduced-capacity duration for
the probability distribution.

dynamic model. This is mainly due to the low slot-exchange
flexibility in the 2-step dynamic model which makes it
significantly more expensive than than the 1-step solution
(which doesn’t involve any slot exchange).

There are two parts to the Price of Stability (PoS) plot
(Fig 4, right). For the 1-step models, the PoS is always
positive since the 1-step dynamic is always the lowest-cost
model. The PoS for 1-step static (maximum of 68%) is higher
than the 1-step RHS (maximum of 21%). For the 2-step
models, the 2-step dynamic, which is the reference for all
PoS computations does not have the lowest cost for scenarios
where the low capacity exists for a longer duration (Fig. 3
(right)). So in 2-step models, low GDP duration requires a
cost penalty if more stability is desired (upto 57% for static
and 23% for RHS) whereas it effectively comes for ‘free’
for longer duration GDPs.
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Fig. 4. Price of Privacy (left) and Price of Stability (right) for the GDP
algorithms.

Fairness in the slot allocation is an interesting aspect of
GDP planning. Two-step models are fair to airlines which
have different delay costs. They are all treated equally by
the central planner since the cost information is private and
not available. However, there is a bias due to flight duration
that is present in the dynamic model. Shorter duration flights
tend to get more delay as they can be used more flexibly to
adapt to evolving capacity scenarios. The 2-step RHS model
is fair to flights of all duration whereas the 1-step RHS model
introduces a small bias for flights that are planned to take
off near the update time (delaying these flights will put them
in the second stage and they can use the updated capacity
information).

IV. CONCLUSIONS AND FUTURE DIRECTIONS

We considered GDP planning from a new perspective of
asymmetric information exchange and stability of the slot



allocation. We then developed algorithms that accommodated
varying privacy and stability requirements, and evaluated
them using simulations of GDPs at LaGuardia Airport in
New York.
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Fig. 5. Summary of the six GDP algorithms, in terms of efficiency (cost),
privacy and stability. The arrows indicate the directions of cost increases.
The vertical arrows correspond to the Price of Privacy, while the horizontal
ones correspond to the Price of Stability.

Fig. 5 presents a summary of the models and their effi-
ciency (in terms of total system delay costs). Two-step mod-
els consider airline privacy concerns, but are less efficient
than the corresponding one-step models. A static solution
is the most stable but it is not always the most efficient.
The 2-step RHS model presents a good compromise between
privacy and stability. It is also easy to implement, since it
only requires information exchange at two time-steps, at the
start of the GDP and at the update time.

Incorporating fairness across airlines with different cost
structures (for example, a low-cost regional carrier and
a network carrier) poses a challenge in one-step models.
In addition, the proposed one-step solutions do not have
incentives for truthful cost reporting. The development of
equitable and truthful mechanisms is a focus of ongoing
research.
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