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Abstract— The evolution of many networked systems, such
as air transportation, can be modeled using a combination of
the network topology and the resultant dynamics. In partic-
ular, time-varying networks can be represented by switching
between candidate topologies. This paper models such systems
as discrete-time, positive Markov Jump Linear Systems. Time-
varying, periodic Markovian transition matrices and contin-
uous state resets during discrete-mode transitions are also
incorporated. Two notions of stability are considered: Mean
Stability and Almost-Sure Stability, and appropriate conditions
are derived for both of them. The analysis techniques are
demonstrated using models determined from operational air
traffic delay data. The results show that air traffic delay
networks satisfy the proposed conditions for both mean stability
and almost-sure stability, implying that delays tend to decay
over time, even though several of the component discrete modes
are unstable. Different nodes (airports) are also evaluated in
terms of the persistence of delays and their susceptibility to
network effects.

I. INTRODUCTION

Infrastructure systems, such as air transportation, comprise
of hundreds of nodes, and several thousands of links between
them. As a result, disruptions at one node in the network
can easily propagate to many others. For example, 40% of
the total departure delay incurred by domestic flights in the
United States is caused by the late arrival of the aircraft on
its previous leg [1].

Network models have been proposed and studied for a
vast range of systems, from disease epidemics [2] and rumor
propagation [3], to engineered systems such as power grids
[4], [5], the Internet [6], roads [7], public transport [8],
railroads [9] and air transportation [10]. Prior research on
spreading processes in networked systems has focused pri-
marily on epidemiological models [11]. While these models
are representative of network interactions in some systems,
they do not encompass some of the behaviors that are
important in infrastructure systems. Key amongst these limi-
tations is the representation of the state of a node: Epidemic
models such as Susceptible-Infected-Susceptible (SIS) or
Susceptible-Infected-Recovered (SIR) models assume that
a node is in one of a small set of discrete-states [11];
by contrast, the nodal state in infrastructure systems are
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better modeled as continuous variables (for example, delays,
traffic volume, capacity, etc.). Recent work on the control of
epidemics has also focused on SIS models [12]. The type of
networks that have been considered in epidemic models have
tended to be undirected, unweighted networks; however, the
interactions between nodes in many real systems are not all
binary (in that nodes either interact or they do not), but are
instead weighted and directed (that is, the interactions are not
symmetric). Finally, most infrastructure systems exhibit not
just spatial patterns due to network interactions, but temporal
patterns such as seasonal or daily trends, resulting in time-
varying network topologies. Only very recently has there
been an analysis on disease spread over switched networks;
however, this work has considered undirected networks and
SIS models [13].

Prior work on the robustness of networks to external
disturbances or perturbations has generally been restricted to
undirected (symmetric) networks [14], [15]. These problems
are also closely related to those of consensus formation in
networked systems [16]. Approaches to analyze robustness
have only recently been extended to the case of directed
networks, but for fixed topologies [17].

Clustering of similar nodes in networks has also been
considered [18], [19], [20]. Community detection algorithms
using the notion of modularity [21] can be used to determine
groups of nodes (communities) such that there is stronger
connectivity between nodes within a particular community
than between nodes in different ones [22]. Connectivity in
the air transportation system has been traditionally modeled
only in terms of operations, that is, flight service between an
origin and a destination [23], [24], [25], [26]. By contrast,
delay is a measure of the quality of service between two
airports. The delay on an edge may not be proportional to
the number of operations on that edge, since the capacity
of airports and links vary significantly. As a result, two
links with similar traffic levels can experience very different
levels of delay. In recent work, we have considered potential
models of the interaction between delays and traffic flows,
but only for fixed network topologies [27]. The analysis of
the stability of these models remains an open problem.

A. Contributions of this paper

This paper analyzes the stability of networked systems
with time-varying network topologies. In particular, the
topologies are assumed to switch randomly between a set
of candidate networks. The underlying dynamics within a
particular mode (i.e., network topology) are assumed to be
linear. Motivated by applications to air traffic systems, we
consider discrete-time systems, and weighted and directed



networks. The state of each node is assumed to lie in a
continuous range of values; we allow for the possibility of
discontinuous jumps in this state when the discrete mode
of the system changes. Under these assumptions, we show
that the system can be modeled as a discrete-time, positive,
Markov Jump Linear System. We consider two notions
of stability: mean stability and almost-sure stability, and
determine conditions under which each form of stability is
guaranteed. Finally, we illustrate our results using examples
drawn from operational air traffic delay data.

II. MODEL OF DYNAMICS
A. Network topologies

A network is represented as ¢ = (¥,&), where ¥ is
the set of vertices (nodes) and & is the set of edges
between them. The network has |#'| =V nodes. Each edge is
represented as an ordered pair, (vq,v;), denoting a link from
vi to vo. Edge (i, j) has a nonnegative weight w;; associated
with it. The adjacency matrix, A = [a;;) € RV*V is given by

a[j— 0

otherwise
In general, the adjacency matrix of a directed graph is
asymmetric.

(D

B. Continuous state dynamics

Suppose the continuous state of the system is denoted
by ¥ € R"™*!. Then, we assume that the evolution of the
continuous state is given by:

X(t+1)=Tx(r), (2)

where I' € R"*" is a function of the adjacency matrix, A.

1) Motivating example: We consider the instance of an air
traffic network, where the nodes correspond to airports and
edges correspond to flight service between them. The weight
of each edge at any time is the median departure delay of
flights taking off on that edge during that time period. Then,
a possible model for the evolution of delays at a node is as
follows:

The total outbound delay at node i at time-step #+ 1 is
the sum of a component proportional to the outbound delay
at that node at the previous time-step #, and one that is
proportional to the delay bound to i from the other nodes at
time ¢. The proportionality constants for airport i are denoted
o; and f3;, respectively, and are assumed to be nonnegative.
These constants are not necessarily equal to one, since delay
may not be conserved due to factors such as the padding
of flight schedules (which can help attenuate delays), slack
in turnaround times, degree-of-connectivity at airports, etc.
The dynamics of delay on the network is modeled by the
following discrete-time linear system:

n
M e+1) = oMM () + B Y ad () (3)
j=1

og"d (1) + B Y adi (1) ()
j=1

a4 1)

In terms of the adjacency matrix,

o1+ 1)
1 +1)

_ al_outdlg)ut(t) + ﬁioutATd}n (l‘) (5)
= of"d 1)+ B"AdY (1) (6)

In (3)-(6), d™'(¢) and di"(¢) are the total outbound and
inbound delays at node i in time-step ¢, and &;; represent the
elements of the row normalized adjacency matrix A, that is,
a;j is the fraction of the total outbound delay at node i that
is destined for node j.

Suppose the continuous-state vector of the system at time-
step ¢, denoted ¥(¢) € R?*! is given by

(1) = [ g;g’ ] . )

Then, (3)-(6) can be written as

fe+1) = (diag([a™s @) +diag((B B) 7 ) 3(0)
— TX0), 8)
where the matrix .o/ = ( AOT Ié ) depends on the network

topology.

C. Switching between network topologies

An important aspect of real-world networks is that the
interconnectivity between nodes is not static, but instead
varies with time. For example, Fig. 1 shows the network of
delay connectivities between different airports in the US, at
different periods of time. The links are colored based on their
weights (median delay on that link), and illustrates that the
weights can vary significantly from one time step to another
(a nonzero weight corresponds to the presence of a link).

Fig. 1. Network showing weighted connectivity of delays observed between
airports (in minutes) at two different times. Although the networks are
directed in nature, the links are colored by the average of the weights in
the two directions for ease of visualization.

The time-varying nature of the network structure is mod-
eled by switches between M possible topologies from one
time to another. The system is assumed to randomly transi-
tions from one network topology to another (for example,
these transitions in air traffic network may be caused by
weather disruptions, congestion, etc.) These transitions are
modeled using a M x M Markov transition matrix denoted
II € RM*M  \where M is the number of discrete modes.
Element 7;; represents the probability of transitioning from
mode i to mode j at any time. That is,

1 =

] = Prm(+1)=jlm@)=i. )



D. Markov Jump Linear Systems

The resultant dynamics can be described using a discrete-
time switched linear system [28], with evolution in each
discrete mode (i.e., network topology) of the form shown
in (2), and with Markovian jumps between different discrete
modes. Such a system is known as a Markov Jump Linear
System or MJLS [29], [30]. The air traffic delay network
transitions from one discrete mode to another when there
are disruptions to the system or mitigation strategies put in
place. These discrete mode transitions may therefore also
be accompanied by resets or jumps in the continuous state,
which are assumed to be linear functions of the continuous
state just prior to the jump. Denoting the discrete mode at
time 7 by m(t), the dynamics of this system can be expressed
as:

)?(l—l— 1) = Fm(t))_c'(l‘)
m; = Prim(r+1)= jim(r) =1
)?(t+1) = Jijrif(t), if m(t):i and m(l‘+1)ij
Equivalently, the system is governed by the MJLS:
X(t+1) Im()m(+1)Lm(nX(t); X(0) = %o (10)
mj = Prm(+1) = jlm(r) = iJ; m(0) ~mo(11)

where J;; =1 if i = j, and the initial discrete mode is
randomly generated from a distribution 7.

We also note that all elements of J;; and I'; are nonnegative
(for all discrete modes, i and j). Therefore, the system is a
positive Markov Jump Linear System, that is, one in which
the values of the continuous states remain nonnegative, for
any nonnegative initial values.

ITT. STABILITY ANALYSIS

In analyzing networked systems, it is important to under-
stand how the state evolves, and in particular, whether it is
likely to remain bounded. In the case of air traffic networks
in which the state vector corresponds to delays, stability
can provide guarantees that the delays will not grow in an
unbounded manner, and that they will decay.

Two notions of stability that are relevant in the context
of air traffic delay networks are those of Mean Stability and
Almost-Sure Stability. These are defined below.

Definition 1 (Mean Stability): A system is said to be
mean stable if the expected value of its state tends to zero
as time tends to infinity, that is,

lim E[[|X(k)[[] = 0 (12)
k—roo

for any nonnegative initial condition ¥(0).

The above equation corresponds to the stability of the Ist-
mean of the state vector, but for simplicity, it is referred to as
just mean stability. This definition is aligned with the stability
of homogeneous linear systems, and is well-suited to positive
stochastic systems. While mean-square stability (that is, the
guaranteed convergence of the second mean of the state
vector) is commonly used in the analysis of general MJLS
[30], when restricted to positive systems, mean stability is a
more suitable notion of stability.

A stronger notion of stability is that of exponential mean
stability, which is defined as follows [31]:

Definition 2: (Exponential Mean Stability) A discrete-
time system is said to be exponentially mean stable if there
exist positive scalars ¢ and r < 1 such that:

E[|[#(k)]]] < cr*|%(0)]l, (13)
for any nonnegative initial conditions ¥(0) and 7(0).
From the above definitions, we see that exponential mean
stability implies mean stability (but not vice versa).

Almost-sure stability is a more useful concept in practice,
since it deals with the convergence of almost all sample paths
of the system to zero.

Definition 3 (Almost-Sure Stability): A system is said to
be almost-surely stable if the state tends to zero as time
tends to infinity with probability 1, that is,

Prllim [[¥(k)[| = 0] = 1,

k—yo0

(14)

for any nonnegative initial condition ¥(0).

In other words, this definition of stability considers the
convergence to zero of almost all trajectories of the state,
which is a more practical definition of stability for the case
of positive MJLS. Recent work has shown that exponential
mean stability implies almost-sure stability for continuous-
time, positive MJLS [31]; this paper shows that the same
holds for discrete-time, positive MJLS as well.

A. Stability of systems with switching network topologies

The stability of the linear system governed by 2 is deter-
mined by the maximum eigenvalue of the matrix I'. It follows
from linear systems theory that the system is stable if and
only if the absolute value of the largest eigenvalue of I' is less
than 1. However, we are interested in systems in which the
network topology is not constant, but changes as the system
switches from one discrete mode to another. The stability
analysis of switched systems (or hybrid systems) needs
to consider more than just the stability of the component
discrete modes. It has been well-established that a switched
system can be unstable in spite of all its discrete modes being
stable; similarly, a system can comprise entirely of unstable
modes and still be stable due to switching [32]. For a system
governed by (10)-(11), in addition to the network topologies
that govern the continuous state dynamics of each mode, the
Markov transition matrices for the discrete modes (IT) and
the state reset matrices (J) also play a significant role in
deciding system stability.

In considering the system given by (10)-(11), one must
consider both the continuous-state and the discrete-mode. We
therefore model the augmented state vector, §(t) € RM"*! of
the MJLS by:

5)



where

gj(t) = E[F(@) Lyl (16)

— E[®()] = (17)

In the above, the indicator function 1,,,—; equals I if the
mode at time 7 is j, and O otherwise.
Using (10)-(11), we get
gi(t+1) = E[xr+1)1
= f(t+ 1)‘m t+1)=

m(t+1)= j}

jPrim(t+1) = j]

M
= ZJijFif(t)‘m(t):i ﬂijr[m(l‘) = l'}
i=1

M
= Z nijjijl“,ﬁ,-(t).

i=1
—G+1) = 0(M" ©1,)diag(I}))§(t)
= #q(1),

where [J;] is the block-partitioned matrix built from the
matrices Jj;, 1T is the transpose of the Markov transition
matrix, diag(I’;) is the block diagonal matrix built from the I"
corresponding to the different modes, ¥(¢)|,(;)—; is the value
of X(¢) when the mode is i, and I, is the n x n identity matrix.
In the above expressions, [J denotes the block Hadamard
product, and ® denotes the block Kronecker product [33].
In other words, the augmented state g(¢) follows linear
dynamics, as shown in (18). Solving these dynamics, we
see that:

(18)

q(t) = 2'4(0) < (rs(#)) 4(0),

where r5(%) denotes the spectral radius (largest eigenvalue)
of A.

1) Mean stability of discrete-time MJLS: In order to
determine mean stability of MJLS models, we need to assess
conditions under which (12) holds. Since we are interested in
mean stability, the notation || - || in the discussion below will
denote the 1-norm of a vector. From (10), (11) and (17), we
see that for a given initial condition ¥(0) and any distribution
mg:

19)

(20)

j=1
= [lgO)I = [XO)] 2D
Theorem 1 (Exponential Mean Stability): The discrete-

time positive MJLS governed by (10)-(11) is exponentially
mean stable if and only if the largest eigenvalue of the
matrix 2 = [J;]0((II" ®1,)diag(I’;)) is less than 1.
Proof— From (17), we have that:

I
M=
3<

E[|[%()]] = llg@) (22)
i=1
< (r5(8))'11(0)] (from (19)) (23)
< E[X0)l] < (rs(2))[X(0)] (from (21)) (24)

Comparing (13) and (24), we see that the system governed
by (10)-(11) is exponentially mean stable if and only if
r=rq(#) < 1. [ |

We note that if the system is exponentially mean stable,
then the system is also mean stable, since

ImE[I%()]] < 2)) 1XO)|

= 0, (if r <1, for a positive system).

Hntral

2) Almost-sure stability of discrete-time MJLS: In order
to determine almost-sure stability, we need to consider (14).
Theorem 2: (Almost-Sure Stability) The discrete-time pos-
itive MJLS governed by (10)-(11) is almost-surely stable if
it is exponentially mean stable.
Proof- For any element of g(¢), we have

q,(t) = E(t) L]

= q;;t) < 4@l (25)

< 7|g(0)| (from (19))
=  maxx;(t) < F[%0)] (26)
= [X(@)]| < e ||IX(0)]] (27)
— GmlE0) < lmed 5O @8)
— 0, ifr<l. (29)
— prflim |50 =0 — 1. 30)

By (25), although (26) may fail to hold on some sample
paths X(¢), these sample paths will necessarily fall into a
set of probability 0. This implies that (28)-(29) hold with
probability 1. In other words, if the discrete-time positive
MIJLS is exponentially mean stable, then every trajectory
of the system converges to zero as ¢ tends to infinity with
probability 1. Therefore, it is almost-surely stable. [ ]

B. Time-varying, periodic Markovian transition matrices

Infrastructure systems such as the air traffic network also
exhibit temporal patterns. Air traffic delays show strong time-
of-day patterns [22] that can be incorporated into our models
using periodic transition matrices. In other words, we modify
the system dynamics given by (10)-(11) to be of the form:

)_C'(l‘ + 1) Jm(,)_’m(t+1)rm(t))_c'(t); )?(0) =X 31
mj(t) = Prlm(t+1) = jlm(r) =i]; m(0) ~ rmp(32)

where the Markovian transition matrix IT, = [m;;(r)] is as-
sumed to be periodic with fundamental period K € Z™, i.e.,

Ht+nK - Ht7 Vl’l S Z.

For systems such as the air traffic network that exhibit daily
temporal patterns, K = 24 (assuming that each time-step is
1 hour long).

Using a rationale similar to the one used to derive (18),
we can show that the dynamics of the augmented state vector
¢(t) is now given by:

gt+1) B, q(t) (33)
where %, = [J;]0((IT] ®1,)diag(T;)) (34)
:>c_j(t) = 93,,1,@,,2-~-%’05j(0) (35)
= [lgt)| < (re(Bi-1%Bi—2--%0))11G(0)]], (36)



where, as before, rs(Z%) denotes the spectral radius
(largest eigenvalue) of . Suppose we denote 2 =

By 1PBg_o---PBy. Then, we have:
(k+nK) = Py PBog(nkK),Ynec 7" k€ [0,K]
—G4(K) = 2§(0) (37)
= gG(nK) = 2"G(0),VneZ" (38)
= [lg=)|| < rpllg0)]l, (39)

where rp is the spectral radius of 2.

1) Mean stability with periodic transition matrices: We
now derive conditions under which a discrete-time MJLS
with periodic Markovian transition matrices is exponentially
mean stable (and therefore mean stable).

Theorem 3: (Exponential Mean Stability with periodic
transition matrices) The discrete-time positive MJLS with
Markovian transition matrices that are periodic with time
period K, governed by (31)-(32), is exponentially mean stable
if the largest eigenvalue of the matrix ¥ = BxBx—1--- PBo
is less than 1.

Proof- Suppose rq(Z) < 1. Then (39) implies:

) = E)Y GO = (o)™ GO

(40)
In other words, we know that ¢(¢) is exponentially bounded
at values of ¢ that are integer multiples of K. However, it is
not necessary that g(¢) be a monotonic function, as shown in
Figure 2 for a 1-dimensional system. Suppose we denote the
maximum amplification between r =0 and f = K by amax-
That is,

g(nK)|| <

max [|g(t)]| = amax[|4(0)]- (41)
t=0--K
max]|q(0)
4 G [|a(0)
amax
lla(O)If.
0 "
0 . 2 3K
Time-step, t
Fig. 2. Illustration of exponential bounds for scenario with periodic

Markovian transition matrices.

Then, for nK <t < (n+ 1)K, we get:

4t) = Bi_wk-1PBi—nk—2---Bod(nk) (42)

= %k,p%k,z---%oq(nKL k=t—NK

- mtax||(i(t)|| = dmax||g(nK)| (from (41)) (43)
1

= [lgO) < ama[|GO)|, F=1f (44)

= E[IX0)]] < amx[X0)]. (45)

Therefore, comparing to (13), if r5(2) < 1, then (45)
implies that the system is exponentially mean stable. [ ]

Theorem 4: (Exponential Mean Stability with periodic
transition matrices) The discrete-time positive MJLS with
Markovian transition matrices that are periodic with time
period K, governed by (31)-(32), is exponentially mean
stable if and only if the largest eigenvalue of the matrix
Bk PBrrkx—1-- P is less than 1, for some integer k €
[0,K].
Proof- Considering the proof for Theorem 3, we note that the
choice of start time k = 0 is arbitrary, and that we could have
picked any start time, k. Without loss of generality, let us con-
sider a start time k € [0,K — 1]. Then, a K time-step “cycle”
would correspond to the time-steps k,k+1,--- k+ K — 1.
Suppose we denote & = By k1 PBrsk—»- - BoB) - P.
In general, we note that & may note be equal to 2, since
the Z matrices may not commute. However, using similar
arguments as before, we can show that if the spectral radius
of 9 is less than 1 for some value of k, then the system is
exponentially mean stable, and vice versa. [ ]

2) Almost-sure stability with periodic transition matrices:
As shown in Theorem 2, exponential mean stability implies
almost-sure stability for discrete-time, positive MJLS (with
constant transition matrices). We can use an identical ar-
gument (replacing (25) with (44)) to show that the same
property holds for the case of periodic transition matrices as
well. Therefore, Theorem 3 provides a sufficient condition
for almost-sure stability.

IV. ILLUSTRATIVE AIR TRAFFIC DELAY
NETWORK EXAMPLES

Air traffic delay networks can be modeled as weighted,
directed graphs, with airports as nodes, and links (flight
service) between airports as edges. Time is discretized into
1-hour intervals. The model is constructed using Bureau of
Transportation Statistics (BTS) data from the years 2011-
2012 [1]. The network is restricted to links that serve at
least 5 flights/day on average, which results in 158 airports
(nodes) and 1,107 edges.

The discrete modes are identified from operational data by
clustering the networks (adjacency matrices) corresponding
to different time-steps [22]. The principal eigenvector of &/
(from (8)) is reflective of the network structure: It corre-
sponds to the hub and authority scores of the network, which
are an extension of the concept of eigencentrality to directed
networks [34]. In prior work, we considered air traffic delay
networks (i.e., the edge weights were the delay levels on
that link), and clustered them using the delay-weighted hub
and authority scores as features [22]. In this manner, six
characteristic delay modes were identified: (1) San Francisco
(SFO) high delays or SFO; (2) National Aispace System
(NAS) wide high delays, also denoted High NAS; (3) System-
wide low delays or Low NAS; (4) Atlanta high delays or ATL;
(5) Chicago high delays or ORD; (6) System-wide moderate
delays or Med NAS. We further categorize each of these
delay modes by whether the system delays are increasing
or decreasing, resulting in a total of 12 discrete modes.



Having identified the 12 discrete modes, the system (that
is, the network) is classified as being in one of the 12 modes
(that is, the closest in terms of the feature vector) in each time
period over the two years (2011-2012). Considering each
hour of the day, the Markovian transition matrices between
discrete modes (I1;) are also estimated. By considering the
evolution of the continuous state for all time-steps when
the system is in a given discrete mode, the matrix I; for
each mode i is determined. Finally, by analyzing transitions
between each pair of discrete modes, the jump matrices
Jij are also estimated. In modeling the dynamics of the
continuous states, we restrict our models to the network
formed by the 30 largest airports in the US (also known as
the “Core 30” airports [35]), resulting in a continuous state
vector ¥(t) € RO,

A. Stability of air traffic delay networks

We now apply the analysis presented in Section III to the
air traffic delay networks described above.

1) Stability of individual discrete modes: Fig. 3 shows the
spectral radius (largest eigenvalue) of the I'; corresponding
to each of the 12 discrete modes.
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Fig. 3. Spectral radius of the system matrix, I';, corresponding to each
discrete mode.

An individual discrete-mode is stable if and only if the
spectral radius of the corresponding I' is less than 1. Exam-
ining Fig. 3, we see that the discrete modes with increasing
system delays are all unstable. We also see that with the
exception of the “Low NAS/ decreasing system delay” mode,
the other decreasing delay modes have spectral radii that are
quite close to 1 (i.e., the stability boundary), and two of
them, the “High NAS/ decreasing system delay” and “ORD
decreasing system delay” modes are marginally unstable.

2) Instantaneous temporal variation of MJLS stability:
As mentioned before, stability (or instability) of individual
modes does not imply the stability (or lack thereof) of the
MILS. From (33)-(34), we can evaluate the “instantaneous”
temporal variation of system stability over the course of a
day by considering the spectral radius of ;. This matrix
describes the evolution of the augmented state at that time,
and considers the dynamics in individual modes, as well
as the effects of transitioning to different modes, and the
probability of these transitions.

8 AM 1PM
Time of day (U.S. East Coast Time)

6PM 11PM

Fig. 4. Spectral radius of %, and %,%,_1 %, as a function of the time-
of-day, r. 4AM (i.e. t = 0) is considered to be our start of day.

Fig. 4 shows that the % matrices are generally unstable
in the morning (when delays can increase, and also the
probability of transitioning to an unstable mode is high),
while they tend to become stable after ~7PM Eastern Time,
when demand starts to decrease at many airports and the
probability to transitioning to decreasing delay/stable modes
is higher. There is a temporary exception at around 9PM
Eastern Time, potentially driven by factors on the West Coast
of the US, where it is only 6PM and traffic is still high.
Finally, the % matrix becomes unstable again at the end of
the operational day (3AM Eastern Time), because the system
has a high probability of transitioning to an increasing delay
mode at the start of the next morning.

3) Evolution of augmented state during a day: Next,
we consider (35), which describes the evolution of the
augmented state, ¢(7):

4(t) =B 1PBi—---%04(0)

This equation relates the augmented state at any time to the
augmented state at + = 0, which we consider to be the start
of the day. Then, as shown in (36), the “amplification” of the
augmented state, that is, the ratio of the value of its norm
at time ¢ to its value at time zero, is upper-bounded by the
spectral radius of the matrix product %B,_|%,_, - - ABy. This
quantity is reflective of the stability of the system between
the start of the day and time-step ¢, and is plotted in Fig. 4.

4) Stability of air traffic delays with switching network
topologies and periodic transition matrices: From Theorem
3, we know that the system is exponentially mean stable
if and only if 2 = BxPBx—1--- By < 1. We can see from
Fig. 4 that at the end of the day, the spectral radius of the
product of the %, matrices is indeed less than 1. Therefore,
the system (with periodic time-varying transition matrices)
is exponentially mean stable, and by Theorem 2, almost-
surely stable. It is worth mentioning that one could have
alternatively considered a single Markovian transition matrix
over the entire day (that is, by ignoring the temporal vari-
ations, and just considering the probability of transitioning
between modes at any time). Such an approach yields a %
matrix that has a spectral radius of 1.061, which suggests
that the system is marginally not exponentially mean stable.



However, this approach ignores the temporal variation of
the transition matrices that may help stabilize the system:
For example, transitions into the low NAS (and decreasing
delay) mode is much more likely in the evening than in the
mornings, which has a stabilizing effect.

B. Amplification of continuous state

So far, we have considered the evolution of the augmented
state ¢, and used it to guarantee the convergence of the
continuous state vector, X. We now consider the expected
amplification of X(¢), by using (17):

M
=340
=1

First, we construct a variant of Fig. 4, which shows the
amplification of E[X(¢)] at each time.

First we consider a specific version of Fig. 4 (which shows
the amplification of the augmented state at each time) with
the initial condition m(0) as the Low NAS Increasing mode
and ||g(0)|| = 1. We use (17) to determine the corresponding
values of the continuous state, and find that it peaks around
7PM Eastern Time (it is interesting to note that the peak in
E[||X(¢)||] occurs at a different time from the peak in ||g(z)||,
which occurs at 9AM). We calculate the corresponding
principal eigenvector and use that as the initial condition to
determine the expected value of the continuous state, E[X(¢)],
at each hour of the day. The norm of this vector is plotted
in Fig. 5. It shows that the maximum amplification factor is
5.9 (achieved at 7PM Eastern Time), relative to the norm of
the continuous state at the start of the day.

8 AM 1PM 6PM 11PM
Time of day (U.S. East Coast Time)

4AM

Fig. 5. Expected value of the norm of the continuous state vector, E[[|¥(z)]|]
vs. time of day.

C. Persistence of delays and resistance to network effects

From (2) and (8), we see that the off-diagonal elements
of I' reflect the dependence of delays at a node on delays at
other nodes (i.e., the network effects), while the diagonal
elements reflect the dependence of delays at a node on
the delays at that same node in the previous time-step. In
particular, considering (3)-(4), we see that the larger the value
of a®™ (or Oc}“), the more the persistence of any outbound
(or inbound, respectively) delays there, and the greater its
resistance to network effects. In other words, one would

need higher delays at other airports before airport i was also
impacted by delays. Similarly, smaller values of o”" and oc}“
mean that the airport is relatively more sensitive to network
effects; however, any delays at i will decay faster.
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Fig. 6. Average values of a®" and o™ for different airports. The values

are averaged over the different discrete modes.

Fig. 6 shows the a®" and o™ values for different airports,
averaged over the 12 discrete modes. We see that many
of the major airports (especially the airline hubs — Atlanta
(ATL), San Francisco (SFO), Chicago O’Hare (ORD)) have
among the largest values of these parameters, suggesting
a persistence of delays. We also see that Denver (DEN)
and Dallas/ Fort Worth (DFW) have a high value of o®™,
but a smaller value of o'". This suggests an asymmetry in
the persistence of outbound and inbound delays, with the
former being more persistent (and less susceptible to network
effects). We also notice that the three New York area airports
(EWR, JFK and LGA) have reasonably high (and similar)
values of these parameters. We see that some of the smaller
airports (e.g., Memphis (MEM), San Diego (SAN) and Salt
Lake City (SLC)) have lower values of these parameters,
especially with regards to inbound delays. The reason for
this phenomenon could be that there is typically sufficient
capacity at these airports to satisfy the levels of demand seen
at these airports; as a result, there is little congestion. We
believe that this analysis is a first step towards evaluating
the resilience of different airports to disruptions.

V. CONCLUSIONS

This paper presented and analyzed the stability of a
discrete-time, positive MJLS model of air traffic delay net-
works. It showed that the proposed model could account
for time-varying networks using random switches between
topologies. Periodic Markovian transition matrices and con-
tinuous state resets were also incorporated. We derived
conditions under which such a system is exponentially mean
stable and almost-surely stable. We demonstrated these con-
ditions on models derived from operational air traffic delay
data, and showed that air traffic delay networks are both
exponentially mean stable and almost-surely stable. Finally,
we analyzed the models to evaluate the persistence of delays
at different airports, and their susceptibility to delays from
other airports due to network connectivity.



These results present an important first step toward under-
standing the behavior of networked systems with switching
topologies. They also present opportunities for designing
novel controllers that improve the performance of such
systems, both through feedback of the continuous state, and
by leveraging the ability to switch networks.
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