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The takeoff weight of an aircraft is an important aspect of aircraft performance. However, the takeoff weight of a

particular flight is generally not available to entities outside of the operating airline. The preceding observations

motivate the development of accurate takeoff weight estimates that can be used for fuel-burn estimation or trajectory

prediction. This paperproposes a statistical approachbasedonGaussianprocess regression to determineboth amean

estimate of the takeoffweight and the associatedprediction interval, using observeddata from the takeoff ground roll.

Themodel development and validation are conducted using flight data recorder archives, which also provide ground-

truth data. The models are found to have a mean absolute error in takeoff weight of 3.6%, averaged across nine

different aircraft types, resulting in anearly 35%smaller error than themodels in theAircraftNoise andPerformance

database. Finally, the developedmodels are used to predict aircraft fuel flow rate during climb out and approach. For

the majority of the aircraft types studied, the statistical models of takeoff weight estimation are shown to result in a

similar or better fuel flow rate predictive performance as compared to the Aircraft Noise and Performance models.

Nomenclature

a = acceleration, m ⋅ s−2
CD = coefficient of drag
CL = coefficient of lift
D = drag, N
F0 = static engine thrust, N
F00 = maximum sea-level, static engine thrust, N
Fn = aircraft net thrust, N
f = generic function
fr = frictional force, N
g = acceleration due to gravity, 9.81 m ⋅ s−2
In = n × n identity matrix
K = covariance matrix
k�x; x 0� = covariance/kernel function
L = lift, N
l = length scale
_mf = averaged fuel flow rate per engine, kg∕s
mTO = takeoff weight, kg
N = normal reaction, N
Neng = number of engines
N �m;C� = normal/Gaussian distribution with mean vector m

and covariance matrix C
n = number of observations
p = probability distribution function
q = dynamic pressure, Pa
R = distance covered during takeoff ground roll, m
S = wing reference area, m2

t = time, s
V = true airspeed, m ⋅ s−1
VGS = ground speed, m ⋅ s−1
X = matrix of input vectors
x = predictor/input/independent variable
y = predicted/output/dependent variable
ϵ = noise
η = thrust deration level

μr = coefficient of friction
ρ∞ = ambient air density, kg ⋅m−3

σ2 = variance parameter

I. Introduction

T HE takeoff weight (TOW) of an aircraft is an essential parameter
for modeling or estimating its trajectory and fuel consumption,

as well as other aircraft performance characteristics, such as its rate
of climb/descent, range, endurance, ceiling, and takeoff distance [1].
However, TOW is not generally available outside the operating
carrier, due to its dependence on proprietary information such as load
factors and operational strategies. The preceding facts motivate the
development of models to estimate the TOW of a flight from
accessible information. As per the convention in aviation, the term
weight in this paper refers to the physical mass of the aircraft.
Aircraft design studies have traditionally estimated the TOW by

considering its components, namely, the payloadweight, stage length
fuel weight, operating empty weight, reserve fuel weight, and
alternative fuel weight [2–4]. This approach is effective for studies in
which the payload weight is an input. It can also be used to estimate
the average TOWof an aircraft type over a set of operations for which
the average passenger load factor is available [5]; for example,
average passenger load factors for different origin–destination pairs
are published in the United States by the U.S. Department of
Transportation [6]. However, this method cannot be easily extended
to estimate the TOW of a particular flight because load factors of
individual flights are not publicly known.
Prior studies have estimated the TOW for a particular flight using

simulated or real aircraft trajectory information during the climb
phase [7–10]. They typically estimate an equivalent TOW such that
the power in climb modeled using the equivalent TOW matches the
energy rate observedon past trajectory points. The equivalent TOWis
computed using either an adaptive mechanism or least-squares
algorithms. Machine learning techniques have also been applied to
radar data to estimate the TOW to predict the future aircraft trajectory
[11]. The methods proposed in these studies have been shown to be
superior to the Eurocontrol’s Base of Aircraft Data method for
trajectory modeling [12]. However, because of the unavailability of
ground-truth data, the accuracies of these TOW estimates have not
been evaluated. Instead, these models have been evaluated based on
the trajectory prediction accuracy.
Recent work has used runway automatic dependent surveillance–

broadcast (ADS-B) data during takeoff tomodel the operational TOW,
using least-squares methods [13]. However, these studies assumed no
deration in the takeoff thrust and a standard coefficient of friction for
the ground roll, and the resultant TOWestimates could not bevalidated
due to the unavailability of ground-truth data. Phase-based models
have recently been used for the Bayesian inference of TOW [14].
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A. Contributions of This Paper

We apply statistical machine learning techniques to model the
operational TOW by using flight data from the takeoff ground
roll. Random factors (such as manufacturing tolerances, turbulence,
fluctuations in ambient conditions, component aging, and
deterioration) motivate the development of a statistical model [15].
Data from the flight data recorders (FDRs) of real flight operations
allow us to build and validate our models. The proposed Gaussian
process regression (GPR) based techniques enable the estimation of
the mean TOW of a flight as well as the underlying uncertainty
distribution, which captures the cumulative effect of unmodeled
factors and random effects. Although the models are built using FDR
data, they can be used to estimate the operational TOW for flights,
given trajectory data from surface surveillance sources. The models
are shown to have a mean absolute error of 3.6% (averaged across
different aircraft types) in predicting the TOW of flights in an
independent test set, a nearly 35% reduction in mean absolute error
compared to the aircraft noise and performance (ANP) database [16].
These GPRmodels are then applied to surface surveillance data from
an airport surface detection equipment, model X (ASDE-X) system
to demonstrate their practical utility. Finally, an application of using
these TOW estimates to estimate the fuel flow rate in climb out and
approach is demonstrated.

B. Outline

We start with briefly describing the flight data recorder dataset in
Sec. II. In Sec. III, we describe the features selected for the regression
model of the TOW. Section IV provides a brief primer on GPR. The
application of GPR to the problem ofmodeling the TOWis explained
in Sec. V. Section VI presents metrics used to evaluate the predictive
performance of the models. In Sec. VII, the models are evaluated
using an independent/unseen test dataset not used for model training.
The model estimates are also compared to those given by the ANP
database [16]. The ANP database is used for TOWestimation by the
Federal Aviation Administration’s aviation environmental design
tool (AEDT) [4], a widely used aircraft performance modeling tool.
Section VIII shows TOW model predictive performance when
surface surveillance data from ASDE-X are used as the source of
trajectory information. In Sec. IX, we show how the TOWestimates
given by our models can be used to estimate fuel flow rates in climb
out and approach. Finally, we present the main conclusions of this
study and directions for future research in Sec. X.

II. Description of Data

The operational flight data used in this study are obtained from the
flight data recorders (FDRs) of a major airline. The FDR records the

Table 1 FDR dataset: aircraft types and engines

Aircraft type Engine type MTOW, kg OEW, kg Number of flights

A319-112 2 × CFMI CFM56-5B6/2 or 2P 64,000 40,160 130
A320-214 2 × CFMI CFM56-5B4/2 or P/2P 73,500 42,100 169
A321-111 2 × CFMI CFM56-5B1/2 or 2P 89,000 48,500 117
A330-202 2 × GE CF6-80E1A4 230,000 120,500 84
A330-243 2 × RR Trent 772B-60 230,000 120,600 100
A330-343 2 × RR Trent 772B-60 230,000 124,600 182
A340-541 4 × RR Trent 553 372,000 170,900 52
B767-300 2 × GE CF6-80C2B7F 156,490 86,955 91
B777-300ER 2 × GE GE90-115B1 345,050 167,825 131
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Fig. 1 Histograms of the takeoff weights in FDR data with MTOW and OEW values overlaid.
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values of aircraft and engine parameters during flight and is therefore
an accurate source of operational flight data.
The objective of our study is to use the limited amounts of FDR

data available to develop models to estimate the TOWof a particular
flight, given trajectory variables from the takeoff roll and other
accessible parameters (such as the ambient weather conditions at the
airport). The intent is that the proposed models could then be used
even in the absence of FDR data, which are not generally available.
The different aircraft and engine types included in the study are

tabulated in Table 1. The approximate maximum takeoff weight
(MTOW), the approximate operating empty weight (OEW), and the
number of flights are also shown. TheMTOWand theOEWvalues in
the tables are approximate, representative numbers for the aircraft
types and have been obtained from Jane’s All the World’s Aircraft
database [17–19]. The FDR dataset includes the aircraft trajectory,
speeds, grossweight, acceleration, fuel flow rate, engine temperatures,
ambient pressure and temperature, positions of auxiliary devices and
control surfaces, etc., as a function of time. This paper focuses only on
the takeoff ground roll portion of the trajectory [20].
Figure 1 shows histograms of the takeoff weights observed in the

FDR dataset for different aircraft types, with the MTOW and OEW
values overlaid.

III. Model Features

Figure 2 shows the free-body diagram of an aircraft during takeoff
roll on the runway with the forces acting on it. The equations of
motion during takeoff ground roll are given in Eqs. (1–7):

L� N � mTOg (1)

Fn −D − fr � mTOa (2)

L � qSCL (3)

D � qSCD (4)

fr � μrN (5)

a � dV

dt
(6)

q � 1

2
ρ∞V

2 (7)

Winds are neglected in this analysis. Neglecting wind speeds
during takeoff ground roll, the aircraft airspeed is assumed to be equal
to the ground speed (V � VGS). The mass of fuel consumed during
the takeoff ground roll is assumed to be small compared to the aircraft
mass, so that the aircraft weight is effectively constant and equal to
the TOW (mTO) during the takeoff ground roll. The coefficients of lift
and drag, governed by the aircraft configuration, are also assumed to

be constant. The net thrust on the aircraft (Fn) is the averaged net
thrust per engine times the number of engines (Neng). The net thrust
per engine is assumed to be a function of the static thrust F0 and the
aircraft velocity [13]. The static thrust is the net thrust that would be
produced by the engine if the aircraft were at rest at the set throttle
setting. During the takeoff roll, the throttle setting does not change.
The static thrust is assumed to be a function of the thrust deration
level η, the ambient air density during the takeoff roll (ρ∞), and the
maximum sea-level, static engine thrust F00. The net thrust on the
aircraft is therefore given by

Fn � fFn
�Neng; VGS; η; ρ∞; F00� (8)

The distance covered during takeoff roll (R) can be calculated by
the following equation:

R �
Z

VGS2

VGS1

VGS

dVGS

a
(9)

Here, VGS1
is the aircraft ground speed at the start of the takeoff

ground roll, and VGS2
is the aircraft ground speed at wheels-off at the

end of the takeoff ground roll. Combining Eqs. (1–9), the TOW can
be expressed by the following functional relation:

mTO � fmTO
�R; ρ∞; VGS1

; VGS2
;S; F00; CL; CD; μr; η; Neng� (10)

S, F00, and Neng are constant for a given aircraft/engine type.
Themodeling variables are now restricted to only those that can be

obtained or derived from easily accessible databases. The ground roll
distance and aircraft ground speed during ground roll can be derived
from surface surveillance data,whereas the ambient air density can be
obtained from airport weather data. By contrast, the values of the
aircraft lift and drag coefficients, coefficient of friction, and thrust
deration level are difficult to obtain and are therefore not used as
model features. Hence, for a particular aircraft type, the model uses
the ground roll distance (R), the ambient air density (ρ∞) during roll,
the aircraft ground speed at the start of the takeoff ground roll (VGS1

),
and the aircraft ground speed at the end of the takeoff ground roll
(VGS2

) as the predictor/input variables. The predicted/output variable
is the aircraft TOW (mTO). In otherwords, the TOWpredictionmodel
has the following form:

mTO ≈ fmTO
�R; ρ∞; VGS1

; VGS2
� (11)

The unmodeled features will contribute to the uncertainty in the
TOW estimate and will be reflected in the prediction intervals
provided by the statistical models.

IV. Gaussian Process Regression

The models proposed in this paper employ a machine learning
technique known as Gaussian process regression (GPR). GPR is
a powerful nonparametric Bayesian approach, with a Gaussian
probabilistic framework. It has been successfully applied to diverse
areas, including remote sensing [21,22] and robotics [23].
Because the output variable (TOW) is a continuous (nondiscrete)

variable, the problem is well suited to the use of regression. In this
section, we briefly describe the GPR methodology, more details
about which can be found in [24,25].
A regression model is given by

y � f�x� � ϵ (12)

where y is the predicted/output/dependent variable; x is the predictor/
input/independent vector; f�x� is the underlying regression function
that we wish to estimate; and ϵ is the noise with which the dependent
variable is distributed about the regression function. Under GPR, the
regression function f�x� is assumed to follow a Gaussian process

Fig. 2 Airplane dynamics during takeoff ground roll.
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(GP) prior, that is, the function values at any finite set of inputs x
follow a joint Gaussian distribution [24]. Then,

f�x� ∼ GP�me�x�; k�x; x 0�� (13)

where me�x� is the mean function, and k�x; x 0� is the kernel/

covariance function over two inputs x and x 0, which governs the

covariance among function values as k�x; x 0� � cov�f�x�; f�x 0��.
Under GPR, the mean function is often assumed to be the zero

function. It is common to assume the noise to be drawn independently

from a Gaussian distribution, ϵ ∼N �0; σ2n�, with mean 0 and noise

variance σ2n. Assuming a zeromean function for theGP governing the

regression function and independent Gaussian noise, the dependent

variable y also follows a GP with a zero mean function and a “noisy”

kernel function knoise�xp; xq� over d-dimensional input vectors xp
and xq:

y ∼ GP�0; knoise�xp; xq�� (14)

The noisy kernel function for the dependent variables knoise�xp; xq�
relates to the kernel function for the regression function values

k�xp; xq� as follows:

knoise�xp; xq� � k�xp; xq� � σ2nδpq (15)

where δ denotes the Kronecker delta.
The choice of different kernel functions affects the nature of the

regression functions and gives GPR great modeling flexibility. Two

commonly used kernel functions are the following.
1) Dot product squared exponential (DPSE) kernel: This kernel

function is used to model very smooth functions (where the
smoothness of the GP is defined in terms of its mean square
differentiability [24]). It is given by

k�xp; xq� � σ20 � xTpΣxq � σ2f exp

�
−
1

2

Xd
i�1

�xp;i − xq;i�2
l2
i

�

Σ � diag�σ21; σ22; : : : ; σ2d� (16)

2) Dot product exponential (DPE) kernel: This kernel function is
used to model very rough functions. It is given by

k�xp; xq� � σ20 � xTpΣxq � σ2f exp

0
B@−

����������������������������������Xd
i�1

�xp;i − xq;i�2
l2
i

vuut
1
CA

Σ � diag�σ21; σ22; : : : ; σ2d� (17)

In Eqs. (16) and (17), xp and xq are d-dimensional input column

vectors; σ20 is the constant variance parameter; σ21; σ
2
2; : : : ; σ

2
d are the

variance parameters for eachof thed input dimensions;σ2f is a variance
parameter governing the magnitude of the exponential part of the

kernel; l is the d-dimensional vector of length scales (one for each

input dimension); and the subscript i refers to the ith component of the

vector. These kernel parameters are referred to as hyperparameters in

GPR. Thus, the hyperparameter vector for both theDPSE and theDPE

kernels is � σ20 σ21 σ22 ; : : : ; σ2d σ2f l �T .
Numerous other kernel functions exist, the details of which can be

found in [25].
The noisy kernel hyperparameter vector θ is the kernel

hyperparameter vector mentioned previously with the noise variance

σ2n appended. It is estimated as the vector that maximizes the log

posterior probability of the hyperparameter vector, given the matrix

of input vectors X and the vector of dependent variable values y:

θ̂ � argmax
θ

logp�θjX; y�

� argmax
θ

�
logp�θ� − 1

2
yTK−1

y y −
1

2
log jKyj −

n

2
log�2π�

�
(18)

Here,p�:� refers to the probability distribution function (PDF) over the
argument; p�θ� is the prior distribution on the hyperparameter vector;
n is the numberof observations;X is then × dmatrixofd-dimensional
inputs; y is the n × 1 vector of the dependent variable values; andKy is
the n × n covariance matrix derived from the noisy kernel function
over pairs of input variables [Eq. (15)].
This paper uses GPR to make predictions on new data. The

predictive distribution of the dependent variable values y� at a set of
new inputs X� is also a Gaussian distribution, given by

y�jX�; D ∼N �μ;C� (19)

where μ � K�X�;X�K−1
y y, and C � K�X�;X�� −K�X�;X�K−1

y ×
K�X�;X�T � σ2nIn� . Here, n

� is the number of new inputs at which
predictions are desired;X� is the n� × dmatrix of the set of new inputs;
D � �X; y� is the set of training inputs and dependent variable values
(used for hyperparameter inference); N �μ; C� refers to a multivariate
Gaussian distribution with mean vector μ and covariance matrix C;
K�X�;X� is then� × n covariancematrix derived from the noisy kernel
function over pairs of new and training input variables [Eq. (15)];
K�X�;X�� is the n� × n� covariance matrix derived from the noisy
kernel function over pairs of the new input variables; and In� is the
n� × n� identity matrix.
In contrast to other regression methods (such as ordinary least-

squares regression, classification, and regression trees), GPR is a
nonparametric method of regression and does not need the selection
of suitable basis functions. Nonparametric methods are useful in
problems with no prior knowledge of the exact functional form of
the feature vectors (which may be nonlinear). Moreover, being
probabilistic in nature, GPR directly gives the complete predictive
distribution as part of the model development. This predictive
distribution enables the easy quantification of uncertainty in the
predicted variable. This uncertainty is a cumulative effect of system
operational variability, modeling assumptions, unmodeled factors,
and random noise in system performance. These factors, along with
mathematical tractability of the Gaussian distributions involved,
make GPR the regression method of choice in this paper.

V. Regression Methodology

In this section, the regression methodology used for TOW model
building is explained. The FDR dataset for each aircraft type is
divided into three sets, namely, the training, the validation, and the
test sets. Sixty-five percent of the flights are randomly chosen to
constitute the training set, which is used for model building; 15% of
the flights are randomly chosen to constitute the validation set which
is used for selection from a group of candidate models; and the
remaining 20% flights constitute the test set, which is used for testing
the predictive performance of the selected model. Each observation
(data point) in the training, validation, and test sets corresponds to the
takeoff of one flight. All the variables chosen for regression in Sec. III
are standardized, that is, they are shifted by the samplemean and then
scaled by the sample standard deviation of the respective variables in
the training datasets. The GPR starts with hyperparameter inference
for the different noisy kernel functions (described in Sec. IV)
using the ground-truth FDR values of the predictor and the predicted
variables during takeoff roll in the training dataset. The hyper-
parameters, being all positive, are given a broad gamma prior with
mode 1 and variance 100 (for lack of specific prior knowledge). The
MATLAB [26] based GPstuff Toolbox [27] is used for GPR in this
study. Once the models are trained and hyperparameters are inferred,
they can be used to determine the point estimates, the prediction
intervals, and the predictive distributions of the TOW at a new input
vector. Under GPR, the TOW predictive distribution is a normal/
Gaussian distribution.
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VI. Model Evaluation

The models are evaluated for their performance in predicting

(estimating) the TOWof flights in an independent/unseen dataset not

used for training. The mean TOWestimates and the 95% prediction

intervals are calculated using the regression models developed in

Sec. V. Themean estimates (point predictions) are the meanvalues of

the TOW predictive distributions. The 95% prediction intervals are

given by the 95% highest density intervals [28] of the predictive

distributions for the TOW. A 95% highest density interval is an

interval in the domain of a probability distribution such that 1) the

probability mass within the interval is 0.95, and 2) every point inside

the interval has a probability density not less than every point outside

it. The interval is unique and the shortest among all possible 95%

confidence intervals for that distribution.
The metrics used to evaluate the models are as follows:
1) Mean error (ME): This is the mean of the values of the relative

prediction error on independent/unseen prediction data not used for
model training:

ME � 1

n�
Xn�
i�1

�dmTOi −mTOi

mTOi

�
(20)

Here, n� is the number of observations in the prediction dataset, dmTOi

is the mean (point) estimate of the TOW of flight i from the model,
and mTOi is the actual TOWof flight i in the prediction dataset. The
ME reflects whether the modeled point estimate overpredicts or
underpredicts the ground truth. A negative value ofME indicates that
the model point predictions, on average, underpredict the ground
truth. A positive value of ME indicates that the model point
predictions, on average, overpredict the ground truth. Thus, theME is
an indicator of the bias in themodel predictions. It does not reflect the
accuracy of the model point predictions.
2) Mean absolute error (MAE): This is the mean of the absolute

values of the relative prediction error on independent prediction data
not used for model training:

MAE � 1

n�
Xn�
i�1

���� dmTOi −mTOi

mTOi

���� (21)

The MAE reflects the accuracy of the model point prediction. A
model with a low MAE is desired (with zero being the lowest
possible value).
3) Prediction coverage (PC): This is the fraction of the

observations in the independent prediction set for which the ground-
truth values of the TOW liewithin the 95% prediction intervals given
by the model. The PC indicates how well the prediction intervals
capture the variability of the output variable. A PC value close to 95%
indicates that the model has been properly specified and formulated.
4) Normalized length of prediction interval (NLPI): This is the

mean of the length of the 95% prediction intervals expressed as a
fraction of the point estimate. The NLPI indicates the extent of
relative uncertainty present in the estimated output.

These metrics are used for model selection (using the validation
dataset) as well as for evaluating the selected model (using the test
dataset). A validation study using the validation datasets is done to
choose the appropriate kernel functions to build the finalGPRmodels
to predict the TOW. The different kernels are compared in terms of
these metrics using statistical multicomparison techniques. For each
aircraft type, the kernel function that gives the overall statistically
significantly (at a 5% significance level) best predictive performance
on the validation dataset is selected to build the final model for TOW
prediction.

VII. Model Results and Comparisons with Other
Models

Table 2 shows the performance of the finally selected GPRmodels
in predicting the TOW on the test datasets for the different aircraft
types. The values of the predictor variables in the test data are
obtained fromFDRdata. The FDRdata also provide the ground-truth
values of the TOW for model evaluation. The table also shows the
performance of the TOW estimation model given by the ANP
database. A part of AEDT, the ANP database models the TOW as a
piecewise constant function of the flight stage/trip length [4]. The
flight stage/trip length is determined by calculating the great circle
distance between the flight origin and destination airports. Because
the ANP model is a deterministic model, its PC and NLPI are not
reported in the table. The metrics shown for the individual model
performances are calculated across all flights in the test dataset of
a particular aircraft type. All the metrics are calculated on
destandardized data. For each metric, the table shows the mean value
(and the standard deviation within parentheses). Table 2 also shows
the statistical comparison of the model MEs with zero and the model
MAEs with one another. For comparison ofMEs, the null hypothesis
is that theMEs are zero (unbiasedmodel predictions). The alternative
hypothesis is that the MEs are nonzero (biased model predictions,
ME ≠ 0). For comparison of MAEs, the null hypothesis is that the
GPR model gives a similar (or worse) predictive performance as
compared to the ANP model in terms of a similar (or higher) MAE.
The alternative hypothesis is that the GPR model gives a better
predictive performance than theANPmodel in terms of a lowerMAE
(MAEGPR < MAEANP). The ME and MAE used for this statistical
comparison study are calculated on a per-flight basis (and not across
flights) for a particular aircraft type. Table 2 shows the p-values
obtained through the Wilcoxon signed rank test [29]. The p-value is
the probability of observing a value as extreme or more extreme than
the calculated test statistic under the null hypothesis. This test is
appropriate because the performance of the GPR and the ANP
models is to be compared on the same set of flights in the test data
(matched data). Thep-values indicating acceptance of the alternative
hypothesis at the 5% significance level are highlighted in bold.
Figures 3 and 4 contain box plots showing the errors and the

absolute errors, respectively, for the TOW prediction across the
different flights in the test data. On each box, the central mark is
themedian; the edges of the box are the 25th and the 75th percentiles;
the whiskers extend to the most extreme data points not considered
outliers; and outliers are plotted as crosses. The notch in the box
represents an interval that can be used for statistical comparison at a

Table 2 TOW estimation: performance metrics for the GPR and the ANP models, on the test datasets for different aircraft types

ME, % MAE, % PC, % NLPI, % p-values

Aircraft type GPR ANP GPR ANP GPR GPR MEGPR MEANP MAE

A319-112 0.6 (5.9) 1.0 (6.3) 5.0 (3.0) 5.3 (3.3) 84.6 (36.8) 18.4 (0.9) 0.657 0.439 0.319
A320-214 0.4 (4.9) 0.1 (5.1) 3.9 (2.9) 4.3 (2.7) 97.1 (17.1) 19.3 (0.9) 0.778 0.871 0.199
A321-111 −0.3 (7.5) 1.0 (8.5) 6.1 (4.2) 6.7 (5.1) 91.3 (28.8) 23.9 (1.0) 0.808 1.000 0.303
A330-202 −1.8 (2.6) −4.1 (5.6) 2.4 (1.9) 6.0 (3.3) 94.1 (24.3) 11.2 (2.1) 0.025 0.013 0.007

A330-243 −0.4 (3.4) 0.4 (6.5) 2.6 (2.1) 4.5 (4.5) 85.0 (36.6) 10.2 (1.3) 0.681 0.737 0.058
A330-343 0.2 (4.3) 1.8 (4.1) 3.6 (2.3) 3.5 (2.7) 97.3 (16.4) 17.5 (0.8) 0.874 0.021 0.666
A340-541 2.5 (3.8) 12.5 (14.0) 4.0 (1.9) 12.7 (14.0) 90.0 (31.6) 14.4 (9.4) 0.093 0.009 0.023

B767-300 0.2 (2.5) −6.5 (6.7) 2.0 (1.5) 8.4 (3.8) 94.4 (23.6) 10.9 (1.8) 0.528 0.004 1.4e–4
B777-300ER 0.1 (3.4) 3.5 (6.3) 2.0 (2.7) 5.6 (4.5) 92.3 (27.2) 8.2 (2.4) 0.517 0.007 0.002
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5% significance level. Model predictions are unbiased (at a 5%
significance level) if the error box plots in Fig. 3 contain zero in their
notched regions. The notched regions of the absolute error box plots
in Fig. 4 for the GPR models can be compared to those of the box
plots for the corresponding ANP models to determine which model
gives a statistically significantly lower MAE (at a 5% significance
level) on the TOW prediction.
From Table 2, it can be seen that the GPR models give unbiased

predictions of the TOW in most of the cases. The median of the MEs
across the different aircraft types is 0.2%. The GPR models give a

median MAE of 3.6% across the different aircraft types, whereas the
ANP models give a median MAE of 5.6%. The median PC given by
the GPR models is 92.3% across the different aircraft types. The
median NLPI is 14.4%. The statistical multicomparison tests for the
MAE indicate that the GPRmodels perform statistically significantly
(at the 5% significance level) similar to or better than theANPmodels
for all the aircraft types in the study. The GPR models reduce the
median MAE by 36% as compared to the ANP models. Moreover,
unlike the ANP models, the GPR models also give prediction
intervals that can quantify the uncertainty in TOW.
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Fig. 3 Box plots showing error on TOW prediction for test data flights.
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Fig. 4 Box plots showing absolute error on TOW prediction for test data flights.
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VIII. Performance on Ground Surveillance Data

In the previous section, the TOW model predictive performance

was evaluated using test data drawing values of the predictor

variables from the FDR dataset. In practice, however, the models will

be applied to trajectory data obtained through ground surveillance

systems. ASDE-X is one such surveillance system. In this section,

TOW model predictive performance is evaluated using values of the

trajectory variables obtained from ASDE-X. The values of the

evaluation metrics determined in this section indicate the predictive

performance of the models as they will be used in practice using

ground surveillance data.

A. Airport Surface Detection Equipment, Model X

The ASDE-X is a surveillance system at major U.S. airports that is

used primarily for collision avoidance on the airport surface [30].

Using data from surface radars, terminal radars, ADS-B sensors,

and aircraft transponders, ASDE-X tracks all aircraft and ground

vehicles on the airport surface and in the airspace within 8 km of the

airport. The ASDE-X archives in this study comprise records for

the A330-343, which are inferred to correspond to the flights in the

corresponding FDR dataset (based on amaximum likelihoodmatch).

For a particular flight, its ASDE-X record contains track

information such as latitude, longitude, speed, heading, and altitude,

as functions of time. There is also information about the departure fix,

aircraft identification, and aircraft type. The trajectory variables in the

ASDE-X dataset have a sampling rate of 1 Hz and resolutions of less

than 10−6 deg (for latitude, longitude, and heading) and 1 kt for

speed. The rawASDE-X data are very noisy and have missing fields.

These tracks, therefore, have been smoothed before use to obtain the

noise-free estimates of the ground speeds and the distance covered

during takeoff roll.

B. Predictive Performance with Airport Surface Detection

Equipment, Model X Data Inputs

Models trained on A330-343 FDR data in Sec. V are applied to

trajectory predictor variable (ground speed and takeoff roll distance)

values drawn from the ASDE-X data to determine mean predictions

and prediction intervals for the TOW. Values of the ambient air

density and the ground-truth TOW are still obtained from the

corresponding FDR records for the A330-343. Model evaluation is

done on 33 flights for the A330-343, which have records in both the

FDR and the ASDE-X datasets and which have not been used for

TOW model training. Across these 33 flights, the median absolute

errors between the smoothed ASDE-X-derived and the FDR values

of R, VGS1
, and VGS2

are 3.2, 61.9, and 0.8%, respectively.

Table 3 tabulates the TOW predictive performance when the

source of trajectory variables is ASDE-X. Each cell reports the mean

and standard deviation (within parentheses) of the evaluation metric

across all the flights in unseen data not used for model training.

For reference, the predictive performance when the trajectory

predictor variables are obtained fromFDRdata is also tabulated. This

predictive performance on FDR-obtained variables may differ from

that recorded in Table 2 because different sets of flights have been

used for model evaluation in the two tables.

Table 3 shows that, for the A330-343, model TOW predictive
performance (in terms of MAE, PC, NLPI) when trajectory variables
are obtained fromASDE-X is similar to thatwhen trajectory variables
are obtained fromFDR. For theA330-343, the GPRmodel applied to
surface surveillance data gives an ME of 1.9%, MAE of 3.6%, PC of
97%, andNLPI of 17.5%. TheGPRmodel gives anMAE statistically
similar to the ANP model. The ANP models do not need any
trajectory variables as inputs and are therefore independent of the
source of such data.

IX. Application of theTakeoffWeight EstimationModel
to Estimate the Fuel Flow Rate

As mentioned in Sec. I, the TOW is an essential parameter for
estimating the fuel consumption of an aircraft. In this section, we
show how our GPR models for TOW estimation can be used for
estimating the average fuel flow rate (the mass of fuel consumed per
unit time) per engine. The analysis is demonstrated for different
aircraft types in the climb out and approach phases of flight. These
phases are the parts of ascent and descent, respectively, which take
place below 3000 ft above field elevation. Because of its proximity to
the ground, the fuel burn in these phases impacts the environment in
the vicinity of airports.

A. Fuel Flow Rate Modeling

In previous research [31,32], we showed that the average fuel flow
rate per engine in climb out can be statistically estimated by
considering the aircraft dynamic pressure multiplied by the wing
reference area, aircraft mass, ratio of the vertical speed to the ground
speed, ground speed, and rate of change of the ground speed with
time as predictor variables. In approach, the aircraft altitude above the
mean sea-level elevation of the arrival airport is also included as an
additional predictor variable. Using these variables (all in SI units),
we develop an aircraft-type specific GPRmodel for the fuel flow rate
in climb out and approach (each phase modeled separately) and use
the aircraft TOW in place of the instantaneous aircraft mass as a
predictor variable. For this fuel flow rate modeling, each point in the
training, validation, and test sets represents one FDR observation in a
particular flight. Each flight contributes to multiple observations. All
the observations of a particular flight belong to the training, the
validation, or the test sets. The flights in each of the training,
validation, and test sets used in fuel flow rate modeling are the same
as those in the sets used for TOW modeling in Sec. V. The GPR
modeling methodology, explained in Secs. IV and V, is again
employed to build the fuel flow rate models.
The true values of the variables from the FDR data are used to train

the models. However, as before, we desire models that can be used to
estimate the fuel flow rate of operations even in the absence of FDR
data. Therefore, only variables derivable through more accessible
data (such as ground-based track data) are used asmodel features and
as inputs while evaluating model performance. Subsequently, the air
density is assumed to be a function of the aircraft altitude according to
the International Standard Atmosphere model [33]. The TOW,which
is a predictor variable for the fuel flow rate models, needs to be
estimated because its actual value for a particular flight is not
available. The accuracy of the fuel flow rate estimation therefore
depends on the accuracy of the TOW estimation. One method for
analyzing the sensitivity of the fuel flow rate to TOW is presented
here. Thevalues of the TOWin the unseen prediction dataset not used
for training (combined validation and test datasets) for each aircraft
type are changed systematically by a fixed percentage of the true
value to give a modified prediction dataset [34]. All the other
predictors in the prediction set are held at their original values (which
is an approximation because the other variables might depend on
TOW too). GPR fuel flow rate models trained using the true TOWare
run on themodified prediction dataset, and themean absolute error in
the predicted fuel flow rate is calculated. The variation of this error
with the percentage deviation of the estimated TOW in the modified
prediction dataset from its true value indicates the sensitivity of the
model fuel flow rate predictions to the TOW.

Table 3 Performance of the GPR and the ANP models for the

A330-343 to predict TOW when the trajectory predictor variables

are obtained from ASDE-X

ME, % MAE, % PC, % NLPI, %
Trajectory
source GPR ANP GPR ANP GPR GPR

ASDE-X 1.9
(4.1)

1.3
(4.0)

3.6
(2.7)

3.4
(2.3)

97.0
(17.4)

17.5
(1.0)

FDR 1.2
(3.8)

1.3
(4.0)

3.3
(2.2)

3.4
(2.3)

100.0
(0.0)

17.4
(0.8)
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Table 4 tabulates the percentage change in mean absolute error in
fuel flow rate prediction in climb out and approach due to a �3%
deviation in estimated TOWfrom its actual value. Fuel flow rateGPR
models [32] are used in this sensitivity analysis. The table entries are
obtained by averaging across all flights in the combined validation
and test datasets (unseen data not used for training). The model
predictions are seen to be sensitive to even a 3% deviation from the
true TOW, with MAE changing by as much as about 19% for the
A320-214 in climb out. This sensitivity of the MAE in fuel flow rate
prediction to the deviation in the estimated TOWmotivates the need
to accurately predict the TOW, in order to accurately predict the fuel
flow rate.
Using the TOW predicted by the ANP models as well as by the

developed GPR models (Sec. V) as inputs to the fuel flow rate GPR
models, their predictive performance on the flights in the unseen
prediction dataset (combined validation and test datasets) is now
evaluated. To incorporate uncertainty in the predicted TOW, the fuel
flow rate predictive performance is evaluated using the predictive
distribution of the fuel flow ratemarginalized over the uncertainvalues
of TOW. In other words, we are interested in computing the following:

p� _mfjx−TOW;ϕ;D1;D2� �
Z
mTO

p� _mfjx−TOW; mTO;D1�

× p�mTOjϕ;D2� dmTO (22)

Here, p refers to the PDF; _mf is the fuel flow rate to be predicted;
x−TOW is the vector of predictor variables in the fuel flow rate GPR
model excluding the TOW; mTO is the TOW; and D1 is the set of the

training variables used for building the fuel flow rate GPR model.
p� _mfjx−TOW; mTO;D1� is the PDF of the predictive distribution given
by the fuel flow rate GPR model and is thus a Gaussian PDF.
p�mTOjϕ;D2� is the distribution of the predicted TOW parameterized
by ϕ and D2.
The ANP model is a deterministic model giving a flight stage

length-based point estimate of the TOW, mTO;ANP. Under the ANP
model, Eq. (22) becomes

p� _mfjx−TOW;ϕ;D1;D2� � p� _mfjx−TOW; mTO;ANP;D1� (23)

which is the PDFof a normal distribution under theGPR formulation.
The GPR models for TOW prediction (Sec. V) give the complete

predictive distribution for the TOW (which is a normal distribution).
Therefore, under a GPR model for TOW estimation, Eq. (22)
becomes

p� _mfjx−TOW;ϕ;D1;D2� �
Z
mTO

p� _mfjx−TOW; mTO;D1�

× p�mTOjϕ;D2� dmTO (24)

≈
1

ns

Xns
i�1

p� _mfjx−TOW; mTOi
;D1� (25)

When GPR models are used to predict the TOW, ϕ and D2 hold
specific meanings. ϕ is the vector of predictor variables used in the
GPRTOW prediction models (R, ρ∞, VGS1

, and VGS2
, as mentioned

in Sec. III). D2 is the training set used to build the GPR models to
predict the TOW. Equation (25) approximates Eq. (24) through a
Monte Carlo approximationwith ns samples of the TOWdrawn from
its Gaussian predictive distribution given by the GPR models for
TOWprediction. In this study, ns is chosen to be 1000. Equation (25)
therefore shows that the desired predictive distribution of the fuel
flow rate under a GPR model of the TOW can be approximately
modeled as a Gaussianmixture distributionwith ns equally weighted
components.

B. Results

Depending on how the TOW variable is predicted, there are two
variants of the GPR models developed to predict the fuel flow rate:
1)Model 1: This variant predicts theTOWpredictor variable that is

input to the GPR fuel flow rate model using the ANP method.
2)Model 2: This variant predicts the TOWpredictor variable using

the GPR models developed in Sec. V for TOW prediction.
The predictive distributions for the fuel flow rate marginalized

over the TOW for model 1 [Eq. (23)] and model 2 [Eq. (25)] are used
to calculate the mean predictions and the 95% highest density
prediction intervals for the fuel flow rates. Table 5 tabulates the fuel

Table 4 Increase in fuel flow rateMAE for a�3%
deviation in TOW from its actual value

Aircraft type Phase Increase in MAE, %

A319-112 Climb out 12.9
Approach 5.9

A320-214 Climb out 19.2
Approach 5.2

A321-111 Climb out 18.0
Approach 4.9

A330-202 Climb out 15.0
Approach 4.3

A330-243 Climb out 3.9
Approach 3.1

A340-541 Climb out 6.7
Approach 1.0

B767-300 Climb out 12.8
Approach 9.7

B777-300ER Climb out 4.7
Approach 3.1

Table 5 Fuel flow rate predictive performance using estimated TOW

MAE, % PC, % NLPI, %

Aircraft type Phase Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

A319-112 Climb out 3.8 (1.5) 3.9 (1.8) 83.9 (16.3) 92.4 (12.1) 13.6 (0.5) 17.0 (1.2)
Approach 16.8 (5.4) 16.8 (5.4) 95.0 (4.8) 95.7 (4.3) 94.3 (12.1) 96.5 (12.5)

A320-214 Climb out 4.2 (2.2) 4.3 (2.4) 91.6 (14.5) 96.0 (9.0) 20.9 (1.3) 25.1 (2.2)
Approach 16.2 (6.3) 16.6 (6.2) 94.6 (4.9) 95.0 (4.2) 104.6 (95.2) 99.3 (51.8)

A321-111 Climb out 7.8 (4.4) 6.5 (2.9) 72.5 (25.0) 93.7 (10.0) 21.2 (1.2) 29.8 (1.7)
Approach 18.1 (4.7) 17.2 (4.5) 91.5 (5.5) 93.4 (5.0) 76.1 (11.0) 80.8 (12.6)

A330-202 Climb out 5.1 (1.9) 3.6 (1.5) 83.1 (11.9) 92.4 (8.2) 19.7 (1.4) 19.9 (1.4)
Approach 27.3 (10.1) 28.0 (11.3) 91.0 (7.1) 91.1 (7.3) 146.9 (22.1) 141.7 (24.4)

A330-243 Climb out 3.0 (1.9) 2.8 (2.0) 89.8 (19.6) 90.8 (20.7) 12.6 (0.7) 12.9 (0.8)
Approach 20.8 (11.5) 20.6 (11.5) 90.8 (9.0) 91.1 (9.0) 111.3 (20.6) 110.8 (21.3)

A340-541 Climb out 9.1 (12.3) 5.1 (5.4) 66.6 (32.9) 83.9 (22.4) 13.9 (0.5) 17.1 (4.9)
Approach 19.6 (5.5) 17.6 (3.3) 95.7 (3.9) 96.5 (2.7) 120.9 (22.5) 120.8 (18.1)

B767-300 Climb out 5.3 (2.4) 3.0 (1.5) 83.2 (20.0) 98.1 (4.3) 19.2 (1.2) 19.5 (2.0)
Approach 20.0 (7.4) 19.8 (6.7) 93.3 (7.5) 95.6 (5.2) 147.8 (58.6) 147.0 (212.6)

B777-300ER Climb out 8.1 (4.3) 6.7 (2.5) 87.0 (10.1) 93.0 (7.7) 29.0 (3.4) 31.8 (5.8)
Approach 17.4 (5.6) 16.5 (5.3) 93.8 (5.6) 94.1 (5.2) 99.5 (17.0) 101.8 (17.9)
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flow rate predictive performance of these models on the unseen
prediction dataset (combined validation and test datasets) in climb
out and approach for different aircraft types. Each cell entry records
the mean (and the standard deviation within parentheses) of the
evaluationmetric. Statisticalmultiple comparison tests (at a significance
level of 5%)have been performed todeterminewhich of the twomodels
perform better on different evaluation metrics.
In climb out, for the majority of the aircraft types, model 2 gives a

lower or similarMAE as compared to model 1 and a higher or similar
PC as compared to model 1. Thus, for the majority of the aircraft
types, using the GPR-TOW model gives a better or similar fuel
flow rate predictive performance as compared to the ANP-TOW
prediction model. However, the NLPI for model 2 is greater than or
equal to that for model 1. This is expected as model 2 propagates
uncertainty in TOW to that in fuel flow rate and hence leads to bigger
prediction intervals. The ANP-TOW prediction model gives a fuel
flow rate median MAE, PC, and NLPI of 5.2, 83.6, and 19.5%,
respectively, in climb out. The GPR-TOW prediction model gives a
fuel flow rate median MAE, PC, and NLPI of 4.1, 92.7, and 19.7%,
respectively, in climb out.
In approach, for the majority of the aircraft types, model 2 gives a

lower or similarMAE as compared to model 1 and a higher or similar
PC as compared to model 1. Thus, for the majority of the aircraft
types, using the GPR-TOW model gives a better or similar fuel
flow rate predictive performance as compared to the ANP-TOW
prediction model. However, the NLPI for model 2 is greater than or
equal to that for model 1 for the majority of the aircraft types. This is
again expected as model 2 propagates uncertainty in TOW to that in
fuel flow rate and hence leads to bigger prediction intervals. The
ANP-TOWpredictionmodel gives a fuel flow ratemedianMAE, PC,
and NLPI of 18.9, 93.6, and 108.0%, respectively, in approach. The
GPR-TOWpredictionmodel gives a fuel flow ratemedianMAE, PC,
and NLPI of 17.4, 94.6, and 106.3%, respectively, in approach.
The difference in fuel flow rate predictive performance for the

GPR-TOW and the ANP-TOW prediction models in climb out is
starker than that observed in approach. A greater number of aircraft
types give similar performance from the two models for approach
than for climb out. This observation can also bemade fromTable 4, in
which the increase in fuel flow rate MAE is greater in climb out than
in approach for a similar deviation of the estimated TOW from its
true value.

X. Conclusions

This paper presented a statistical approach tomodel aircraft takeoff
weight (TOW), given trajectory variables from the takeoff roll and
other data that are often available to analysts. Gaussian process
regression, a nonparametric probabilistic method, was selected to
build the regression models. By virtue of being nonparametric, GPR
does not need the assumption of basis functions of the input/predictor
variables (unlike methods like least-squares regression, where one
has to assume linear, quadratic, or some other form of basis functions
before carrying out the regression). Being a probabilistic method,
GPR can provide the complete predictive distribution of the TOW
rather than just a point estimate. The uncertainty estimates given
by the predictive distribution quantify the cumulative effect of
unmodeled factors in TOWmodeling as well as random disturbances
in aircraft operation. The model variables or features were selected to
reflect a physical understanding of aircraft dynamics during ground
roll as well as their ease of availability. The result of the present
research is, for the first time, validated models that can provide a
probabilistic estimate of the TOW, given trajectory data from the
takeoff ground roll.
It was possible to validate and evaluate the presentmodels using an

independent test set of FDR data.Metrics were developed to quantify
the accuracy of both the point (that is, mean) estimates as well as the
uncertainty estimates of the TOW. The present GPR models gave a
medianMAEof 3.6% and amedian PCof 92.3%on the test FDRdata
(averaged across the different aircraft types studied). The model
performance was also compared with that of the Aircraft Noise and
Performancemodel; theGPRmodelswere shown to predict the TOW

statistically significantly (at the 5% significance level) similar to
or more accurately than the ANP model. When used on ASDE-X
surface surveillance data for the A330-343, the GPR model was
found to give an MAE of 3.6% and a PC of 97%, thereby
demonstrating the practical utility of the TOW prediction models
developed in this paper.
Finally, an application of the TOW models to estimate aircraft

engine fuel flow rates in climb out and approach was also described.
Fuel flow rate is highly dependent on the weight of the aircraft;
therefore, the TOWestimate is a valuable predictor/input variable of
the fuel flow rate estimate. Therefore, the TOW was first estimated
and further used to estimate the fuel flow rate. As a result, the
accuracy of fuel rate estimate depended on the accuracy of the TOW
model. The impact of using two different TOW models (the present
GPRmodel and the ANPmodel) as input to a GPRmodel for the fuel
flow rate was investigated. It was shown that the fuel flow rate model
that used the GPR estimate of TOW (that is, model 2) performed
similar to or better than the fuel flow rate model that used the ANP
estimate of TOW (that is, model 1) in both climb out and approach for
the majority of the aircraft types studied. Using the GPR estimates of
TOW, themedianMAE in predicting the fuel flow rate is shown to be
4.1% in climb out and 17.4% in approach. Themedian PC for the fuel
flow rate predictions is 92.7% in climb out and 94.6% in approach.
More detailed discussions of these results can be found in [35].
The amount of flight data used for TOWmodel building were quite

limited.The samemethodology can be applied tomore flight data from
varied operations to increase the accuracy of the TOW models. The
model accuracy can be further increased by including more variables
(for example, the takeoff thrust deration level and the coefficient of
friction during the takeoff ground roll, if available) as predictors.
Despite these limitations, this paper has highlighted the potential of
modern statistical methods to estimate the TOWand proposed a class
of more accurate, validated models that are capable of estimating the
TOWof an aircraft from its takeoff ground roll trajectory.
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