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Abstract—This paper develops and analyzes a simplified model
of the dynamics of delay propagation in air traffic networks.
The proposed model considers the redistribution of delays by
accounting for aircraft flows between airports, the persistence of
delays at an airport, the mitigation of delays due to slacks or
buffers in flight schedules, and inputs such as sudden impulsive
disruptions or sustained impacts due to longer duration traffic
management initiatives. Using inter-airport traffic flows from
operational data, different properties of the model are studied,
including the resilience of different airports (as measured by
the length of time before delays mitigate after a disruption), the
amount of delay induced by disruptions at a particular airport,
and the number of airports that are impacted when a given
airport experiences disruptions. These properties are evaluated
for different levels of delay sustainment, and for different values
of available slack in schedules.

Keywords- delay propagation; network modeling; system perfor-
mance; resilience

I. INTRODUCTION

The air transportation system has evolved into a large-scale,
interconnected network with many interacting elements. As
a result of the large number of shared airport and airspace
resources, disruptions in one part of the system can propagate
to many others. A significant portion of these propagations
occur at airports (that is, the nodes of the air transportation
network), where incoming aircraft continue on the subsequent
legs of their planned itineraries, crew members may connect
to other flights, and passengers also connect to other flights.
Aircraft connectivity is known to be a key driver of flight
delays; nearly one-third of all delayed domestic departures
(and 40% of departure delays in minutes) in the United States
are due to the late arrival of the aircraft on its previous leg. Air
carrier delay (a category which includes crew connections) is
the associated cause for another 28% of delayed departures
(and 32% of delays in minutes) [1]. The above statistics
suggest that flows of aircraft and crew through airports are
the dominant mechanism by which delays propagate through
the system. This paper therefore proposes a model that relates
traffic flow in the air traffic network to the flow of delays,

*This work was partially supported by NASA under Air Force Contract No.
FA8721-05-C-0002, and by NSF under CPS:Frontiers:FORCES, grant number
1239054. Opinions, interpretations, conclusions, and recommendations are
those of the authors and are not necessarily endorsed by the United States
Government.

and uses the model to analyze the dynamics of delays on the
network.

Network models have been previously proposed for a vast
range of problems, from disease epidemics [2] and rumor
propagation [3], to engineered systems such as power grids
[4, 5], the Internet [6], roads [7], public transport [8], railroads
[9] and even air transportation [10]. They have also been
used to evaluate connectivity between airports in terms of
operations [11, 12, 13]. Prior research on spreading processes
in networked systems has focused primarily on epidemio-
logical models [14]. These models typically assume that a
node is in one of a small set of discrete-states; by contrast,
air traffic delays are better modeled as continuous variables.
Epidemiological models are generally based on undirected,
unweighted networks; however, air traffic delay networks are
weighted and directed in nature [15].

Numerous prior studies on modeling air traffic delay prop-
agation [16, 17, 18, 10, 19, 20, 21, 22, 23, 24, 25, 26]
have revealed the underlying complexities of the process,
and the inherent challenges in predicting system behavior
[27, 28, 29, 30, 31]. These complexities include the char-
acteristic that while traffic flows through airports result in
a spread of delays, the build-up of queues can result in a
persistence of delays even after aircraft depart from the airport
(or a weather disturbance subsides), and the buffers or slacks
contained within flight schedules can help mitigate delays
(that is, remove delays from the system). Another challenge
is that the interactions between different pairs of airports
occur at different time-scales due to differences in flight times
between them. For example, it may only take an hour for
delays to propagate from Boston to an airport in New York
City, while it may take several hours for delays at Boston to
propagate to San Francisco. This paper proposes a model that
allows for these phenomena, while accounting for the fact that
delay propagation is primarily driven by traffic flows between
airports.

While the proposed model can be adapted to any given
structure of traffic flows between airports (or even delay flows
[15]), an illustration using traffic demand data from the Bureau
of Transportation Statistics [1] for 2011 – in particular, a
network whose edges are weighted by the average number
of daily flights between two airports – is presented as a proof-



of-concept. Different system performance characteristics, in-
cluding the resilience of different airports (as measured by
the length of time before delays mitigate after a disruption),
the delays induced by disruptions at different airports, and the
number of airports that are impacted when a given airport
experiences disruptions, can all be evaluated and compared
using the proposed modeling approach.

II. MODEL OF DELAY DYNAMICS

We model the air traffic network as a weighted directed
network with N vertices (nodes or airports). Each edge is
represented as an ordered pair, (v1,v2), denoting a link from
v1 to v2. Edge (i, j) is assumed to have a nonnegative weight
associated with it, representing the flow of traffic from one
node to another. The adjacency matrix is given by Θ = [θi j],
where each element θi j denotes the number of flights from
airport i to airport j. Fig. 1 shows the network of average
daily traffic in 2011.
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Fig. 1: Average daily traffic in 2011 [1]. The color denotes
the average number of flights on each link

The state of airport i at time-step t, denoted xi(t), is defined
as the average delay per flight at airport i at time t. The state
vector of the system at time-step t is therefore given by

~x(t) =
[

x1(t) x2(t) · · ·xN(t)
]
.

A. Characteristics of air traffic delay dynamics
The proposed model of delay dynamics must reflect the

following characteristics exhibited by air traffic delays:
• Redistribution of delays: The basic premise of the

proposed model is that delays at an airport tend to be
redistributed amongst the traffic traversing through it. For
example, consider a particular airport where there are 10
flights arriving with a delay of 25 min/flight and 5 flights
arriving with a delay of 10 min/flight. In the absence
of any other effects (such as slack in the schedules),
if the outbound delay equals the inbound delay, then
the average delay of a flight leaving the airport will be
10×25+5×10

10+5 = 20 min/flight. If there are two outbound
links (going to airports k and l, respectively, with 5 flights
on each route), then the network will tend to redistribute
10 min/flight to each of the airports k and l.

• Persistence of delays: Another attribute of air traffic
delays is their tendency to persist at an airport, even after

the disruption has ended. One reason for this phenomenon
is the build-up of queues or workload that then takes time
to subside. The proposed model reflects this behavior by
assuming that a fraction α ∈ [0,1] of the delay level at
an airport at any time persists through the next time-step.
In the current model, we set αi = α ∀i. As α decreases
from 1 to 0, the inertia at airports (persistence of delays)
increases.

• Slack in the system: Flight schedules are known to
contain some amounts of slack or buffering that can
mitigate delay propagation to a certain extent [17]. This
slack take the form of longer-than-necessary block times
(that is, schedule padding) or long turnaround times
between two consecutive legs of an aircraft itinerary. In
either form, the available slack in the schedule prevents
the propagation of delays that are within the amount that
can be handled by the buffer. This attribute is modeled by
a slack term of β min/flight on each link of the network.
This term serves to decrease the propagation of delays
through a link.

• Multiple time scales: Because distances (and therefore
flight times) over different links vary, airport delays
interact over multiple time scales. In other words, while
it may take 1 hour for delays to propagate from Boston
(BOS) to New York’s LaGuardia (LGA) airport, while it
may take several hours for them to propagate from BOS
to Dallas/Fort Worth (DFW) airport. The network model
is augmented with pseudo-nodes to model these variations
in time-scales. In our discrete-time model, each time-step
corresponds to 1 hour; it should take multiple time-steps
for delays to propagate between two airports that are more
than an hour’s flight time apart. The augmented network
is created by inserting pseudo-nodes between airports that
are more than 1-hour apart. If the transit time along the
edge from node i to j is h hours, then we introduce a
chain of h−1 pseudo-nodes between them, each 1-hour
from the next. The traffic on each of these edges will be
θi j. If P pseudo-nodes are added, the augmented network
contains V = N +P nodes. The adjacency matrix of the
augmented matrix is denoted A = [ai j]≥ 0, A ∈ RV×V .
Fig. 2 shows the original and augmented networks for the
case when one of the edges has a transit time of 2 hours
and another has a transit time of 3 hours.

Fig. 2: (Left) Original network. The flight time from node n1
to n2 is 3 hours, and from node n1 to n3 is 2 hours. (Right)
The augmented network has three pseudo-nodes p1, p2 and
p3



Suppose the traffic matrix is given by

Θ =

0 θ12 θ13
0 0 0
0 0 0

 .
The augmented network has 6 vertices,
V = {n1,n2,n3, p1, p2, p3} and its adjacency matrix
is given by

A =


0 0 0 θ12 0 θ13
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 θ12 0
0 θ12 0 0 0 0
0 0 θ13 0 0 0

 .

• Exogenous input: The injection of delay into the system
at an airport i is assumed to take the form of an exogenous
input, ui(t). This delay could be caused by bad weather
or other disruptions, or because of traffic management
initiatives (such as ground delays or ground stops) that
are issued in response to such disturbances. We assume
that this input is non negative.

B. Governing equations

The model features described in Sec. II-A can be combined
to determine the equations that govern the evolution of the
state vector, ~x(t). First, we note the presence of two factors:
the persistence of delays at an airport, and the redistribution
of delays due to network effects. We assume that the delay
at any time-step is a convex combination of these two factors
at the previous time-step. As α increases and delays persist
from one time-step to the next, the influence of network effects
decreases. Second, we note that the network effects term
represents the average delay level of the airport and depends
on the incoming delay, which in turn depends on the incoming
traffic flows. However, some of the incoming delay is mitigated
by of the slack on each link leading into that node. The pseudo-
nodes are assumed to just transfer the delay along incident
edges. The resultant equations for the evolution of delays are
described by (1)-(2):

xi(t +1) = αxi(t)+(1−α)
∑ j a ji

(
x j(t)−β

)+
∑ j a ji

+ui(t), ∀i ∈ N; (1)

xi(t +1) = ∑
j
Iai j>0 x j(t), ∀i ∈ P, (2)

where (x j(t)−β )+ = max{x j(t)− β ,0}, and Iai j>0 is an
indicator variable which is 1 when ai j > 0 and 0 otherwise.

The term ∑ j∈V a ji max{x j(t)−β ,0}
∑ j∈V a ji

is the traffic-weighted in-
coming delay. The max operator ensures that the delays do
not become negative; it however results in nonlinear system
dynamics. The exogenous input is given by ui(t).

Although not considered in this work, an extension of the
model would involve airborne delays as well. These delays
could be injected via an edge specific input ũi j(t). The network

effect term would then be ∑ j∈V a ji (x j(t)−β+ũi j(t))
+

∑ j∈V a ji
. ũi j(t) can be

positive as well as negative and can be used to model delay
reductions.

III. ILLUSTRATIVE ANALYSIS

The proposed network model can be adapted using oper-
ational data from a variety of possible sources, such as the
Aviation System Performance Metrics (ASPM) database [32]
and the Bureau of Transportation Statistics (BTS) database
[1]. The primary difference is that the BTS data only includes
records of US carriers which accounted for at least 1% of
passenger revenues, and therefore does not include airports
that are served by smaller carriers, air taxis, etc. We illustrate
our approach through an analysis of the model developed using
operational air traffic data from BTS for the year 2011 [1].
We only consider links (Origin-Destination pairs) that have
at least 5 flights per day. The rationale for not including the
smaller links is that there is likely to be sufficient slack on
these routes that delays would tend not to propagate through
them, that is, their contribution to delays at other airports
would remain negligible. The resultant traffic network contains
158 airports and 1,102 links, as shown in Fig (1). The top
10 airports in this network (in terms of traffic between the
nodes) are listed in Table I. We note that these counts of daily
departures are smaller than the daily operational counts from
other databases (such as OPSNET [33]) because they only
account for traffic within this network, and not international
flights, smaller/international air carriers, and flight legs with
infrequent service.

TABLE I
TOP 10 AIRPORTS BY TRAFFIC IN THE NETWORK MODEL

Airport Avg. no. of daily departures
Atlanta (ATL) 912

Chicago (ORD) 662
Los Angeles (LAX) 489

Dallas (DFW) 486
Denver (DEN) 468
Phoenix (PHX) 417

San Francisco (SFO) 300
Las Vegas (LAS) 285
Houston (IAH) 279
Charlotte (CLT) 239

We use distance as a proxy for time to determine the
augmented network, which has 2,554 nodes (and pseudo-
nodes). The average traffic flow matrix for each hour, Θ, is
symmetric and is used to construct the adjacency matrix of
the augmented network, A.

A. Exogenous inputs and performance metrics

In the subsequent analysis, we use the exogenous input
ui(t) to simulate the injection of delays into a particular
node (termed the inducing airport) and evaluate the resulting
behavior of the system. In particular, we focus on two types
of exogenous input functions:



1) An impulse input, where we introduce a certain amount
of delay at a particular time-step (in this case t = 0), and
then maintain ui(t) = 0 ∀t > 0.

2) A constant set-point, where we vary the control input in
order to keep the delay xi(t) at a particular airport i at
a fixed set-point x∗i .

These two input functions simulate transient and sustained
delay respectively. Although a sustained delay will mean that
ui(t) is a constant, in the steady state it is equivalent to having
a constant set point x∗i . We use the following performance
metrics to evaluate the system behavior in response to the
exogenous inputs:

1) Total delay, namely, the sum of the delay levels seen
at all the airports in the network at time-step t, that is,
∑ j∈N x j(t).

2) Average induced delay, namely, the average delay level
seen across all airports when an exogenous input is
introduced at an inducing airport. It is defined as:

¯ID(t) =
total delay(t)
|N|

,

and is the expected delay level that an airport will
see under that particular exogenous input and inducing
airport.

3) Largest impacted cluster, or the largest set of connected
airports that have a non-zero delay. If we have an
exogenous input only at one airport, then the size of
the largest impacted cluster (also known as the giant
component) is simply the number of airports with non-
zero delay. This is because the dynamics is such that
the delay spreads only when there is a connected path.
Further, airports with near-zero delay xi(t) are also
counted in this metric. Whenever an airport has a non-
zero delay, it means that there is atleast one incoming
link with a delay of greater than β min/flt. Consequently,
the largest impacted cluster includes airports that have
high incoming delays but propagate very little.

B. Impulse input (impulsive disruption)

An impulse input at an inducing airport k is of the form
uk(0) > 0 and uk(t) = 0 ∀t > 0. The exogenous input is
assumed to be zero at all other airports. This represents a
scenario in which there is sudden brief disruption at an airport.
The system response depends on the propensity towards the
persistence of delays (that is, α) and the schedule slack (that
is, β ).
• If α = 1, the system is completely inertia-driven. The

impulse will be isolated, but persist indefinitely.
• If α ∈ (0,1) and β = 0, then there is no slack in the

system and delays will disperse through the network, and
persist indefinitely. Lemma 1 characterizes this scenario:
Lemma 1: Consider a system governed by (1)-(2) with
α ∈ (0,1) , β = 0 and an associated symmetric traffic
matrix. If we introduce an impulse delay xk(0) at an
airport k, the system will reach a steady-state where the

delays at all the airports will be given by

xSS =
xk(0)deg(k)
∑i∈N deg(i)

.

• If α = 0 and β = 0 , then the delays can keep oscillating
and not converge. A simple example is a two-node
network where one airport receives an impulse delay.
The delay will keep getting transferred between the two
airports.

• If β > 0, then we have slack in the system and delays
will get absorbed. In other words,
Lemma 2: Consider a system governed by (1)-(2) with
β > 0. For any delay impulse, |xi(t)|→ 0 as t→∞, ∀i∈N.

The dynamics for an intermediate range of α and β is
simulated for an impulse input delay of 120 min/flight at
Chicago O’Hare (ORD) International Airport. In Fig 3, we
plot the dynamics of the average induced delay and the size
of the largest connected cluster. First, we note that the time
for delays to decay to zero increases with α . This increase is
nonlinear and grows rapidly as α approaches 1. The parameter
α is also related to the response time of the system: When it is
low, the system can share the delay with other airports much
faster. This distribution enables more flights to use up the slack
in their schedule to mitigate the delay. However, when α is
low, the peak delay seen is also higher. Thus α determines
whether the system will experience a low level of delay for a
long period of time or a high level of delay for a short time.
The maximum size of the largest impacted cluster is found to
be independent of α (and around 70).

With increasing β , the average induced delay and the
number of impacted airports both decrease. Comparing it with
the effect of α , we observe the following. When we decrease
α , the delays reduce and persist for longer, where as when
we increase β , the delays scale down proportionally. This
highlights the fundamentally different way in which these
parameters impact delay dynamics. Fig. 5 shows the time
needed for delays to subside, for varying values of α and
β , for an impulse input of 120 min/flight at ORD.

C. Constant input (sustained disturbance)

In this section, we study the system behavior under a
constant delay input. Since the system is not linear, the super-
position principle cannot be used to relate the constant-input
response to the impulse-response from Section III-B. This
scenario is analogous to one in which a traffic management
initiative is used to maintain delays at an airport at a specified
level or set-point over a sustained period of time. The initial
condition is assumed to be xi(0) = 0 ∀i ∈ N. An appropriate
“exogenous input” can then be engineered to maintain a set
point of x∗ for a particular airport k.

When β = 0, there is no mechanism for delays to be
absorbed. The steady state solution will have all airports at
a delay of x∗. When β > 0, then there is some slack in the
system it will reduce the exposure of other airports to the
delay input. We look at ORD to study the influence of the
slack parameter β and the set point x∗. Fig. 7 shows the time
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Fig. 3: (Top) Avg. induced delay, and (bottom) number of
impacted airports for varying α , for an impulse input of 120
min/flight at ORD and β = 10 min/flight
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Fig. 4: (Top) Avg. induced delay, and (bottom) number of
impacted airports for varying β , for an impulse input of 120
min/flight at ORD and α = 0.2
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Fig. 5: Contour plot showing the time needed (in hours) for
delays to subside, for varying values of α and β , for an
impulse input delay of 120 min/flight at ORD
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Fig. 6: System performance for different set-points x∗ORD.
Variation of (top) average induced delay and (bottom) number
of impacted airports, with β

For a given set point x∗, the average induced delay as well
as the number of airports impacted in the network decrease
with increasing β (Fig 6). There are two distinct regions
of decrease for the average induced delay plot. For low β

values, the decrease is primarily due to the smaller number of
airports impacted. At higher β values, the number of impacted
airports does not change, and the decrease happens only at
all those airports that are directly connected to the delay-
inducing airport. When β ≥ x∗, no delay gets transmitted. It
is interesting to note that for a wide range of x∗, there is
little benefit (in terms of delay) of investing in a β greater



than 30 min/flight. The delays are sensitive to the slack in
the system when the slack is small (that is, the schedules are
very constrained).

Fig. 7: Contour plot showing the time needed (in hours) for
delays to subside, for varying values of α and β , for a set-point
delay of 120 min/flight at ORD

Variations in β not only change the average induced delay,
but also the geographical spread of the delay (Fig 8). When
β = 5 min/flight, the exogenous input at ORD induces delays
at many airports ranging from Seattle in the west coast to
Miami in the south. With β = 10 min/flight, the delay gets
limited to those airports that have a high fraction of their traffic
coming directly from ORD.
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Fig. 8: System performance with a set-point x∗ORD = 120
min/flight, (top) β = 5 min/flight and (bottom) β = 10
min/flight. We note the difference in both the number airports
impacted, and the induced delays
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This analysis of the induced delay is extended to all airports.
For each of the 158 airports in the data set, we use the
appropriate exogenous input so that the set-point (delay level)
is maintained at 120 min/flight. The 10 airports which can
induce the highest delays throughout the system are shown in
Table II.

TABLE II
TOP 10 AIRPORTS BY AVERAGE INDUCED DELAY WHEN β = 10 AND

SET-POINT x∗ = 120 MIN/FLIGHT AT THE INDUCING AIRPORT

Inducing Airport Average Induced Delay(min/flight)
Atlanta (ATL) 31.75

Chicago (ORD) 17.82
Denver (DEN) 8.30
Dallas (DFW) 7.97

Los Angeles (LAX) 7.28
Phoenix (PHX) 5.42

San Francisco (SFO) 4.73
Baltimore (BWI) 4.37
Houston (IAH) 4.25

Honolulu (HNL) 3.45

TABLE III
TOP 10 AIRPORTS BY TOTAL NUMBER OF IMPACTED AIRPORTS WHEN

β = 10 AND SET-POINT x∗ = 120 MIN/FLIGHT AT THE INDUCING AIRPORT

Inducing Airport Number of impacted airports
Atlanta (ATL) 125

Chicago (ORD) 74
Los Angeles (LAX) 68

Dallas (DFW) 40
Denver (DEN) 39

San Francisco (SFO) 52
Phoenix (PHX) 45
Houston (IAH) 40
Boston (BOS) 37

Orlando (MCO) 32

It is worth noting that the none of the airports in the New
York area (EWR, JFK or LGA) appear to be significant in
Tab. II or Tab. III. The reasons for these are several: First, both
Newark (EWR) and John F. Kennedy (JFK) airports serve large
numbers of international flights, which are not included in
this analysis. Second, the three airports serve different airline
networks, and their connectivity is quite diffused. However,
it is worth noting that if the three airports were treated as
a single “super-airport”, then it would rank 6th in terms of
induced delay (just below LAX in Table II) and tie for 8th
place in terms of the number of airports impacted (i.e., tied
with Houston).

Finally, we note that network effects can cause the induced
delays to increase super-linearly with the degree of the node
in the network (Fig. 10). This observation provides further
rationale on why merging multiple airports (such as in the
New York area) would serve to increase the degree of the
network, and thereby significantly increase the induced delays.
As expected, we also see that the induced delays decrease as
the slack β increases.
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Fig. 10: Induced delay increases super-linearly with the degree
of the node i, where x∗i = 120 min/flight

IV. SUMMARY AND FUTURE WORK

This paper motivated and proposed a new model of delay
propagation in air traffic networks. The model accounted for
the tendency of delays to propagate through traffic flows at
airports, while also accounting for the persistence of delays
at an airport, the propagation of delays through the network,
and the potential mitigation of delays due to slacks in the
schedules. Disruptions were introduced in the form of an
exogenous input, and a proof-of-concept illustration with BTS
data was provided. The paper has shown the potential for such
models to reflect system behavior, as measured by metrics such
as, the amount of system-wide delay induced by disruptions
at a particular airport, and the number of airports that are
impacted when a given airport experiences disruptions.

In ongoing work, we are investigating the generalization
of this approach to other data sets, as well as its ability
to account for differences in schedule slack, inertia, etc.
between different airports. In addition, we are investigating
ways in which these models can be estimated and validated
using operational data [15]. Finally, we are considering the
case of linear networked systems under time-varying network
topologies, and developing analysis tools for such systems.
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