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ABSTRACT
�e problem of building statistical models of cyber-physical sys-
tems using operational data is addressed in this paper, using the
case study of aircra� engines. �ese models serve as a complement
to physics-based models, which may not accurately re�ect the op-
erational performance of systems. �e accurate modeling of fuel
�ow rate is an essential aspect of analyzing aircra� engine perfor-
mance. In this paper, operational data from Flight Data Recorders
are used to model the fuel �ow rate. �e independent variables
are restricted to those which are obtainable from trajectory data.
Treating the engine as a statistical system, an algorithm based on
Gaussian Process Regression (GPR) is developed to estimate the
fuel �ow rate during the airborne phases of �ight. �e algorithm
propagates the uncertainty in the estimates in order to determine
prediction intervals. �e proposed GPR models are evaluated for
their predictive performance on an independent set of �ights. �e
resulting estimates are also compared with those given by the Base
of Aircra� Data (BADA) model, which is widely used in aircra�
performance studies. �e GPR models are shown to perform statis-
tically signi�cantly be�er than the BADA model. �e GPR models
also provide interval estimates for the fuel �ow rate which re�ect
the variability seen in the data, presenting a promising approach
for data-driven modeling of cyber-physical systems.
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1 INTRODUCTION
�e accurate modeling of a cyber-physical system (CPS) is essential
for evaluating its performance, and for the development of control
algorithms. �ese models have traditionally been purely physics-
based, and have relied on a detailed knowledge of the underlying
designs, processes, and parameters. Typical physics-based models
simulate system behavior by solving a set of di�erential equations
governing the system dynamics. �ey are useful to identify the im-
portant factors in�uencing system behavior, and to give an idealized
representation of system performance. However, a disadvantage
of such models is that they may not accurately re�ect the opera-
tional performance of the system in real-world environments, due
to simplifying assumptions that neglect uncertainties, as well as
unmodeled e�ects. Moreover, such models o�en contain parame-
ters which are di�cult to estimate. With the increase in sensor and
computing technologies, statistical models based on data provide a
promising way to analyze system behavior, especially when they
e�ectively leverage the advantages of physics-based models (for
example, to guide variable selection).

An aircra� and its engine form a complex CPS, with numerous
sensors that monitor various aircra� and engine parameters during
�ight. �e control of the engine is achieved automatically through
a digital controller in the engine. Combustion of fuel inside the
engine provides the energy to propel the aircra�. �erefore, the fuel
�ow rate (mass of fuel injected into the engine per unit time) is one
of the primary variables governing aircra� and engine operations.
Modeling of the fuel �ow rate is needed to evaluate other perfor-
mance metrics of the aircra� engine, to assess airline costs (fuel
constitutes a major component of the direct operating costs), and
to gauge the environmental impacts of aviation (fuel burn results
in the generation of pollutants).

Fuel �ow rate modeling has received a�ention in prior literature
(for example, [24, 27]). Most of these studies have used data from
simulation so�ware, �ight manuals, ground tests, or performance
calculators. Being non-operational in nature, such data may not be
re�ective of the performance of a real engine in �ight. Indeed, sta-
tistically signi�cant di�erences have been shown to exist between
the fuel burn estimates from ground test-based methods (for exam-
ple, the International Civil Aviation Organization Aircra� Engine
Emissions Databank [12]) and the actual values seen in �ight opera-
tions [6, 17]. �erefore, the use of operational �ight data to develop
models of fuel �ow rate is expected to give estimates which be�er
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re�ect the behavior of an aircra� in �ight. Prior studies which have
used operational data, although limited in number, have illustrated
the bene�ts of using such data [13, 22, 25, 26, 30, 31].

1.1 Contributions of this Paper
In this paper, we use operational data from Flight Data Recorders
(FDRs) to develop models of aircra� engine fuel �ow rate. �e FDR is
a high-�delity source of data since it records actual �ight parameters
(as a function of time) on board the aircra�. However, these archives
are generally proprietary to airlines and are not easily accessible.
By contrast, �ight trajectories can be obtained from surveillance
systems. �e development of fuel burn and emissions inventories
require the ability to translate individual aircra� trajectories to
estimates of fuel burn, without access to FDR data from those
particular �ights. We would therefore, like to develop statistical,
data-driven models that can translate aircra� trajectory variables
into estimates of fuel �ow rate. We model the aircra� engine via
a statistical approach, instead of the more common deterministic
approach, to account for various random disturbances internal and
external to the engine [14]. Machine learning algorithms then
provide a powerful tool to model the system using data, especially
when the modeling objective is the ability to make predictions on
new data. In this paper, we use Gaussian Process Regression (GPR)
to model the fuel �ow rate, in order to obtain estimates of fuel �ow
rate and the associated con�dence intervals. A novel algorithm is
developed which uses GPR to propagate the takeo� aircra� mass
and fuel �ow rate (initial conditions) to estimate the fuel �ow rate
as a function of time. �e use of a statistical modeling technique
enables quantifying the uncertainty in fuel �ow rate at each time
instant. �e algorithm takes care to propagate this uncertainty in
fuel �ow rate from one time instant to the next. �e resulting GPR
models are found to give mean errors of 2.9%, 6.2%, and 15.3% in
ascent, cruise, and descent, respectively. �ey are also shown to
perform statistically signi�cantly be�er than the current state-of-
the-art aircra� performance models with up to 50% reduction in
mean error.

We believe the modeling methodology proposed in this paper
can �nd general applicability across di�erent CPS domains. In
general, the paper demonstrates how to:

(1) develop a statistical framework to build models which
can propagate initial conditions to estimate system perfor-
mance, along with its associated uncertainty, at each time
instant in the future,

(2) use a physical understanding of system dynamics to yield
the input features suitable for building the statistical model,

(3) handle input variables which need to be estimated in tan-
dem with the output variable,

(4) handle input variables which are unknown and have un-
certainty associated with them, and

(5) properly propagate uncertainty in the unknown input and
output variables from one time instant to the next.

1.2 Outline
We start with a brief description of the data set in Sec. 2. We
describe the choice of the modeling variables in Sec. 3. �is is
followed by a brief primer on Gaussian Process Regression in Sec.

4. We explain our algorithm for fuel �ow rate modeling in Sec. 5. In
Sec. 6, we evaluate the predictive performance of our algorithm on
independent test data. We compare our model results with those
given by the Base of Aircra� Data (BADA) model in Sec. 7. �e
main conclusions of the paper and some directions for future work
are highlighted in Sec. 8.

2 DATA SET
�e FDR data used in this study come from the Airbus A321-100
aircra� of a major European carrier. �e A321-100 is driven by
two CFMI CFM56-5B1/2 or 2P turbofan engines. �ere are 117
�ights of the A321-100 in our data set, with 783 – 1436 data points
per �ight. Each point corresponds to one observation in the FDR
data set. �e FDR data set reports parameters such as the aircra�
trajectory, speeds, gross mass, acceleration, fuel �ow rate, engine
temperatures, ambient pressure and temperature, positions of auxil-
iary devices and control surfaces, etc. as a function of time in �ight.
Before analysis, each �ight pro�le is divided into di�erent phases
using criteria solely based on the aircra� trajectory, speeds, and ac-
celeration values [6]. In this paper, we focus on the airborne phases
of �ight, namely, ascent (just a�er takeo� from the departure air-
port to top of climb where cruise starts), cruise (marked by long
periods of level altitude), and descent (from end of cruise to just
before touchdown at the arrival airport). �e frequency of observa-
tions varies by phase, being more frequent in the rapidly changing
phases of �ight (such as near takeo� and touchdown, where data
are collected at 1 s intervals), and less frequent in the more constant
phases of �ight (such as cruise, where data are collected at 150 s
intervals).

3 MODELING VARIABLES
All the modeling variables are metric and continuous in nature.
Hence, the fuel �ow rate estimation problem is fundamentally a
regression problem. �e choice of the variables for regression
is made from an understanding of the physics governing aircra�
operations. As mentioned in Sec. 1, we would like our models to
not require access to additional FDR data. We therefore, restrict
our input variables to those which are available from ground-based
surveillance systems.

For an aircra� in �ight, the equations of motion can be wri�en,
in a simpli�ed form, as follows:

  L

  D

   mg

   Fn

 V, a

    h

Figure 1: Forces on an aircra� in �ight (simpli�ed).



A Gaussian Process Regression Approach to Model Aircra� Engine Fuel Flow Rate ICCPS 2017, April 2017, Pi�sburgh, PA USA

L = mд cosγ (1)
Fn = D +mд sinγ +ma (2)
L = qSCL (3)

sinγ =
Ûh
V

(4)

D = qS(CD0 +CD2C
2
L) (5)

q =
1
2ρV

2 (6)

Here, L is the li� on the aircra�, m is the aircra� gross mass, д is
the acceleration due to gravity, γ is the �ight path angle, Fn is the
aircra� net thrust from all the engines, D is the aircra� drag, a is
the aircra� acceleration in the thrust direction, q is the dynamic
pressure, S is the reference wing area, CL is the aircra� li� coe�-
cient, Ûh is the vertical speed, V is the true air speed, CD0 and CD2
are aircra� drag coe�cients, and ρ is the ambient air density. �e
aircra� angle of a�ack and the bank angle are neglected, since these
quantities cannot be obtained from �ight track data. Combining
Eqs. 1-6, we have

Fn = qSCD0 +
CD2m

2д2

qS −
CD2m

2д2 Ûh2

qSV 2 +mд
Ûh
V
+ma. (7)

�e fuel �ow rate is related to the net thrust via the �rust Speci�c
Fuel Consumption (TSFC):

Ûmf =
TSFC × Fn

Neng
(8)

Here, Ûmf is the fuel �ow rate per engine (averaged over all en-
gines), and Neng is the number of engines (2 for the A321-100).
�erefore, from Eq. 7 and Eq. 8, in the airborne phases of �ight,
the approximate functional relation for the fuel �ow rate can be
wri�en as

Ûmf ≈ Ûmf

(
qS,m,

Ûh
V
,a,CD0 ,CD2 ,TSFC

)
. (9)

We make further simplifying assumptions in order to restrict
ourselves to variables which are available through ground-based
tracking data.

• When the true ambient density (required for the calculation
of the dynamic pressure q) is not available, we assume
a surrogate density value according to the International
Standard Atmosphere (ISA) model [2], which models the
density as a function of the altitude (available from ground-
based tracking systems). �e equations for the density
variation in the ISA model are given in Appendix A.

• Aircra� performance depends on the true air speed V ,
which is the aircra� velocity with respect to the surround-
ing air. �is velocity cannot be measured on the ground.
Hence, we use the ground speed VGS, which can be mea-
sured from the ground, as a surrogate for the true air speed.
�e ground speed is the aircra� velocity with respect to
the ground.

• It is not possible to measure the aircra� acceleration (as
required in Eq. 2) from the ground. We therefore, use the
numerical derivative of the ground speed as a surrogate
value for the aircra� acceleration, asurr =

∆(VGS)
∆t , where t

is the time in �ight. �e values of the surrogate accelera-
tion are smoothed through a low pass �lter before using
them for analysis to remove noise arising from numerical
di�erentiation.

• �e Base of Aircra� Data (BADA) methodology [15] is used
for modeling the drag coe�cients and the TSFC. Accord-
ing to the BADA methodology, the drag coe�cients are
assumed to be aircra� type speci�c constants in the ascent
and cruise phases. However, in the descent phase, they are
assumed to have discrete levels depending on the altitude
of the aircra� with respect to the mean sea level elevation
of the arrival airport, the aircra� speed, and the aircra�
gross mass. �e BADA methodology also models the TSFC
to be just a function of the aircra� true air speed.

Based on the assumptions above, the functional dependence of
the fuel �ow rate can be approximately wri�en as

Ûmf ≈



Ûmf(as)

(
qsurrS,m,

Ûh
VGS
,VGS,asurr

)
, in ascent,

Ûmf(cr)

(
qsurrS,m,

Ûh
VGS
,VGS,asurr

)
, in cruise,

Ûmf(de)

(
qsurrS,m,

Ûh
VGS
,VGS,

asurr,hATD
)
, in descent.

(10)

Here, the subscripts (as), (cr), and (de) refer to ascent, cruise, and
descent, respectively. qsurr = 1

2ρV
2
GS is the surrogate dynamic pres-

sure based on the ground speed (with density ρ given by the ISA
model if needed), and hATD is the aircra� altitude above the mean
sea level elevation of the arrival airport. �us, in the regression
models to be built, the input/independent/predictor variables are
the surrogate dynamic pressure multiplied by the reference wing
area (qsurrS , in units of newton), aircra� gross mass (m, in units of
kilogram), the ratio of the aircra� vertical speed to its ground speed
( ÛhVGS

, a dimensionless quantity), the aircra� ground speed (VGS,
in units of meter per second), the aircra� surrogate acceleration
(asurr, in units of meter per second per second) in ascent, cruise,
and descent. In descent alone, there is an additional input variable,
namely the aircra� altitude above the mean sea level elevation of
the arrival airport (hATD, in units of meter). In all the phases, the
output/dependent/predicted variable is the average fuel �ow rate
per engine ( Ûmf , in units of kilogram per second). It should be noted
that except for the aircra� gross mass, all other input variables
can be obtained from easily accessible ground-based �ight tracking
systems. �e predictor variables chosen are the primary factors
a�ecting the fuel �ow rate. However, many other secondary factors
can also a�ect the fuel �ow rate (for example, aging, component
deterioration, engine bleed, etc.). �ese secondary factors are di�-
cult to model. However, it is assumed that the statistically-derived
models can incorporate the e�ects of unmodeled and neglected
factors through the generation of prediction intervals (instead of
just point predictions).

4 GAUSSIAN PROCESS REGRESSION
In this section, we brie�y describe the Gaussian Process Regression
(GPR) methodology. GPR is a powerful nonparametric Bayesian
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approach with a Gaussian probabilistic framework. It has found
application in diverse areas, including biomedical applications and
health care [7, 8, 18], remote sensing [11, 16], music [19], robot-
ics [5], cellular communications [23], and material microstructure
analysis [3]. More details of this method can be found in [21, 29].

A regression model is given as

y = f (x) + ϵ (11)

where,y is the output/dependent variable, x is the input vector, f (x)
is the underlying regression function that we wish to estimate, and ϵ
is the noise with which the dependent variable is distributed about
the regression function. Under GPR, we assume the regression
function to follow a Gaussian Process (GP) prior. A function f (x)
is said to follow a Gaussian Process if the function values at any
�nite set of inputs x follow a joint Gaussian distribution [21].

f (x) ∼ GP(me (x),k(x, x′)) (12)

where, me (x) is the mean function and k(x, x′) is the kernel/
covariance function over two inputs x and x′, which governs the
covariance among function values. Under GPR, the mean function
is o�en assumed to be the zero function. It is common to assume
the noise to follow a Gaussian distribution, ϵ ∼ N(0,σ 2

n ), with
mean 0 and noise variance σ 2

n . Under the assumption of a zero
mean function for the GP governing the regression function and
Gaussian noise, the dependent variable y also follows a GP with
a zero mean function and a ‘noisy’ kernel function knoise(xp, xq)
over d-dimensional input vectors xp and xq.

y ∼ GP(0,knoise(xp, xq)) (13)

�e noisy kernel function over the dependent variablesknoise(xp, xq)
relates to the kernel function over the regression function values
k(xp, xq) as

knoise(xp, xq) = k(xp, xq) + σ 2
nδpq (14)

where, δ is the Kronecker delta.
�e GP literature is �lled with di�erent kernel functions which

a�ect the nature of the regression functions used for modeling.
�ese functions give GPR great modeling �exibility. Two commonly
used kernel functions are described as follows:

• Dot Product Squared Exponential (DPSE) kernel: �is ker-
nel function is used to model very smooth functions. It is
given by

k(xp, xq) = σ 2
0 + xp

T Σxq

+σ 2
f exp

(
− 1

2

d∑
i=1

(xp,i − xq,i )2

`i
2

)
,

Σ = diag(σ 2
1 ,σ

2
2 , . . . ,σ

2
d ). (15)

• Dot Product Exponential (DPE) kernel: �is kernel func-
tion is used to model very rough functions. It is given
by

k(xp, xq) = σ 2
0 + xp

T Σxq

+σ 2
f exp

(
−

√√√ d∑
i=1

(xp,i − xq,i )2

`i
2

)
,

Σ = diag(σ 2
1 ,σ

2
2 , . . . ,σ

2
d ). (16)

In Eqs. 15 and 16, xp and xq are d-dimensional input
column vectors, σ 2

0 is the constant variance parameter,
σ 2

1 ,σ
2
2 , . . . ,σ

2
d are the variance parameters for each of the

d input dimensions, σ 2
f is a variance parameter govern-

ing the magnitude of the exponential part of the kernel,
` is the d-dimensional vector of length scales (one for
each input dimension), and the subscript i refers to the
ith component of the vector. �ese kernel parameters are
referred to as hyperparameters in GPR. �us, the hyper-
parameter vector for both the DPSE and the DPE kernels
is [σ 2

0 σ
2
1 σ

2
2 . . . σ

2
d σ

2
f `]

T .

Numerous other kernel functions exist, details of which can be
found in [29].

�e noisy kernel hyperparameter vector θ is the kernel hyper-
parameter vector mentioned above with the noise variance σ 2

n
appended. It is estimated as the vector which maximizes the log
posterior probability of the hyperparameter vector, given the ma-
trix of input vectors X and the vector of dependent variable values
y.

θ̂ = argmax
θ

log p(θ |X, y)

= argmax
θ

{
log p(θ ) − 1

2y
TK−1y y − 1

2 log|Ky |

−n2 log(2π )
}

(17)

Here,p(θ ) is the prior on the hyperparameter vector,n is the number
of observations, X is the n × d matrix of d-dimensional inputs, y
is the n × 1 vector of the dependent variable values, and Ky is the
n×n covariance matrix derived from the noisy kernel function over
pairs of input variables (Eq. 14).

In this paper, the aim of GPR is to make predictions on new data
points (and not hyperparameter inference, for example). For GPR,
the predictive distribution of the dependent variable values y∗ at a
set of new inputs X∗ is also a Gaussian distribution, given by

y∗ |X∗,D ∼ N(µ,C)
µ = K(X∗,X)K−1y y

C = K(X∗,X∗) − K(X∗,X)K−1y K(X∗,X)T

+σ 2
n In∗ . (18)

Here, n∗ is the number of new inputs at which predictions are
desired, X∗ is the n∗ ×d matrix of the set of new inputs,D = (X, y)
is the set of training inputs and dependent variable values (used
for hyperparameter inference), N(µ,C) refers to a multivariate
Gaussian distribution with mean vector µ and covariance matrix
C, K(X∗,X) is the n∗ × n covariance matrix derived from the noisy
kernel function over pairs of new and training input variables (Eq.
14), K(X∗,X∗) is the n∗ × n∗ covariance matrix derived from the
noisy kernel function over pairs of the new input variables, and In∗
is the n∗ × n∗ identity matrix.

Lastly, a few words about approximate GP inference are in order.
�e exact GP inference explained above involves inversion of an
n × n matrix (Ky), which requires O(n3) operations. As a result,
exact GP inference can be computationally expensive for large data
sets. In this paper, to reduce the computational burden, we use
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the Fully Independent Conditional (FIC) approximation to exact
GP inference. Brie�y, in this approximation, ms arti�cial input
variables are introduced into the problem (called inducing inputs)
with their associated dependent variable values (called inducing
variables). �e training function values and the function values
at the new inputs (where predictions are desired) are all assumed
fully independent among themselves, given the inducing variables.
�is approximation reduces the computational burden if ms is
signi�cantly less than n. More details of the FIC approximation can
be found in [20].

GPR has several advantages. Firstly, it is a nonparametric method,
thereby freeing the user from the choice of basis functions prior
to model training (unlike, for example, least squares regression).
Secondly, it retains a simple probabilistic framework based on the
Gaussian distribution, making the analysis tractable (the tractabil-
ity of the analysis is what makes the assumption of Gaussianity
so useful in the �rst place). �irdly, it is possible to determine
the full predictive distribution, and therefore, prediction intervals
accounting for the uncertainty in the output variable are a useful
product of the analysis.

5 MODEL DEVELOPMENT
In this section, we explain the methodology employed to model the
fuel �ow rate using Gaussian Process Regression (GPR). Firstly, the
A321-100 FDR data set is divided into training, validation, and test
data sets. �e training set comprises 76 �ights (65% of full data)
randomly chosen from the full data set, the validation set comprises
18 �ights (15% of full data) randomly chosen from the full data set,
and the test set comprises the remaining 23 �ights (20% of full data).
�e training set is used for model building, the validation set is
used for model selection (from a pool of possible models), and the
test set is used for evaluating the �nal selected model. �e 76 �ights
in the training set result in a total of 18,261 observations in ascent,
933 observations in cruise, and 34,110 observations in descent.

All the variables are standardized, that is shi�ed by the sample
mean and then scaled by the sample standard deviation of the
respective variables in the training data sets. �e GPR starts with
hyperparameter inference for the di�erent noisy kernel functions
using the training data. �e hyperparameters, being all positive,
are given a broad gamma prior with mode 1 and variance 100 (for
lack of speci�c prior knowledge). We use exact GP for inference
in cruise (due to the small size of the cruise training data set). Due
to the large size of the training data set in ascent and descent,
we use GP with FIC approximation for inference in these phases.
�e FIC approximation is carried out by randomly pulling out
150 inducing variables from the training data set (the number of
inducing variables is chosen by doing a selection study on the
validation data set for the model predictive performance and the
testing time). �e freely available MATLAB® [1] based ‘GPstu�
Toolbox’ [28] is used for GPR in this study. Once the models are
trained and the hyperparameters are inferred, they are used to
determine the model predictive distribution of the fuel �ow rates
for �ights in the test data, as we will explain in the following
subsection (Sec. 5.1).

5.1 Prediction Algorithm
�e training data sets are used to train di�erent models in ascent,
cruise, and descent, using the variables described in Sec. 3. While
training, the actual value of the instantaneous aircra� gross mass
from the FDR data set is used as an input. However, the main aim
of model building in our study is to use the models for predicting
the fuel �ow rate for new �ights not used for training. For a new
�ight, the actual value of the instantaneous aircra� gross mass
may not be available (since FDR data for the new �ight could be
proprietary and easily available ground-based tracking data cannot
record the mass of the aircra� as it �ies through the air). Hence,
for a new �ight, the value of the aircra� gross mass at a particular
time instant needs to be estimated in order for it to be used as an
input to further estimate the fuel �ow rate at that time instant. In
this section, we develop an algorithm which estimates both the
instantaneous aircra� gross mass and the fuel �ow rate for the
airborne phases of a new �ight. �is algorithm operates on the
knowledge that the reduction in gross mass with time is due to
fuel burn only. For this algorithm to work, we assume that the
values of the aircra� gross mass and the fuel �ow rate are known
at takeo�, which just precedes the �rst instant in ascent. �ese
takeo� values, therefore, serve as initial conditions to the algorithm.
At any instant of time, the aircra� gross mass is estimated using
the estimated values of the gross mass and the fuel �ow rate at the
previous instant of time (Eq. 19). �e estimated gross mass at the
current instant then serves as one of the inputs (the exact values of
the other inputs at that instant are assumed to be already available
through ground-based tracking systems) to the fuel �ow rate model
trained for the particular phase (ascent/cruise/descent) in which
the current time instant lies. �is procedure continues till the end
of descent.

mi+1 =mi − Neng Ûmf i∆ti+1←i (19)

Here,mi+1 andmi are the aircra� gross mass values at the (i + 1)th
and the ith time instants, respectively, Ûmf i is the averaged fuel
�ow rate per engine at the ith time instant, and ∆ti+1←i is the
time interval between the (i + 1)th and the ith time instants. �e
time interval between successive instants depends on the sampling
frequency of the reported trajectory data for the new �ight. �e
algorithm as such, does not need to assume an explicit value of the
time step a priori.

In our algorithm, uncertain estimates of fuel �ow rate are used
to estimate the gross mass and these uncertain estimates of gross
mass then serve as inputs to again estimate the fuel �ow rate. It is
important to correctly propagate these uncertainties from one time
instant to the next. �e regression problem in this case is hence,
one having uncertainty in input values - a feature not encountered
in common regression problems (in which the inputs are assumed
to be free of any uncertainty). �e uncertainty is in the gross mass
input variable and not the other input variables whose exact values
are assumed to be easily available. �e approach described in [10]
is suitably adopted to propagate the uncertainty in the input vector
to the output. Let D be the training data set and x∗ be a new
uncertain input at which the prediction y∗ is desired. For correct
propagation of uncertainty from input to output, we are interested
in determining the probability of the output prediction given the
training data, marginalized over all possible values of the uncertain
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input (Eq. 20). By using a Monte Carlo approach, the integral in Eq.
20 is approximated by an average (Eq. 21).

p(y∗ |D) =
∫

p(y∗ |x∗,D)p(x∗)dx∗ (20)

≈ 1
ns

ns∑
j=1

p(y∗ |x∗j ,D) (21)

where, ns is the number of samples and x∗j are samples of the uncer-
tain input x∗. For a GPR model, p(y∗ |x∗j ,D) is a Gaussian density
(Eq. 18). �us, for a GPR model, p(y∗ |D) can be approximated by
a Gaussian Mixture density with ns number of components and
equal component weights.

Algorithm 1 shows the algorithm for the fuel �ow rate predic-
tion. In the algorithm, subscripts ‘prev’ and ‘curr’ refer to the previ-
ous and the current time instants, respectively. ‘IndexAscentStart’
refers to the index of the point in the �ight trajectory where ascent
begins (the point immediately succeeding takeo�). ‘IndexTouch-
down’ refers to the index of the point in the �ight trajectory where
the aircra� touches down at the arrival airport (just a�er the end of
descent). x∗−m refers to the input vector where prediction is desired
with the gross mass input variable removed. ‘MeanPredGPR(x∗)’
and ‘VarPredGPR(x∗)’ refer to the mean and the variance, respec-
tively, of the prediction from the GPR fuel �ow rate model (trained
for the appropriate phase of �ight, given in the subscripted paren-
theses) at a given input x∗. �e subscript ‘1 : ns ’ refers to the vector
formed by taking all ns samples together. In this study, 100 samples
are used for the Monte Carlo integration approach described in Eq.
21 (the number of samples is chosen a�er considering the simu-
lation time). N(µ,σ 2) refers to a univariate Gaussian distribution
with mean µ and variance σ 2. GM(µ,σ2,w) refers to a Gaussian
Mixture distribution (of univariate Gaussians) with vector of com-
ponent means µ, vector of component variances σ2, and vector of
component weights w. �e mean of the vector of fuel �ow rate
samples (mf curr), generated according to Algorithm 1, gives the
average predicted fuel �ow rate per engine at a particular instant.
�e 95% con�dence interval for the predicted fuel �ow rate per
engine at a particular instant is given by the inter-percentile range
between the 2.5th and the 97.5th percentiles of the fuel �ow rate
samples (mf curr).

6 MODEL EVALUATION
�e models are evaluated for their fuel �ow rate predictive perfor-
mance on �ights in unseen data (not used for training). �e mean
model predictions and the 95% prediction intervals are calculated
using the regression models developed in Sec. 5. �e metrics used
to evaluate the models are as follows:

• MeanAbsolute Relative Prediction Error orMean Er-
ror (ME): �is is the mean of the absolute value of the
relative prediction error on independent prediction data
(validation or test data).

ME = 1
n∗

n∗∑
i=1

����� Ûmf i − Û̂mf i
Ûmf i

����� (22)

Here, n∗ is the number of observations in the unseen pre-
diction set, Ûmf i is the actual fuel �ow rate in the prediction

set, and Û̂mf i is the model mean prediction of the fuel �ow
rate in the prediction set. �e ME indicates the L1-norm
accuracy of the mean prediction.

• Normalized Root Mean Squared Prediction Error
(NRMSPE): �e NRMSPE indicates the L2-norm accuracy
of the mean prediction.

NRMSPE =

√
1
n∗

∑n∗
i=1

(
Ûmf i − Û̂mf i

)2

sd(m̂f )
(23)

Here, sd(m̂f ) is the standard deviation of the vector of the
mean predicted fuel �ow rates.

• Prediction Coverage (PC): �is is the percentage of the
observations in the prediction set for which the 95% predic-
tion intervals given by the model include the actual values
of the fuel �ow rate. �e PC gives an indication of the
accuracy of the predictive uncertainty estimates.

Models having low ME, low NRMSPE, and high PC are preferred.
�e training phase results in GPR models built with di�erent kernel
functions. �ese metrics are used for model selection (using the
unseen validation data set) and testing of the selected models (using
the unseen test data set). �e GPR model with the Dot Product
Squared Exponential (DPSE) kernel is selected for ascent and de-
scent, whereas the GPR model with the Dot Product Exponential
(DPE) kernel is selected for cruise. Table 1 gives the predictive
performance of the selected GPR models on unseen test data using
the above metrics. It is seen that among the three phases, the per-
formance of the GPR models is the poorest in descent. �is poor
performance could be a result of the propagation of uncertainty
from takeo� (which serves as the initial condition to our algorithm)
to descent (which is the farthest airborne phase from takeo�). It
could also be a result of the high variability inherent in the descent
phase due to operational reasons. Figure 2 shows the performance
of the selected models on a particular �ight in the test data set
by plo�ing the model predictions against the actual fuel �ow rate
values and the time in �ight.

7 COMPARISONWITH BADA MODEL
A commonly used model for estimating aircra� performance, in-
cluding its fuel �ow rate, is the Base of Aircra� Data (BADA) model
developed by EUROCONTROL [15]. �e BADA model is a total
energy based model. It uses various simplistic empirical equations
to estimate performance. �ese equations have aircra� type speci�c
coe�cients which are tabulated in a database. In this paper, we use
the BADA Family 3 �rust Speci�c Fuel Consumption (TSFC)-based
fuel �ow rate equations to estimate the BADA fuel �ow rate. �e
net thrust required in these equations is derived from �ight dynam-
ics equations [9] applied to high �delity FDR data. �e thrust and
the BADA fuel �ow rate equations are described in Appendix B.
Table 1 and Figure 2 show a comparison of our GPR model results
with those given by the BADA model. Statistical tests are also used
to compare the evaluation metrics for our GPR models and the
BADA model. It is found that at a 5% signi�cance level, our models
give statistically signi�cantly be�er predictive performance than
the BADA model for all the evaluation metrics in ascent, cruise,
and descent (except for the Mean Error in cruise). In reality, the fuel
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Algorithm 1 Sequentially predicting aircra� gross mass and fuel �ow rate in the airborne phases for a given �ight.
1: mprev ← TakeO�GrossMass
2: Ûmf prev ← Takeo�FuelFlowRatePerEngine
3: i ← IndexAscentStart
4: mcurr ←mprev − Neng × Ûmf prev × ∆tcurr←prev
5: µGPR ← MeanPredGPR(as)([x∗−m,m]|curr)
6: σ 2

GPR ← VarPredGPR(as)([x∗−m,m]|curr)
7: for j ← 1, 2, . . . ,ns do
8: Ûmf curr, j ∼ N(µGPR,σ 2

GPR)
9: mprev, j ←mcurr

10: Ûmf prev, j ← Ûmf curr, j

11: i ← i + 1
12: while i < IndexTouchdown do
13: for j ← 1, 2, . . . ,ns do
14: mcurr, j ←mprev, j − Neng × Ûmf prev, j × ∆tcurr←prev
15: µGPR, j ← MeanPredGPR(as/cr/de as appropriate)([x∗−m,mj ]|curr)
16: σ 2

GPR, j ← VarPredGPR(as/cr/de as appropriate)([x∗−m,mj ]|curr)
17: for j ← 1, 2, . . . ,ns do
18: Ûmf curr, j ∼ GM(µGPR,1:ns ,σ

2
GPR,1:ns ,EqualComponentWeights)

19: mprev, j ←mcurr, j
20: Ûmf prev, j ← Ûmf curr, j

21: i ← i + 1

Table 1: Predictive performance of the GPR and the BADA
models on A321-100 test data for the fuel �ow rate. Each
entry shows the mean and the standard deviation (within
parentheses) of the evaluationmetric across all the 23�ights
in the test data. All the evaluation metrics are calculated on
de-standardized data (that is, values at their original loca-
tion and scale and not shi�ed by the mean and then scaled
by the standard deviation of the training set variables).

Model/
Metric

GPR BADA

Ascent
ME (%) 2.92 (0.01) 5.49 (1.00)
NRMSPE 0.23 (0.10) 0.48 (0.17)
PC (%) 94.50 (4.97) 0 (0)

Cruise
ME (%) 6.21 (3.55) 8.20 (5.17)
NRMSPE 0.62 (0.86) 0.68 (0.39)
PC (%) 94.66 (10.01) 0 (0)

Descent
ME (%) 15.34 (2.85) 23.56 (4.62)
NRMSPE 0.49 (0.11) 0.84 (0.34)
PC (%) 92.10 (6.49) 0 (0)

�ow rate estimates from BADA are expected to be even worse than
those in this study due to the use of low �delity thrust values in
practice (instead of the high �delity FDR-based thrust values used
here). �us, the BADA results in this paper are quite optimistic.
More importantly, being a deterministic model, BADA does not
assign uncertainties to the fuel �ow rate predictions (no prediction
intervals), thereby giving a prediction coverage of zero. By con-
trast, our statistical GPR models are able to assign uncertainties

to the fuel �ow rate predictions in all the three phases (by giving
prediction intervals), which enables one to quantify the variability
seen in fuel �ow rates due to operational reasons and unmodeled
factors.

8 CONCLUSIONS
In this paper, an aircra� engine was considered as an example of
a cyber-physical system whose performance is to be statistically
analyzed through the fuel �ow rate. Gaussian Process Regression
(GPR) was used to statistically model the fuel �ow rate.

Data from Flight Data Recorders (FDR) were used to capture the
performance of a real engine in �ight. Since fuel �ow rate is an
important variable governing engine performance, and �ight data
giving fuel �ow rate sensor readings are proprietary to airlines, our
models could be useful to researchers with limited access to �ight
data. �ey could also be used in the development of fuel burn and
emissions inventories. With these aims in mind, we restricted our
choice of variables to those available from �ight track data. �e
instantaneous aircra� gross mass is an important predictor of fuel
�ow rate, but is not easily obtainable for a particular �ight. We
therefore, developed an algorithm which sequentially estimates the
instantaneous gross mass and the fuel �ow rate together, during
the airborne phases of �ight. �e resulting GPR models were found
to give mean errors of 2.9%, 6.2%, and 15.3% in ascent, cruise, and
descent, respectively. �ey were also found to perform statistically
signi�cantly (at a 5% signi�cance level) be�er than the Base of
Aircra� Data (BADA) model which is currently used in practice,
with up to a 50% reduction in mean error. Unlike the deterministic
BADA model, our statistical GPR models were able to generate
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Figure 2: A321-100 fuel �ow rate: predictive performance of the GPR and the BADA models for one test data �ight, in (a)
ascent, (b) cruise, and (c) descent. �e dots represent the mean predictions and the colored patch represents the 95% prediction
intervals. �e black line is the y = x line for ease of comparison of the predicted and the actual fuel �ow rates. (d) �e
predicted and the actual fuel �ow rates in all the airborne phases as a function of time for the same one �ight. �e plots show
de-standardized predicted and actual fuel �ow rates.

interval estimates of the fuel �ow rate predictions. �ese inter-
val estimates re�ect the cumulative variability in fuel �ow rate
across di�erent �ights due to operational reasons, meteorological
conditions, random internal and external disturbances, and other
unmodeled factors. Our GPR models generated prediction intervals
with a prediction coverage of over 90% in all the airborne phases of
�ight.

�e regression methodology proposed in this paper can be eas-
ily generalized to other applications where a statistical analysis
of system performance using limited operational data is desired,
especially where some of the input variables are uncertain (the
aircra� mass in our speci�c application) and may need to be es-
timated in tandem with the output variable (the fuel �ow rate in
our case). Our novel algorithm automatically gives uncertainty
estimates of the output variable and shows how uncertainties can
be propagated over time. Moreover, our statistical method does not

do away with domain expertise completely but continues to use a
physical understanding of system dynamics for feature selection.

�e results presented in this paper motivate promising directions
for future research. We plan to analyze the sensitivity of our models
to the simplifying assumptions adopted. Our algorithm assumes
a knowledge of the takeo� mass, which may not be available for
an individual �ight. �erefore, we intend to develop methods to
accurately estimate the takeo� mass. We also intend to use our
algorithm to carry out similar fuel �ow rate estimation for other
aircra� types. �e proposed algorithm in its current form is com-
putationally intensive, as it carries out one-step predictions in a
streaming fashion. In addition to the development of approaches
be�er-suited to streaming data [4], future work will investigate
methods for batch-processing points in the prediction set.
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APPENDICES
A INT’L STANDARD ATMOSPHERE
According to the International Standard Atmosphere (ISA) model,
the ambient air density ρ is assumed to be a function of the altitude
alone [2].

ρ =


ρSL

(
1 + β h

TSL

)− д
βR −1
, if h < 11000 m,

ρ11 exp
( −д
RT11
(h − h11)

)
, if 11000 m ≤ h < 20000 m

(24)

where, ρSL is the air density at sea level (= 1.225 kgm−3), β is the
tropospheric lapse rate (= -0.0065 Km−1), h is the altitude above
mean sea level,TSL is the air temperature at sea level (= 288.15 K), д
is the acceleration due to gravity (= 9.81 ms−2), R is the gas constant
for air (= 287.05 Jkg−1K−1), ρ11 is the air density 11000 m above
sea level (= 0.364 kgm−3), T11 is the air temperature 11000 m above
sea level (= 216.65 K) and h11 is the height of the tropopause start
above mean sea level (= 11000 m). �e relative mean error between
the ISA density and the actual density ranges from 0.30% – 2.61%
over the di�erent A321-100 �ights in our FDR data set. �e low
error indicates that the ISA densities are good approximations to
the actual density values in the FDR.

https://easa.europa.eu/document-library/icao-aircraft-engine-emissions-databank
https://easa.europa.eu/document-library/icao-aircraft-engine-emissions-databank
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B BADA FUEL FLOW RATE MODEL
BADA uses the following equations for determining the averaged
fuel �ow rate per engine Ûmf [15]:

Ûmf =



TSFC×Fn
Neng

, in ascent,

TSFC×Fn×Cf cr
Neng

, in cruise,

1
Neng

max(TSFC × Fn , Ûmf min), in descent

TSFC = Cf 1

(
1 + V

Cf 2

)
Ûmf min = Cf 3

(
1 − h

Cf 4

)
(25)

Here, TSFC is the �rust Speci�c Fuel Consumption, Fn is the
aircra� net thrust from all engines, Neng is the number of engines,
V is the aircra� true air speed, Ûmf min is the minimum aircra� fuel
�ow rate from all engines, and h is the aircra� pressure altitude.
Cf 1, Cf 2, Cf 3, Cf 4, and Cf cr are aircra� type speci�c constants
found in the BADA database. High �delity FDR values are used for
the true air speed, pressure altitude, and to calculate the net thrust.

�e net thrust is calculated from FDR parameters using the
following set of equations [9]:

Fn = qS(CD0 +CD2C
2
L) cosα +mд sinθpitch

−nwmд sinα cosθbank
+m( ÛuE + qpitchV sinα + rcwind)

q =
1
2ρV

2

CL =
nwmд

qS
α = θpitch − γ

sinγ =
Ûh
V

sinθbank =
1

nwд
( ÛvE + rV cosα − rhwind − pV sinα −

д cosθpitch sinθroll)

ÛuE = cosα dV
dt
−V sinα dα

dt
− dhwind

dt

ÛvE = −dcwind
dt

(assuming no sideslip) (26)

Here,CL is the aircra� li� coe�cient, α is the angle of a�ack, θpitch
is the pitch a�itude, nw is the aircra� structural load factor (ratio
of li� to weight), θbank is the bank angle, ÛuE is the time derivative

of the aircra� velocity along the roll axis in an inertial (ground
�xed) frame, qpitch is the pitch rate, r is the yaw rate, cwind is
the crosswind (positive from starboard to port side), hwind is the
headwind, ÛvE is the time derivative of the aircra� velocity along
the pitch axis in an inertial (ground �xed) frame, p is the roll rate,
and θroll is the roll a�itude.

�e drag coe�cients, CD0 and CD2 are calculated using the
BADA equations [15] as follows:

CD0 =


CD0,AP , in approach phase,
CD0,LDG +CD0,∆LDG , in landing phase,
CD0,CR , otherwise

(27)

CD2 =


CD2,AP , in approach phase,
CD2,LDG , in landing phase,
CD2,CR , otherwise

(28)

�e di�erent coe�cients in the right hand side of Eqs. 27 – 28
are enumerated in the BADA database. In BADA, the approach
phase is de�ned as either the part of descent where the pressure
altitude above the arrival airport elevation is between the approach
threshold altitude (Hmax,AP) and the landing threshold altitude
(Hmax,LD) with the calibrated air speed less than the minimum
cruise speed increased by 10 knots, or the part of descent where
the pressure altitude above the arrival airport elevation is less than
the landing threshold altitude (Hmax,LD) with the calibrated air
speed between 10 knots more than the minimum cruise speed and
10 knots more than the minimum approach speed. �e landing
phase is de�ned as the part of descent where the pressure altitude
above the arrival airport elevation is less than the landing threshold
altitude (Hmax,LD) with the calibrated air speed less than 10 knots
more than the minimum approach speed. �e values of the pressure
altitude above the arrival airport elevation and the calibrated air
speed are obtained from the FDR data set. �e approach and landing
threshold altitudes are obtained from the BADA database. �e
minimum speeds are calculated as follows:

Vmin,cruise = 1.3Vstall,cruise,ref

√
m

mref
(29)

Vmin,approach = 1.3Vstall,approach,ref

√
m

mref
(30)

Here, Vmin,cruise and Vmin,approach are the minimum cruise and ap-
proach speeds, respectively. m is the aircra� gross mass whose value
is found in the FDR data set. Vstall,cruise,ref and Vstall,approach,ref
are the reference stall speeds in cruise and approach, respectively
whose values are found in the BADA database. All speeds are cali-
brated air speeds. mref is the reference gross mass for the aircra�
type and its value is also found in the BADA database.
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