
Lexicographic min-max fairness in task assignments

Geoffrey Ding and Hamsa Balakrishnan

Abstract— Assignment problems and their variants are ubiq-
uitous across resource allocation applications. While they tra-
ditionally focus on minimizing costs or maximizing utility,
fairness is also an important consideration, especially for task
assignment in multi-agent systems. We propose algorithms for
assigning tasks to agents that consider lexicographic min-max
fairness, a stronger notion of fairness than min-max fairness,
which minimizes the maximum cost to any single agent. We
apply our proposed approaches to both one-to-one and one-
to-many assignment problems. Due to the computational chal-
lenges of one-to-many task assignments, we develop tractable
approaches to achieve approximate fairness. Finally, we use the
proposed methods to evaluate the trade-offs between efficiency
and fairness through numerical experiments.

I. INTRODUCTION

The assignment problem, which involves the optimal
matching of objects between two sets, has become a mainstay
of operations research textbooks due to its importance in
resource allocation [1]. The growth of multi-agent systems
has led to renewed interest in the problem of assigning tasks
to agents [2], [3]. While efficiency (i.e., minimizing total cost
or maximizing total utility) has been the traditional focus of
the assignment problem, fairness is also an important con-
sideration, especially in multi-agent systems. For example,
fairness may be desired in assignments of workers to jobs
or evacuees to shelters. However, there are many metrics for
fairness, and prior work has shown that fairness in resource
allocation generally comes at the expense of efficiency [4].

A common notion of fairness is min-max fairness, which
minimizes the cost of the worst case allocation (i.e., the
maximum cost incurred by any agent). Min-max fairness is
equivalent to the bottleneck assignment problem for one-to-
one assignments [1]. One-to-many assignments are of interest
in several applications, e.g., when an agent can perform
multiple tasks [5], [6]. Min-max fairness in this setting is
equivalent to the Santa Claus problem, which deals with
allocating presents to children to maximize the value to
the least happy child [7]. A stronger variation of min-max
fairness is to not only minimize the highest cost to any agent,
but to then progressively minimize the second-highest cost
without increasing the highest cost to any agent, the third-
highest cost without increasing either of the two highest
costs, and so on. This concept, previously considered in the

The NASA University Leadership Initiative (grant #80NSSC21M0071)
provided funds to assist the authors with their research, but this article
solely reflects the opinions and conclusions of its authors and not any NASA
entity. G. Ding was additionally supported by a National Science Foundation
Graduate Research Fellowship.

G. Ding and H. Balakrishnan are with the Department of Aeronautics
and Astronautics, Massachusetts Institute of Technology, Cambridge, MA
02139, USA gding,hamsa@mit.edu

context of one-to-one assignments, is called lexicographical
min-max fairness [1]. We refer to it as lexifairness for short
and consider it in one-to-many task assignment settings.

A recent focus of work on balancing fairness and effi-
ciency involves matching drivers and passengers in rideshar-
ing. Measures of fairness for this problem include min-max
fairness [8], an extension of the Fagin-Williams share [9],
and average pairwise difference in payoff [10]. However,
these works measure fairness with a single number, which
cannot capture lexifairness.

Bandwidth allocation in communication networks also
must balance efficiency and fairness. This problem has
motivated the concept of α-fairness [11], which uses a utility
function of the form Uα(x) =

∑
i x

(1−α)
i /(1− α), where x

is a vector of bandwidth alloctions. Varying α ≥ 0 results in
different notions of fairness, with α → ∞ yielding a max-
min fairness that not only maximizes the minimum utility
of any agent, but also progressively maximizes the utilities
of the other agents. As such, it is the continuous analog of
lexifairness for discrete assignments, since bandwidth is con-
tinuous. Empirically, however, naı̈vely applying α-fairness to
an assignment problem produces inefficient solutions.

We propose algorithms for finding lexifair solutions to
one-to-one and one-to-many assignment problems. For the
latter problem, we propose a computationally tractable ap-
proach that approximates lexifairness by considering the total
number, rather than the cost, of tasks assigned to an agent.
Finally, we evaluate the trade-offs between efficiency and
fairness in these settings through numerical experiments.

A. The assignment problem

Consider a scenario with n agents and n tasks, where each
agent must perform exactly one task and each task must be
done by exactly one agent. The cost of agent i performing
task j is cij , and we would like to assign tasks to agents to
minimize the total cost. For simplicity, let us assume the costs
of all agent-task pairings are unique. The efficient assignment
is the solution to the following optimization problem:

min

n∑
i=1

n∑
j=1

cijxij (1a)

s.t.
n∑

i=1

xij = 1 ∀j (1b)

n∑
j=1

xij = 1 ∀i (1c)

xij ∈{0, 1} ∀i, j, (1d)

(a) Efficient assignment of agents to goals,
with the highest cost to an agent in bold.

(b) Efficient vs. min-max fair assignment,
with the highest cost to an agent in bold.

(c) Min-max fair vs. lexifair assignment, with
the second-highest cost to an agent in bold.

Fig. 1: Efficient, min-max fair, and lexifair assignments.

where xij is 1 if agent i performs task j and 0 otherwise. In
the rest of this paper, we mention explicitly where xij = 1;
all other values of xij are assumed to be 0. Equation (1b)
ensures that all tasks are completed, while (1c) ensures that
each agent performs only one task.

Consider the environment in Fig. 1, where agents (black
circles) must travel to goals (red stars); we also refer to goals
as tasks. Suppose the cost of assigning agent i to task j is
equal to the distance between the two. Fig. 1a depicts the
efficient assignment, where the edges indicate the assignment
of goals to agents that minimizes the total cost.

B. Fair assignments
An efficient assignment may not be fair. For example,

consider the following cost matrix:

c =

9 8 7
5 2 3
6 4 1

 (2)

Choosing x11 = x22 = x33 = 1 is the most efficient solution,
with a total cost of 13, but it is also unfair—agent 1 incurs
a cost of 9, while agents 2 and 3 only incur costs of 2
and 1, respectively. In scenarios where the agents are non-
cooperative, we may be interested in a fair assignment.

Min-max fairness aims for equity by minimizing the max-
imum cost to any agent. Solving the following optimization
problem yields the min-max fair solution:

min z (3a)

s.t.
n∑

i=1

xij = 1 ∀j (3b)

n∑
j=1

xij = 1 ∀i (3c)

cijxij ≤ z ∀i, j (3d)
xij ∈{0, 1} ∀i, j, (3e)

where cij and xij are as above, and z is the maximum
cost incurred by any agent. For the cost matrix given in (2),

solving (3) yields the solution x13 = x22 = x31 = 1, with
agents incurring costs of (7, 2, 6) and a total cost of 15. This
is less efficient (15 > 13), but it is more fair because the
maximum cost incurred by any agent is lower (7 < 9).

Fig. 1b shows the min-max fair assignment of agents to
goals. Agent-goal pairs that appear in the efficient assignment
but not the fair one are shown in dashed green, those that
appear in the fair assignment but not the efficient one are
shown in dash-dotted blue, and those that appear in both
are shown in solid gray. While the total cost increases from
2.335 (for the efficient assignment) to 2.542 (for the min-
max fair assignment), the maximum cost incurred by any
agent decreases from 0.613 to 0.514, as labeled in bold.

Lexifairness may—and typically does—come at a greater
cost to efficiency than min-max fairness. For the cost matrix
from (2), the lexifair assignment is x13 = x21 = x32 = 1,
with agents incurring costs of (7, 5, 4) and a total cost of 16.
This is less efficient than the min-max fair assignment, but
now the second-highest cost is also minimized (5 < 6).

C. Trade-offs between fairness and efficiency

The price of fairness is the decrease in efficiency (or
increase in cost) of a fair assignment relative to the cor-
responding efficient one. It is defined as

POF(c) =

∑
i,j cijx

fair
ij −

∑
i,j cijx

eff
ij∑

i,j cijx
eff
ij

, (4)

where xfair is a fair solution and xeff is an efficient solu-
tion. For the costs in (2), the price of min-max fairness
is (15 − 13)/13 = 0.15, and the price of lexifairness is
(16− 13)/13 = 0.23.

Common approaches for evaluating the trade-off between
efficiency and fairness are (1) multi-objective optimization,
which optimizes a convex combination of fairness and effi-
ciency (weighted by λ and 1−λ, respectively, for λ ∈ [0, 1]);
(2) α-fairness, where varying α yields different notions of
fairness and α = 0 corresponds to the efficient solution; and
(3) thresholding, which uses the min-max fair assignment if

the loss in efficiency is less than ∆(n − 1), where ∆ is a
predetermined parameter and n is the number of agents, and
the efficient assignment otherwise.

Each of the above approaches uses a parameter to nav-
igate the efficiency-fairness trade-off: λ in multi-objective
optimization, α for α-fairness, and ∆ for thresholding. Our
proposed method also parametrizes fairness. However, in
contrast to these approaches, we do so using the number
of agents that are treated fairly.

The remainder of this paper is structured as follows: Sec-
tion II proposes algorithms for determining a lexicograph-
ically min-max fair task assignment and contrasts it with
the traditional min-max fair assignment. We evaluate how
allowing a single agent to complete multiple tasks impacts
efficiency and fairness in Section III, and consider “partially
fair” assignments in Section IV. We include some additional
points of discussion in Section V. Section VI concludes and
suggests possible directions for further research.

II. LEXICOGRAPHIC MIN-MAX FAIRNESS IN ONE-TO-ONE
ASSIGNMENTS

We first consider one-to-one assignment settings (i.e., with
n agents and n tasks). Letting ci =

∑n
j=1 cijxij be the

cost to agent i, the lexifair assignment x has the following
property for all assignments x′:

∃i s.t. c′i < ci =⇒ ∃k s.t. (ck ≥ ci) ∧ (c′k > ck). (5)

In other words, if some agent i has a lower cost in x′ than
in x, it must come at the expense of another agent k that has
at least as high of a cost as i in x.

A. Determining a lexifair assignment

A lexifair assignment may be found by repeatedly solving
the min-max fair assignment problem, fixing one agent and
one task at each iteration. Solving the problem yields an
objective value z that corresponds to some cij of maximal
cost in the assignment. The associated agent i is assigned to
task j, and this is fixed in future iterations. Then, we update
cij to be 0 to ignore it in future iterations. These steps are
repeated n times until all n agents and tasks are assigned.
Algorithm 1 shows this procedure.

Algorithm 1: Algorithm for lexifair assignment

Input: c ∈ Rn×n
≥0

Output: x∗ ∈ {0, 1}n×n, a lexifair assignment
x∗ ← 0n×n;
for k = 1, . . . , n do

Solve min-max fair assignment (3) with xij ≥ x∗
ij ;

z ← objective value of assignment problem;
x∗
ij ← 1 where cij = z;

cij ← 0 ; /* Does not count in future
iterations. */

end

We sketch a proof of correctness for this algorithm.
Without loss of generality, let agent k be fixed in the kth

iteration of the algorithm and z∗k be its cost. By construction

of the min-max fair problem, agent 1 cannot reduce its cost in
any other assignment. Now, suppose agents 1, . . . , k− 1 are
fairly and optimally assigned, so there are n− k unassigned
tasks after iteration k. Agent k cannot decrease its cost by
taking any of those tasks, again by construction of the min-
max fair problem. Then, suppose it could decrease its cost by
taking one of the previously assigned tasks, reassigning the
corresponding agent i to another task. To preserve fairness,
since z∗i > z∗k , we cannot reassign agent i to a task of cost
higher than z∗i . On the other hand, reassigning it to a task
of lower cost would contradict our assumption of an optimal
assignment for agent i. Therefore, this algorithm determines
the lexifair assignment.

Alternatively, as before, we solve n iterations of (3). After
each iteration, we fix xij = 1 for which cij = z, where z is
the solution to (3). Then, we remove the constraint of (3d)
associated with (i, j) and proceed with the next iteration.
This approach also determines a lexifair assignment.

B. Comparison with min-max fairness

Lexifairness answers the question of how tasks should be
assigned to agents that do not incur the maximum cost.
While the min-max fair assignment given by solving (3)
does not guarantee a unique solution, lexifairness does. One
approach for the min-max fair assignment, done in Fig. 1b,
is to minimize total cost while minimizing the maximum
individual cost.

Fig. 1c shows the differences between the min-max fair
assignment (blue dash-dots) and the lexifair assignment
(orange dots) for the example in Fig. 1a. The agent-goal pair
of second-highest cost in each assignment is labeled in bold,
and the costs are 0.494 and 0.425 in the min-max fair and
lexifair assignments, respectively. The agent with the second-
highest cost has a lower cost in the lexifair assignment than
in the min-max fair assignment, so we do not consider any
additional agents; if the second-highest cost were the same
for both assignments, then we would look at the agent with
the third-highest cost, and so on until the lexifair assignment
yields an agent with a lower (ordered) cost than the min-max
fair assignment. Much like how the efficient and min-max
fair assignments may be identical, it is also possible that the
min-max fair and lexifair assignments are identical.

For another perspective on the efficient, min-max fair,
and lexifair assignments, we plot agents’ costs in decreasing
order in Fig. 2a, and cumulative costs in Fig. 2b. There
are two expected—but important—observations here: (1) The
total cost of the lexifair assignment is greater than that of the
min-max fair assignment, i.e., the stronger notion of fairness
is achieved at the expense of efficiency; and (2) the cost to
the agent incurring the second-highest cost is lower in the
lexifair assignment than in the min-max fair assignment, i.e.,
we care not just about the agent with the highest cost but
also the agent with the second-highest cost, and so on.

C. Lexifair assignment as a network flow problem

Motivated by the frequent formulation of assignment
problems as network flows for computational tractability,

(a) Individual agent costs

(b) Cumulative costs

Fig. 2: Individual and cumulative costs of efficient, min-max
fair, and lexifair assignments.

we propose an alternative algorithm to determine a lexifair
assignment. We initialize a bipartite graph with n agent
and n task vertices. Then, in order of increasing cost, we
add edges until the assignment problem is feasible. The
last added edge has cost equal to the objective value in
iteration k of Algorithm 1. That edge is included in all future
initializations of the graph. This process is repeated n times
to obtain n edges that form the lexifair assignment. Because
this algorithm models the assignment problem as a network
flow, it can be solved in polynomial time, e.g., by using n
iterations of the network simplex algorithm [12].

The proof of correctness for this algorithm is simpler than
for Algorithm 1. Once again, without loss of generality,
let agent k be the agent assigned in the kth iteration of
the algorithm and z∗k be its cost. zk < z∗k is impossible
because the addition of the edge corresponding to z∗k is
the first instance of a feasible solution. Meanwhile, any
zk > z∗k is not min-max fair because it can be lowered
to z∗k without adversely impacting any other agent of equal
or higher cost. Therefore, this network flow-based approach
gives the lexifair assignment in a one-to-one setting.

III. ONE-TO-MANY FAIR ASSIGNMENTS

Thus far, we have only considered cases with n agents and
n tasks. We now examine situations with m tasks, potentially
with m ̸= n, and where each agent may perform multiple
tasks (or no tasks). For simplicity, we assume that the total

Algorithm 2: Lexifair assignment using network flows

Input: c ∈ Rn×n
≥0

Output: x ∈ {0, 1}n×n, a lexifair assignment
x← 0n×n ; /* No values assigned. */
U ← {1, . . . , n};
V ← {1, . . . , n};
Edges← [(i, j) | i ∈ U, j ∈ V] of unit capacity in order

of ascending cij ;
s← source node of supply n;
t← sink node of supply −n;
for k = 1, . . . , n do

E ← {(s, i) | i ∈ U} ∪ {(j, t) | j ∈ V } of unit
capacity and 0 cost;

E ← E ∪ {(i, j) ∈ U × V | x[i, j] = 1} of unit
capacity and cost cij ;

ℓ← 1;
while network flow on ({s, t} ∪ U ∪ V,E)

(equivalently, bipartite matching (U, V,E)) is
infeasible do

e← Edges[ℓ];
E ← E ∪ {e};
ℓ← ℓ+ 1;

end
xe ← 1;

end

costs of all subsets of tasks for an agent are unique; this
assumption avoids the need to tiebreak among assignments.

A. Optimization formulations

The efficient solution is given by

min

n∑
i=1

m∑
j=1

cijxij (6a)

s.t.
n∑

i=1

xij = 1 ∀j (6b)

xij ∈{0, 1} ∀i, j, (6c)

where unlike (1), we no longer require each agent to perform
exactly one task, as in (1c). This problem can be solved
via a greedy approach, with each task assigned to the agent
that can complete it at the lowest cost. Fig. 3a illustrates
the differences between an efficient one-to-one assignment
(sparser dashes) and an efficient one-to-many assignment
(denser dashes). Each task is assigned to the closest agent,
with some agents assigned multiple tasks and others none.

The lexifair assignment is obtained by iteratively solving

min z (7a)

s.t.
n∑

i=1

xij = 1 ∀j (7b)

m∑
j=1

cijxij ≤ z ∀i (7c)

xij ∈{0, 1} ∀i, j, (7d)

where (7c) aggregates the costs of all tasks performed by an
agent when considering fairness. However, this means we can
no longer use Algorithm 2 to determine a lexifair assignment,

(a) Efficient one-to-one and efficient one-
to-many assignments.

(b) Efficient one-to-many and lexifair
one-to-many assignments.

(c) Individual agent costs for various assignments.

Fig. 3: Comparisons of efficient and lexifair one-to-one and one-to-many assignments.

as selecting a costlier edge may enable other agents to reduce
their costs. The problem would become feasible as soon as
there is an edge to all tasks, but assigning one task does not
prevent an agent from performing additional tasks.

Suppose we use the algorithm from Section II-C to solve
the one-to-many case for (2). The assignment would assign,
in order, x21, x22, and x33 to 1, for a min-max cost of 7. On
the other hand, the true min-max fair solution is given by
x21 = x32 = x33 = 1, with a min-max cost of 5. Therefore,
Algorithm 2 cannot be directly applied to the one-to-many
assignment problem. Fig. 3b shows the differences between
an efficient one-to-many assignment (dense green dashes)
and a lexifair one-to-many assignment (dense orange dots)
of agents to goals. For both tasks that are assigned to new
agents, the original agent had been performing multiple tasks.

Finding the lexifair solution in the one-to-many setting
requires repeatedly solving the min-max fair problem (7),
i.e., the Santa Claus problem. However, the latter problem
is NP-hard to approximate better than within a factor of 2
[13]. Researchers have therefore pursued polynomial-time
approximation algorithms and heuristics [14], [15].

B. The value of one-to-many assignments

Allowing agents to perform multiple tasks generally re-
duces costs. When optimizing for efficiency, a task can be
assigned to the agent that can do it at the lowest cost, while
an assignment cannot become less lexifair because we have
increased the feasible space. Although a specific agent may
incur a higher cost, a lexifair one-to-many assignment will
still be fairer than a lexifair one-to-one assignment.

We illustrate this by plotting the individual agent costs
of efficient and lexifair assignments in one-to-one and one-
to-many settings in Fig. 3c. As expected, the one-to-many
assignments are more efficient and more fair regardless of
the objective. Here, the efficient one-to-many assignment is
even fairer than the lexifair one-to-one solution. Finally, the
total costs decrease by 43.1% and 47.5%, respectively, for
the efficient and lexifair one-to-many assignments.

IV. APPROXIMATIONS OF LEXIFAIRNESS

Next, we consider varying levels of fairness by changing
the number of agents treated fairly. Furthermore, we pro-
pose computationally tractable approaches to approximating
lexifairness in one-to-many settings.

A. Task count restriction

A partially-fair assignment for the one-to-many case can
be found by modifying Algorithm 2. We first include edges in
our network for all agent-task pairs. Instead of edges of unit
capacity from the source node to each agent, we add edges
of integral capacity 1 ≤ d ≤ n, representing a situation in
which each agent can perform up to d tasks; we call this a
d-degree fair allocation. The resulting network flow problem
still must consider which task is assigned to which agent. For
example, if an agent has the lowest cost for every task but
can do at most two tasks, the optimization must decide which
tasks should be done by that agent and which by others. This
solution can be found in polynomial time.

The restriction of task count is only meaningful in one-
to-many settings, so we use that as the model for comparing
different approaches to fairness and their approximations. We
use a randomized 50-by-50 cost matrix of integers from 0
to 2,499. Fig. 4a compares the distribution of agent costs
for different levels of d-degree fairness to the distribution
of agent costs in the lexifair and efficient assignments. Fig.
4b illustrates the degree distribution of agents, in order of
decreasing numbers of tasks completed.

B. Partial optimization

Because both of our proposed algorithms solve for a
lexifair assignment iteratively, another natural way to approx-
imate lexifairness is to stop after any iteration and use the
assignment at that point. A k-agent fair allocation, where
1 ≤ k ≤ n, first performs k iterations of min-max fair
assignment, fixing the agent with the highest cost after each
iteration and ignoring it in subsequent iterations. It then
determines an efficient assignment for the remaining n − k

(a) Agent costs for d-degree fairness.

(b) Task counts for d-degree fairness.

Fig. 4: Properties of d-degree fairness.

agents. To preserve lexifairness, the efficient assignment must
not assign any agent a cost higher than that of the kth agent.
Under k-agent fairness, the efficient assignment is 0-agent
fair, the min-max fair assignment is 1-agent fair, and the
lexifair assignment is n-agent fair.

Fig. 5a compares k-agent fair assignments for selected
values of k. Since an n-agent fair assignment is the lexifair
assignment, a k-agent fair assignment should overlap with
the lexifair assignment for (at least) the first k agents. By
the definition of lexifairness, the first agent for which the
k-agent fair and the lexifair assignments differ in agent cost
must have a higher cost in the k-agent fair assignment than
in the lexifair assignment. In Fig. 5b, we plot the price of
k-agent fairness for all values of k. For comparison, we also
include horizontal lines representing d-degree fairness for
relevant values of d. The cost of the 4-degree fair assignment
is the same as that of the efficient one-to-many assignment
because the latter assigns an agent to at most four tasks in this
instance, and a d-degree fair assignment optimizes efficiency
subject to task count constraints. Similarly, the cost of the
1-degree fair assignment is the same as that of the efficient
one-to-one assignment since the problems are equivalent.

It is possible for optimizations with two different values
of k to yield identical assignments (and therefore costs); this
tends to be the case especially as k → n, as can be seen in
Fig. 5b. Conversely, without the assumption of unique costs
of subsets of tasks, two optimizations with identical values
of k may yield different assignments.

(a) Agent costs for k-agent fairness.

(b) Price of d-degree and k-agent fairness.

Fig. 5: Properties of k-agent fairness.

V. DISCUSSIONS

We perform an experiment with randomized instances to
assess average efficiency and fairness, and we discuss how
lexifairness may be extended to other applications.

A. Fairness over many trials

The Gini coefficient is used in economics to measure
inequality; we use it to measure fairness. A Gini coefficient
of G = 0 represents perfect fairness, with all agents incurring
an identical cost, while G = 1 represents perfect unfairness,
with one agent bearing all costs.

We generate 500 random 50 × 50 cost matrices (Sec.
IV) and find the efficient and lexifair assignments each
time. Then, we sort individual costs in increasing order
and average the 500 costs in each position to find the
corresponding mean cost. We use these mean costs to plot the
Lorenz curves in Fig. 6. The fair assignment is on average
13% more costly than the efficient assignment, but it is more
equitable, with Gfair = 0.37 < 0.47 = Geff.

The Gini coefficient should be applied with caution in
this context. The fairest possible scenario, with the 50 agents
incurring costs from 0 to 49, still has a Gini coefficient of 1/3,
not the ideal 0. Drawing costs independently from a uniform

Fig. 6: Lorenz curves for efficient and lexifair solutions.
Cumulative costs are normalized to facilitate comparison.

distribution instead of choosing unique values would likely
achieve lower Gini coefficients, denoting fairer outcomes.

B. Additional applications
We use the navigation setting (Fig. 1) as a motivating ex-

ample, but lexifair assignments have many other applications,
e.g., assigning jobs to workers. Differing worker abilities lead
to heterogeneous job costs, and equitable worker effort may
be desirable. To individual employees, minimizing the total
job cost may matter less than minimizing individual costs.

Emergency shelter allocation is another application where
optimizing fairness may be more important than efficiency.
Suppose there are n shelters in a city and m neighborhoods,
indexed by j and each with population pj . Then, planning
an emergency response may entail assigning individuals or
neighborhoods to shelters. This formulation is amenable to
the d-degree fair model: In the associated network, the source
and sink have supplies of ±

∑
j pj , the edge between neigh-

borhood j and the sink has capacity pj , and all other edges
have unlimited capacity. Then, a d-degree fair assignment
can be thought of as “load balancing” individuals across
shelters. Meanwhile, a lexifair assignment can be justified
with the explanation that assignment to a nearer shelter
would require another individual who must already travel
a greater distance to go even farther. In this case, the roles
of “agent” and “task” are reversed—shelters correspond to
agents and neighborhoods correspond to goals, even though
shelters are fixed locations and individuals in neighborhoods
move and incur costs in reality.

The matching problem could also leverage d-degree fair-
ness, which can be interpreted as enforcing lexifairness on
the number of tasks assigned to an agent rather than on the
total cost of tasks. Suppose we wish to complete a set of
tasks, but not every agent can perform every task (i.e., the
bipartite graph is not complete). Then, if we start from d = 1
and increase it until the problem is feasible, we find the
maximum number of tasks a single agent must perform in
order for the agents in aggregate to be able to complete all
tasks. After removing the agent of maximum degree and its
tasks, we can repeat the procedure until all tasks are matched.

VI. CONCLUSION AND FUTURE WORK

In this paper, we consider the problem of finding a lexico-
graphically min-max fair assignment of tasks to agents. We
propose two algorithms for determining a lexifair assignment
when each agent performs one—and only one—task, and
we show how it differs from the min-max fair assignment.
We illustrate how allowing an agent to perform multiple
tasks can improve both efficiency and fairness. We then
suggest methods to determine a partially fair yet partially
efficient assignment. We also discuss the distribution of agent
costs, additional applications of our approaches, and the
computational complexity of the proposed approaches.

A key limitation of this work is the assumption that all
subsets of tasks have unique costs (i.e., no tiebreaking is
required). Branching with breadth-first search may resolve
ties, but duplicate costs could still result in a factorial number
of branches. Tiebreaking efficient assignments may also
yield unique results. Finally, another direction to consider
is fairness and efficiency in a team setting.

REFERENCES

[1] D. W. Pentico, “Assignment problems: A golden anniversary survey,”
European Journal of Operational Research, vol. 176, no. 2, 2007.

[2] Q. Baert, A.-C. Caron, M. Morge, and J.-C. Routier, “Fair multi-agent
task allocation for large datasets analysis,” Knowledge and Information
Systems, vol. 54, pp. 591–615, 2018.

[3] T. A. Wood, M. Khoo, E. Michael, C. Manzie, and I. Shames,
“Collision avoidance based on robust lexicographic task assignment,”
IEEE Robotics and Automation Letters, vol. 5, no. 4, 2020.

[4] D. Bertsimas, V. F. Farias, and N. Trichakis, “The price of fairness,”
Operations research, vol. 59, no. 1, pp. 17–31, 2011.

[5] Z. Chen, J. Alonso-Mora, X. Bai, D. D. Harabor, and P. J. Stuckey,
“Integrated task assignment and path planning for capacitated multi-
agent pickup and delivery,” IEEE Robotics and Automation Letters,
vol. 6, no. 3, pp. 5816–5823, 2021.

[6] M. Malencia, V. Kumar, G. Pappas, and A. Prorok, “Fair robust
assignment using redundancy,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 4217–4224, 2021.

[7] N. Bansal and M. Sviridenko, “The Santa Claus problem,” in Pro-
ceedings of the thirty-eighth annual ACM Symposium on Theory of
computing, pp. 31–40, 2006.

[8] N. S. Lesmana, X. Zhang, and X. Bei, “Balancing efficiency and
fairness in on-demand ridesourcing,” Advances in neural information
processing systems, vol. 32, 2019.

[9] Z. Chen, P. Cheng, L. Chen, X. Lin, and C. Shahabi, “Fair task assign-
ment in spatial crowdsourcing,” Proceedings of the VLDB Endowment,
vol. 13, no. 12, 2020.

[10] Y. Zhao, K. Zheng, J. Guo, B. Yang, T. B. Pedersen, and C. S. Jensen,
“Fairness-aware task assignment in spatial crowdsourcing: Game-
theoretic approaches,” in 2021 IEEE 37th International Conference
on Data Engineering (ICDE), pp. 265–276, IEEE, 2021.

[11] F. Kelly, “Charging and rate control for elastic traffic,” European
transactions on Telecommunications, vol. 8, no. 1, pp. 33–37, 1997.

[12] J. B. Orlin, “A polynomial time primal network simplex algorithm for
minimum cost flows,” Mathematical Programming, vol. 78, pp. 109–
129, 1997.

[13] I. Bezáková and V. Dani, “Allocating indivisible goods,” ACM SIGe-
com Exchanges, vol. 5, no. 3, pp. 11–18, 2005.

[14] A. Asadpour and A. Saberi, “An approximation algorithm for max-min
fair allocation of indivisible goods,” in Proceedings of the thirty-ninth
annual ACM symposium on Theory of computing, pp. 114–121, 2007.

[15] S. Davies, T. Rothvoss, and Y. Zhang, “A tale of Santa Claus,
hypergraphs and matroids,” in Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2020.

	Introduction
	The assignment problem
	Fair assignments
	Trade-offs between fairness and efficiency

	Lexicographic min-max fairness in one-to-one assignments
	Determining a lexifair assignment
	Comparison with min-max fairness
	Lexifair assignment as a network flow problem

	One-to-Many Fair Assignments
	Optimization formulations
	The value of one-to-many assignments

	Approximations of Lexifairness
	Task count restriction
	Partial optimization

	Discussions
	Fairness over many trials
	Additional applications

	Conclusion and Future Work
	References

