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SATELLITE COLLISION AVOIDANCE USING REPEATED GAMES

Sydney Dolan*, Victor Qin*, Geoffrey Ding* and Hamsa Balakrishnan†

The democratization of space and rise of mega-constellations have led to more
satellites in orbit than ever before, and thus increasing the number of operator-
operator conjunction events. An understanding of maneuver strategies for colli-
sion avoidance is crucial to maintaining a safe satellite operating environment. We
use game theory to analyze the satellite collision problem and propose autonomous
strategies for collision avoidance of different types of satellites by posing it as a
repeated game. Our results provide insight into recommended operator decision-
making windows and likely strategies of non-cooperative entities.

INTRODUCTION

The number of satellites is expected to increase exponentially over the next decade. With this
increased congestion, there is an increased risk of collision between satellites. Even one collision
can have significant impacts to the space ecosystem. For example, the 2009 collision of the Iridium-
33 and Kosmos-2251 satellites resulted in 823 debris objects that formed two debris clouds in Low
Earth Orbit (LEO).1 This incident resulted in the destruction of the two satellites involved and
created long-lasting consequences to others in orbit, as other active satellites had to maneuver to
avoid debris from the incident.2

Producing a set of coherent regulations for space collisions is difficult, in large part due to the
heterogeneity of operators in orbit. Lower launch costs have enabled new entrants to orbit, with
over 86 countries now owning and operating spacecraft, a twofold increase from 2010.3, 4 Many of
these newcomers have less infrastructure to quickly respond to collision avoidance warnings from
screening services. Unfortunately, these screening services often have a high false alarm rate, with
a detrimental impact on the trust placed on their alerts by satellite operators.5 Miscommunica-
tions between operators about how each will respond has resulted in numerous near-misses between
satellites in orbit.6, 7 Another issue with collision avoidance responses is related to the militarization
of space. The presence of different military spacecraft complicates management, as government
operators may want to conceal their operations and intentions from others.

To illustrate the complexities of operator behavior for a potential collision, consider a hypotheti-
cal high-risk satellite conjunction warning between two operators from different countries that was
delivered one day in advance. Due to factors like time zones, staffing, and operator competition, the
two operators have not communicated their intended collision avoidance maneuver strategy. With-
out communication, operators can inadvertently move closer to one another, neglect to move on the
assumption the other will, or successfully maneuver away from one another. The collision response
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strategy is determined by factors like mission type, propulsion, maneuverability, and collision avoid-
ance support. This complex decision-trade space motivates the use of game-theoretic methods to
study behavior. More specifically, game theory provides a framework to analyze different strategic
decisions between operators and determine best practices.

Collision avoidance between non-cooperative operators resembles classical problem in game the-
ory known as the “game of chicken.” The game of chicken is a two-player game that considers two
drivers who are approaching one another in a head-on collision. If both continue to go straight, they
will crash and incur a large negative cost. The only way to avoid a collision is for at least one of
them to swerve; however, if one driver swerves and the other goes straight, the one who swerves is
considered “chicken” and loses, while the driver that goes straight wins. This game has been used
to model interactions in many contexts, such as in the Cuban Missile Crisis,8, 9 climate change,10

and public goods.11 In our work, we rely on simulations to obtain a more realistic model of the
underlying system than prior studies.

We use two game-theoretic abstractions of the problem: first, we assume probabilistic operator
actions and compute mixed Nash equilibria over multiple time steps; and second, we assume a risk
threshold-based model of operator actions and determine the thresholds over multiple time steps.
The first method finds a probabilistic strategy for each operator that minimizes their expected cost,
given knowledge of the other player’s risk threshold. The second method finds a series of risk
thresholds based on an expectation of the other agent’s probability of collision threshold that an
operator makes a binary decision at. This parameter can be thought of as a players risk aversion.
If an agent anticipates a higher threshold value for its opponent, then the expected behavior will
be that the opponent is less risky and more likely to move. We then do a parameter study and, by
varying the costs of thrust and collision, find how they affect the Nash equilibrium and risk threshold
models.

We first describe our collision avoidance model and game, then present some results from tuning
short-term and long-term costs in the one-step game. We then solve the multi-step game and present
simulated results using a mixed Nash equilibria method and a risk threshold method.

MODEL

In this section, we describe the environment for our model, some preliminaries on game theory,
and our game-theoretic framework. First, we provide an overview of our probability of collision cal-
culation and propagation methods. As an introduction to game theory, we provide a brief overview
of the game of chicken, which holds some parallels to our problem. Then, we describe our game
theoretic framework.

Environment

Before we can calculate the probability of collision, we first propagate each state vector at time
step n− 1 to the time of closest approach tca using the SGP4 propagator.12 Then, we transform the
state vectors from the Earth-centered inertial frame into the relative motion frame.
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To calculate the probability of collision at each time-step, we rely on Foster and Estes 2D-PC

method to quantify collision risks.13 The probability of collision problem is transformed into a
2D collision plane by assuming rectilinear motion of the two objects during encounter plane. This
plane is defined as perpendicular to the relative velocities of the two objects, and assumes that
the combined uncertainty along the relative velocity vector has no bearing on the calculation of
probability of collision.

Assuming a circular cross-sectional area as the hard body radius (HBR), the resultant probability
of collision is:
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1

2π
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|C|
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−HBR

√
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√
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C is the combined position covariance for both objects, r⃗ is the position on the collision plane,
and r⃗d is the debris object’s position on the conjunction plane. These positions are given by

r⃗ =

[
x
z

]
(3)

and

r⃗d =

[
x1 − x2
z1 − z2

]
. (4)

Game Theory

Game theory studies interactive decision-making in systems where the choices and outcomes of
each agent depend on the actions of others. Games are defined by the number of players N , the
actions At

i available to each player i at each time t, and the cost to each player i at each time i, uti,
which may depend on the actions of other players. For a single stage game, which only contains
one time step, each agent receives an expected cost given their action and the action of the opposing
agent. The goal of each player is to minimize the cost incurred during the game. Table 1 gives the
cost matrix for the game of chicken.

Agent 2
Swerve Straight

Agent 1 Swerve 0, 0 1,−1

Straight −1, 1 10, 10

Table 1: Cost matrix for the game of chicken.

Consider the best responses for agent 1 in the game of chicken, which are the actions that mini-
mize agent 1’s cost for each action of agent 2. Suppose agent 2 goes straight; then, agent 1 should
swerve because 1 < 10. On the other hand, if agent 2 swerves, agent 1 should go straight because
−1 < 0. This produces an established phenomenon in game theory known as Nash equilibrium,
where everyone is playing the best move they can in the circumstances. As swerving is the best re-
sponse to going straight, and vice versa, there are two Nash equilibria: one in which agent 1 swerves
and agent 2 goes straight, and one in which agent 1 goes straight and agent 2 swerves. These are
both pure strategy Nash equilibria.
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However, there is actually a third Nash equilibrium, where both agents choose to swerve with
probability p; by symmetry, this strategy is identical for both players. To find the p that yields a
Nash equilibrium, we can once again analyze best responses. Specifically, we can find the p that
causes each agent to be indifferent to swerving or going straight, i.e., that results in both actions
leading to identical costs.

The expected cost of swerving in response to the other agent swerving with probability p is
0p+ 1(1− p) = 1− p, while the expected cost of going straight is −1p+ 10(1− p) = 10− 11p.
Setting these equal to find the p that leads to indifference and thus a Nash equilibrium yields 1−p =
10 − 11p, so p = 9/10 = 0.9. Thus, a strategy for both players of swerving with probability 0.9
and going straight with probability 0.1 is a mixed strategy Nash equilibrium.

We model the satellite collision avoidance problem as a game of chicken extended to multiple
time steps t = 0, 1, . . . , T − 1, where each operator decides to move their satellite (’swerve’) or
wait and continue in their orbit (’straight’). A possible collision occurs at time step T , when the
satellites reach their distance of closest approach (DCA).

Another model for the game of chicken over time involves decision-making based on a series of
risk thresholds, where an operator will move if the probability of collision is above its risk tolerance
at time step t. This model aligns with current operator practice, where satellite operators set collision
risk thresholds and move their satellites if the modeled closest approach is too near.

Model Description

Suppose there are two satellites, i = {1, 2}. We model this system as evolving with discrete time
steps t = {0, 1, . . . , T} and ∆t = 1 hr, with t = 0 being the first notice of a possible collision event
and t = T being the time of closest approach. At each time step, the true DCA is represented by a
state st ∈ R≥0.

At each time step except t = T , each satellite can take an action ati ∈ {0, 1}, where ati = 1
indicates a maneuver to increase the relative DCA st+1. We assume that agents will always thrust
in the direction that increases the relative DCA and that any thrust by any operator will increase the
DCA to above the threshold of danger.

Taking an action incurs a cost for the satellite operator. We model the cost for satellite i as

gti(a
t
i) = Gtati =

Gmax

kT−1−t
ati ∀t = {1, . . . , T − 1} (5)

for some Gmax > 0, k ≥ 1. If a satellite does not thrust and ati = 0, the cost to its operator is
0. If the satellite does thrust, the operator incurs a cost of Gt, with maximum value Gmax. This
cost increases with time, as suggested by the power law term kT−1−t, because a decreased time to
closest approach requires more thrust to get a corresponding change in the DCA.

If no action is taken at time step t, i.e., ati = 0, then st+1 = st. A possible collision event is
considered to have occurred if neither operator has moved by t = T , and both operators suffer
the cost of (possible) collision H ≫ Gmax. Given the probabilistic nature of satellite collisions,
however, each operator may have a different risk tolerance towards the possible collision. This is
represented by their respective types θi ∈ R≥0, and the cost of collision to each operator is Hθi.
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RESULTS

Tuning Short-Term vs Long-Term Costs

The Nash equilibrium strategy of either agent is highly dependent on the values of the short-term
cost Gmax and long-term cost H .

Figure 1: The impact of the short term cost,
G, long term cost H , and risk tolerance on
resultant action selection. A triangle indi-
cates waiting, while a circle indicates mov-
ing. Green and blue differentiate between
agents. The 3D plane represents the prob-
ability of collision for the wait-wait sce-
nario. This factor has the largest impact on
an agent’s action for two agents with differ-
ent risk tolerances.

Figure 2: The impact of the ratio of long to short
term cost (H/G), on the emergence of a mixed-
Nash equilibrium strategy where both agents move
with probability p, as shown on the y-axis.

Figure 1 demonstrates that the most significant parameter on the emergence of the move-wait
strategy for operators with different risk tolerances is the probability of collision if both agents were
to wait. If that probability is above an agent’s risk tolerance threshold, then it will move.

Figure 2 compares the impact of tuning parameter ratio value (H/G) on the emergence of a mixed
strategy Nash equilibrium, which involves at least one player using a randomized strategy. With a
mixed strategy, a player’s action is not deterministic, but rather chosen randomly according to a
probability distribution over their actions. In the experiments to produce Fig. 2, both agents had a
risk tolerance that was less than the probability of collision if both agents waited, θ < pwait wait. As
both agents have identical risk tolerances and identical tuning parameters, we expect their resultant
strategies to be symmetric. It should be noted that these cases also achieved a pure strategies of a1
= move, a2 = wait and a1 = wait, a2 = move. However, we wanted to investigate how tuning could
result in a mixed strategy Nash equilibrium.

Figure 2 demonstrates that as the ratio of long-term to short-term cost increases, the mixed Nash
equilibrium strategy distribution favors moving. While the one-step game never produces a pure
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Figure 3: Cost in the multi-step case is a summation of the long-term and short-term costs for each
iteration of the T -step game.

strategy where both agents move, when the long-term cost outweighs the short term cost by a factor
of about 100, we see that the resultant probability distribution leads to moving over 99% of the time.

MODELING COLLISION AVOIDANCE USING MIXED NASH EQUILIBRIA

In the multi-step analysis, we transform the one-step game to a sequence of T repeated games. At
each round, the agents must choose to wait or to move, where moving requires trading off short-term
fuel cost and long-term collision cost. First we create and populate a decision tree.

Building the Decision Tree

At each time step, the probability of collision for each strategy is calculated. The risk tolerance
of the controlled agent and the covariance (uncertainty) of the system are also updated. A monoton-
ically decreasing risk tolerance as the time to collision gets closer reflects satellite operators taking
the warning more seriously and consequently maneuvering.

As the time to collision draws closer, the length of propagation time decreases, and thus accuracy
of the probability of collision estimate improves. To account for this engineering trade-off, we
assume the covariance associated with the opposite spacecraft decreases at a rate of 10% each time
step. This resultant reduction in uncertainty yields a smaller covariance, C, and thus is likely to
reduce the probability of collision unless the two satellites are on a collision course with a very
small separation.

These two updates create a unique short-term and long-term cost associated with that state for
each of the four strategic outcomes (move-move, move-wait, wait-move, and wait-wait); these costs
are saved for each round. To create the decision tree, the costs at each round are added together,
as shown in Fig. 3. Once the decision tree has been created, we rely on alpha-beta-pruning14 to
determine the optimal solution based on the total reward at each step.

T-Step Results

To determine the impact of repetition on the resultant strategies between operators, we compare
strategies between iterations of n-step games. Table 2 lists the recommended strategy for different

6



numbers of iterations and the corresponding time step intervals for decision making. With additional
time steps, we find that the satellite operator is more likely to maneuver earlier. With four iterations,
we find several solutions, one where the recommended maneuver to move is at time step 2 and one
where the recommended maneuver to move is at time step 3.

These results suggest that with additional decision-making intervals, individual satellite operators
are more likely to adopt preemptive avoidance measures. This is a result of the risk-tolerance for
each operator increasing at each time step. The decreasing risk tolerance means that a collision risk
that would have been acceptable initially could become unacceptable at a later time.

Table 2: Recommended Strategies for Different N -step games

Maximum Iterations
in Repeated Game Time Step Interval Recommended Strategy

2 3 hours Force opponent to maneuver

3 2 hours Move at first instance

4 1.5 hours Maneuver at time steps 2 and 3

MODELING COLLISION AVOIDANCE USING RISK THRESHOLDS

One downside of the tree search analysis is that it searches for the system-optimal solution that
maximizes both players rewards by assuming full knowledge of agent costs. Inspired by analysis
of the Cuban missile crisis,9 we can model how operators behave with limited information of the
other agent’s costs and when forced to make pure move or wait decisions (rather than a probabilistic
decision) with respect to risk thresholds.

Suppose two operators i ∈ {1, 2} have satellites that are on a collision course. Each operator can
decide whether to wait or move at a time step t ∈ {1, . . . , T − 1}; we assume that an operator only
requires one maneuver to completely avoid a collision. At time t = T − 1, the cost matrix is given
by Table 3.

Operator 2
Move Wait

Operator 1 Move Gmax, Gmax Gmax, 0

Wait 0, Gmax pT−1Hθ1, p
T−1Hθ2

Table 3: Last step (t = T − 1) cost matrix for the satellite collision avoidance game

If operator i decides to move, it incurs a movement cost of Gmax. If neither operator moves, both
incur a catastrophic collision cost of pT−1Hθi, where the type of an operator θi is drawn uniformly
at random from [0, θmax]. This type represents an operator’s sensitivity to and risk assessment of
such a catastrophic collision, where a higher type indicates a greater aversion to risk.

Threshold analysis

An operator with a high type, where θi ≈ θmax, should be very sensitive to the cost of catastrophe
and thus act to avoid a collision earlier in the scenario, while an operator with a lower type may be
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more willing to take risks and see how things develop before moving.

Therefore, we model the likelihood that an agent moves due to excessive risk as follows: We
define a sequence of (unknown) thresholds θ0 ≥ θ1 ≥ . . . θT−1 ≥ 0. If an agent type θi is greater
than the threshold at the current time step θt, it will move. Our goal is to find a relationship backward
in time, where θt−1 is related to θt. We can find θt−1 from θt by comparing the cost of thrusting
later to the probability that the other satellite moves instead.

To solve for these thresholds, we assume θT−1 is a constant, solve for the relationship between
it and θT−2, then between θT−2 to θT−3 and so forth until θ0. We can then tune the value of θT−1

such that θ0 = θmax.

Let qt be the probability that an arbitrary operator moves at time step t. It is operator-agnostic
due to our assumption of a uniform distribution of types. If an operator has not moved by time step
t − 1, it must have θt−1 ≥ θi ≥ 0. Based on the next threshold θi, the probability of operator i
moving at time step t is the probability that θi ∈ [θt, θt−1]. As such,

qt =
θt−1 − θt

θt−1
(6)

A corollary of (6) is

1− qt =
θt

θt−1
(7)

which is the probability that an operator waits.

We first analyze t = T − 1 from the perspective of operator 1, although the conclusions are the
same for operator 2 by symmetry. Operator 1 expects operator 2 to move with probability qT−1 and
to wait with probability 1− qT−1. Then, if

Gmax < qT−1(0) + (1− qT−1)(pT−1Hθ1) (8)

moving incurs a lower cost than waiting, and operator 1 will move.

We can solve this equation to relate the threshold θT−1 to θT−2. Assume θT−1 is some constant.
First, we substitute thresholds in for qT−1 using (7) and rearrange to isolate θ1.

Gmax < pT−1Hθ1
θT−1

θT−2
(9)

θ1 >
Gmax

pT−1H

θT−2

θT−1
(10)

When θ1 = θT−1, operator 1 is indifferent between moving and waiting. This is the indifference
threshold, where an agent is equally well off by moving and waiting. Then, by replacing (10) with
an equality and substituting θ1 with θT−1, we can obtain an expression for θT−2 as a function of
θT−1:

θT−1 =
Gmax

pT−1H

θT−2

θT−1
(11)

θT−2 =
pT−1H

Gmax
(θT−1)2. (12)

8



However, because θT−2 ≥ θT−1 by definition, we add a max function:

θT−2 = max

{
θT−1,

H

Gmax
(θT−1)2

}
. (13)

The scenario where pT−1H
Gmax (θT−1)2 < θT−1 can be interpreted as the cost of thrust Gmax being

so great that an agent would rather risk collision than move. However, this is unrealistic for this
problem, and thus values that fall into this paradigm are filtered out.

This gives us a relationship between the thresholds θT−2 and θT−1.We continue this process of
solving backwards to θ0 by finding a general relationship between θt−1 and θt for t = T − 2, . . . 2.
First, let us look at the cost matrix for an arbitrary time t, as shown in Table 4. Here, V t+1

i (θi) is
the expected cost to operator i of proceeding to the next time step.

Operator 2
Move Wait

Operator 1 Move Gt, Gt Gt, 0

Wait 0, Gt V t+1
1 (θ1), V

t+1
2 (θ2)

Table 4: Time step t cost matrix for the satellite collision avoidance game

We derive the relationship between θt−1 and θt by analyzing the threshold where an operator is
indifferent to moving or waiting at time t. Consider when θi = θt. Then, indifference occurs when:

Gt = (1− qt)V t+1
i (θi) (14)

Because θt−1 > θt > θt+1, if θi = θt then the agent will concede at the next timestep. Thus then
V t+1
i (θi) = Gt+1, because the agent will move.

By applying (5) and (7) to (14), we obtain the following:

Gt = kGt θt

θt−1
(15)

θt−1 = kθt. (16)

This gives us a recursive definition of θt−1 as a function of θt. This recursion can get us from θT−2

to θ1. Then, one more step using (16) gives us θ0, where we require θ0 = θmax. We tune the value
of θT−1 to find where this holds and to derive the set of thresholds an operator should choose to
move by. Above the threshold, the agent should move now, while thrusting is cheaper; below the
threshold, the agent is willing to take on the risk of moving later.

The operator analysis then proceeds as follows at each time step t:

1. Each operator receives an updated probability of collision pt. θmax is set to the previous
threshold of θt−1 because if the game has continued, both parties have θi ≤ θt−1.

2. The updated pt yields a new final time step cost matrix. Using (13) for the last timestep
and (16) for all other timesteps (and tuning to reproduce θmax = θt−1), operators follow the
threshold analysis to generate thresholds θT−1, θT−2, . . . , θt, θt−1. If pt = pt−1, we should
recover the same thresholds as the previous time step.
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3. Operators compare θt with their own risk threshold and decide whether or not to move. The
collision scenario then proceeds to the next timestep.

Results

To study the sensitivity of the thresholds θ to the constants k, T , we implement this recursion
for T = 5. We hold θmax = 10 and pT−1 = 1 constant, and solve for the thresholds with θ0 =
θmax across k and H/Gmax. We set k = {1.01, 1.02, 1.05, 1.1, 1.2, 1.5, 2, 3, 5} and H/Gmax =
{1, 2, 5, 10, 20, 50, 100, 200, 500}. The results are given in Fig. 4, 5, and 6. We study θT−2 and
θT−1 separately in Figs. 4 and 5 respectively, and the ratio θT−1/θT−2 (the difference in the last
two thresholds) in Fig. 6.

Figure 4: Value of θT−2

The first Fig. 4 shows that θT−2 is only dependent on k; as k decreases, θT−2 increases. This
is because the recursion given in equation (16) only depends on k. A lower value of k means that
the cost of moving later does not increase much compared to moving earlier. Then, because θmax

is constant, the difference between successive thresholds are low and the value for θT−2 is higher.

In Fig. 5, we see that θT−1 is more complex and depends on both H/Gmax and k. First, as
H/Gmax decreases (as H reaches parity with Gmax), the impact of a collision is lessened. Agents
are more comfortable with being risky, and the threshold above which operators move on the last
time step becomes higher. The dependence on k follows from the above explanation.

There is a large variance in the ratio of θT−1/θT−2 depending on k and H/Gmax. In Fig. 6, a
significant drop in thresholds occurs for high H/Gmax and low k, showing that many agents will
move at the last time step because the cost of collision is very high and the cost of moving later is
not too high. On the other hand, for low H/Gmax and high k, the ratio is low—exactly 1—due to
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Figure 5: Value of the last threshold θT−1

Figure 6: Ratio of θT−1/θT−2

the max function; if an agent were to move on the last time step, it would have done so at an earlier
timestep (t = T − 2) because the cost of moving later is very high.

11



CONCLUSIONS

In this paper, we present a game-theoretic framework to analyze the satellite collision avoidance
problem. This framework is designed for collisions between non-cooperative operators, and pro-
vides insight into the maneuver timing given a dynamic risk tolerance threshold. We also derive a
risk threshold model of satellite collision avoidance that identifies the risk level at which satellite op-
erators should move to avoid a collision. Future work can incorporate satellite position uncertainty
into this threshold model to identify an operator’s willingness to wait for more accurate position
information closer to the time of closest approach.
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