
Finite-time Behavior of Switching Networks

J. Cavalcanti and H. Balakrishnan

Abstract— This paper addresses the analysis of networked
systems with switching topologies modeled by Positive Markov
Jump Linear Systems, focusing on finite-time stability criteria.
Main results are sufficient conditions to assess finite-time stabil-
ity, and establish probabilistic bounds on state amplification. In
addition, connections between notions of asymptotic and finite-
time stability are explored. Numerical examples illustrate how
the proposed criteria can help to gain insight on air traffic
delay propagation, one of many real world networked systems
that are amenable to the analysis herein.

I. INTRODUCTION

Local dynamics and nodal interconnections can result
in complex network dynamics, especially in large scale
networks, where the magnitude of nodes and links reach the
order of hundreds and thousands. Such large-scale networks
are prevalent in economics, biology, and infrastructure sys-
tems, and their intrinsically collective behavior prompts the
question of how individual disruptions and shocks spread
across the network [1].

A. Analysis of network dynamics

Robustness of large networks has been a topic of increased
interest in the control community in recent years. This
renewed interest is partly due to the belief that control
theory can provide valuable insights to a problem that has
been traditionally studied using graph-theoretic techniques.
An example of such insights is the use of H2 metrics in
order to quantify network fragility [2], [3]. The first of these
papers considers only symmetric network matrices, and the
results focus on network volatility, as well as the impact of
individual edge weights on volatility. Consensus robustness is
the main concern of [3]. The interplay between fragility and
network dimensions is addressed in [4] and [5]. The latter
examines which structural features of economical networks
allow small input shocks to escalate into large aggregate
outputs. On the other hand, the authors in [4] adopt the
notion of harmonic instability to explore how disturbances
to a single node, the leader in vehicular platoons, can be
exponentially amplified with respect to the dimensions of
the vehicular chain.

Recently, [6] addressed the issue of dimensionality and
robustness in general networks, i.e., weighted, undirected
graphs, and used the results to compare scaling properties of
common network topologies, such as the star, ring, etc. There
has also been an analysis of disease spread over switched
networks, for the case of undirected networks with only two
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nodal states [7]. In contrast, [8] analyzed asymptotic and
almost sure stability of weighted, directed networks with
switching topologies, in the context of air traffic delays.

B. Stability of switched linear systems

The interactions within a networked system are described
by links between individual nodes, and are synthesized by the
network’s topology. These interconnections are often fluid—
the topology can vary with time—resulting in disparate
macroscopic dynamics for the same network. A tractable
approach to model time-varying networks is to assume a
finite set of possible topologies, and allow the system to
switch between them. Switching systems, a class of hybrid
systems, capture such a phenomenon, where a dynamical
system is liable to abrupt transitions in dynamics commanded
by a switching signal [9], [10]. This kind of system pro-
vides a general framework for analyzing a vast range of
applications, which in turn have spurred the development of
rich literature regarding the asymptotic stability of switching
systems. Finite-time stability, however, has thus far received
considerably less attention. In [11], finite-time stability (FTS)
of switched positive linear systems (i.e., switched linear sys-
tems guaranteed to have positive state values given positive
initial conditions) was considered. In particular, the authors
developed Lyapunov-based arguments to prove necessary and
sufficient FTS conditions using an “inner-product” definition
of FTS. [12] proposed a new definition of FTS (“stochastic
τ -stability”) considering the expected value of the system’s
“total energy”, to address switching systems where mode
transitions are described by Markov chains [13]. In addition
to necessary and sufficient τ -SS conditions, connections
between τ -MSS and τ -EMSS (mean square τ -stable and
exponentially mean square τ -stable, respectively) were also
studied [12]. Recently, [14] used Lyapunov arguments to
provide sufficient FTS conditions for the case where Markov
chains are unknown. Systems that exhibit linear dynamics
in each discrete mode, and Markovian transitions between
modes are also known as Markov Jump Linear Systems or
MJLS; the stability of MJLS has been a topic of recent
research [15], [16].

C. Contributions

In this paper, we consider the problem of quantifying
both state amplification and the probability with which it
will occur in networks that switch between a finite set of
(possibly unstable) topologies according to a Markov pro-
cess. Among other applications, this is a critical issue to the
Federal Aviation Administration (FAA) and airlines, who are
interested in how flight delays are going to evolve over the



next few hours. Using empirical data, it was shown in [17],
[8] that the underlying networks that drive the interactions
between delays at different airports are indeed time-varying
and can lead to widespread amplification (unstable behavior),
with the actual topology at any time being determined by a
Markov chain. It has also been shown in [8] that Markov
Jump Linear Systems are very good abstractions of how such
networks behave. Under these settings, however, the state-of-
the-art is unable to provide probabilistic statements of how
much states would be amplified in finite time. Indeed, [2],
[6] considered time-invariant networks with stable topologies
and how volatility properties of such networks are affected as
the number of nodes increases. Since infrastructure systems
are intrinsically large networks that do not experience sig-
nificant dimensional variations in the short term, the issue of
scalability is overshadowed by that of topology switching.
On the other hand, [8] focused on asymptotic stability of
MJLSs, which is inconclusive regarding the evolution of
states within shorter periods of time, i.e., it only implies
stability after a large amount of hours, and cannot guarantee
bounds on delay amplification within a certain finite-time
period. In constrast, the concept of Finite-Time Stochastic
Stability (FTSS, [18]) naturally leads to stability conditions
characterized both by amplification magnitude and associated
probabilities. In this light, we present FTSS criteria that allow
quantifying not only the amplification accross the network,
but also the degree of confidence with which it will occur. In
particular, we provide FTSS criteria based on the 1-norm, to
account for the aggregate network states, as well as 2-norm-
based criteria, to characterize the network’s volatility.

II. MODEL

Throughout this paper, bold-faced lowercase letters rep-
resent vectors, calligraphic uppercase letters, e.g. Y , denote
linear operators, and when specific reference is omitted, ‖·‖
refers to Euclidean 2-norm. In is the n-dimensional identity
matrix. Operation ⊗ denotes the Kronecker product.

A. Continuous state dynamics

Prior work [8] has shown that given a networked linear
system with fixed topology, the evolution of the continuous
state x, given by a vector in Rn, can be written as:

x(k + 1) = Γx(k), (1)
where system matrix Γ belongs to Rn×n, and denotes the
network topology.

B. Switching network topologies

This paper considers the scenario in which the networked
system exhibits switches in topology. The switches, or jumps,
between topologies occur in a random, yet well-defined,
manner: Each of the transitions happens with a known
time-varying probability, and can be modeled by a random
variable. The underlying probabilistic space of the stochastic
process that characterizes the transitions is described below.

Let T be the index set of possible network topologies
{1, 2, · · · , N}, T be the σ-algebra given by the discrete

topology of T, R the Borel σ-algebra of Rn, and let
Ω :=

∏
k∈Z≥0

(Rn × T)

denote our sample space, where
∏

and × represent product
spaces. We also define

Σk := σ

 ∏
0≤l≤k

(Rl × Tl)×
+∞∏

p=k+1

(Rn × T)

∣∣∣∣∣∣Rl ∈ R, Tl ∈ T


such that Σk ⊂ Σ, where σ {S} denotes a σ-algebra of set
S. The stochastic basis (Ω,Σ, {Σk} , P ) allows us to define
a stochastic process {Zk}k∈Z≥0

, with Zk : Σ→ T a random
variable such that

Zk (ξ) := τ (k) ,

where
ξ := { (x (k) , τ (k))|x (k) ∈ Rn, τ (k) ∈ T, k ∈ Zk≥0}

and such that probability measure P satisfies
P (Zk+1 = j|Zk = i) = πij (k) ,

where Zk is a simplified notation of Zk (·). Since Zk+1

depends only on k, regardless of past information of Zl for l
less than k, then {Zk}k∈Z≥0

defines a time-varying Markov
chain with transition probability matrix

Mk = [πij (k)] ∈ RN×N (2)
and Z0 with initial distribution z = {z1, · · · , zN}.

C. Markov Jump Linear System model

Combining the model for the continuous state dynamics
for each topology given by (1) with that of the switches in
(2), we obtain the following Markov Jump Linear System
(MJLS) model:

x (k + 1) = ΓZkx (k) , (3a)
P (Zk+1 = j|Zk = i) = πij (k) , (3b)

where x (k) is a vector in Rn that represents the nodes’s
state, and ΓZk is system matrix corresponding to the current
network’s topology, Zk. The network topology reflects the
discrete mode of this hybrid system, and evolves as a time-
varying Markov chain. The result is a discrete-time Markov
Jump Linear System model [15], [19].

1) Stochastic states: Although Zk is the process that
represents the system’s uncertainty, the state vector, x (k), is
the quantity that actually reflects how the network evolves.
We therefore introduce new node states to synthesize both:

y(k) :=
[
y1(k) · · · yN (k)

]T ∈ RN (4)

yi(k) := E
[
x(k)Tx(k)1Zk=i

]
∈ R,

v(k) :=
[
v1(k)T · · · vN (k)T

]T ∈ RNn, (5)
vi(k) := E [x(k)1Zk=i] ∈ Rn,
W(k) :=

[
W1(k) · · · WN

]
∈ Rn×Nn, (6)

Wi(k) := E
[
x(k)xT(k)1Zk=i

]
∈ Rn×n,

where E [Z] denotes the expected value of the random
variable Z. Definitions (5) and (6) use the indicator function
1Zk=j , which is shorthand for

1Zk=j(ξ) :=

{
1, ξ ∈ {ζ ∈ Ω|Zk (ζ) = j}
0, ξ /∈ {ζ ∈ Ω|Zk (ζ) = j}

(7)



2) Properties of the stochastic states: States y, v and
W are convenient because they encapsulate the stochasticity
of random topology Zk and allow rewriting (3) as a linear
system. The next propositions summarize this fact.

Proposition 1: [17], [20] For all k ≥ 0, stochastic states
v and W, defined by (5) and (6), respectively, have linear
dynamics described by

v(k + 1) = Vkv(k), (8)
W(k + 1) =WkW(k), (9)

where Vk : RNn → RNn and Wk : Rn×Nn → Rn×Nn
represent mappings
Vkv :=

(
MT

k ⊗ In
)

diag (Γi)v, (10)

WkX :=
[
Γ1 · · · ΓN

]
diag

(
XT

i

)
diag

(
ΓT
i

)
(Mk ⊗ In) . (11)

Proposition 2: The element-wise dynamics of stochastic
state y(k) are dominated by linear operator Yk

y(k + 1) ≤ Yky(k). (12)
Proof: From (4), and applying the total probability and

the conditional expectation theorems combined with Markov
property, we have that
yj(k + 1) = E

[
x(k + 1)Tx(k + 1)1Zk+1=j

]
=

N∑
i=1

πij(k)E
[
x (k) ΓT

Zk
ΓZkx(k)

∣∣Zk = i
]

≤
N∑
i=1

πij(k)λmax

(
ΓT
i Γi
)
yi(k)

where λmax

(
ΓT
i Γi
)

denotes the largest eigenvalue of ΓT
i Γi.

Stacking these element-wise inequalities then gives

y(k + 1) ≤


∑N
i πi1(k)λmax

(
ΓT
i Γi
)
yi(k)

...∑N
i πiN (k)λmax

(
ΓT
i Γi
)
yi(k)


= MT

k diag
(
λmax

(
ΓT
i Γi
))

y(k)

= Yky(k), (13)
where the operator Yk : RN → RN is defined as

Ykx :=MT
k diag

(
λmax

(
ΓT
i Γi
))

x (14)

From Proposition 2, we have that

‖y(k + 1)‖2 =

N∑
j=1

yj(k + 1)2 ≤ ‖Yky(k)‖2 ,

which implies ‖y(k + 1)‖ ≤ ‖Yky(k)‖.
Now, let Ck : RNn2 → RNn2

and S : Rn×Nn → RNn2

denote operators defined as
CkX := (Mk ⊗ In2) diag (Γi ⊗ Γi)X,(15)

S
([
W1 · · · WN

])
:=

vec (W1)
...

vec (Wn)

 , (16)

where vec (·) is the operator that “stacks” columns of an
n×m matrix on a single column vector of dimension nm.

Proposition 3: [13] For every W in Rn×Nn,
S (WkW) = Ck (SW) ,

where operators S and Wk are defined in (16) and (11).

Proof: For any matrices P , Q and R of appropriate
dimensions, the Kronecker product satisfies

vec (PQR) =
(
RT ⊗ P

)
vec (Q) (17)

From (11) and (17), it follows that

S (WkW) =


vec
(∑N

i=1 πi1(k)ΓiWi(k)ΓT
i

)
...

vec
(∑N

i=1 πiN (k)ΓiWi(k)ΓT
i

)


=


∑N
i=1 πi1(k) (Γi ⊗ Γi) vec (Wi(k))

...∑N
i=1 πiN (k) (Γi ⊗ Γi) vec (Wi(k))


= (Mk ⊗ In2) diag (Γi ⊗ Γi)

vec (W1(k))
...

vec (WN (k))


= Ck (SW(k))

The following propostion implies that ‖Wk‖ equals ‖Ck‖.
Proposition 4: [13] S is a homeomorphism between

Rn×Nn and RNn2

. In particular, for any W in Rn×Nn,
‖WkW‖ = ‖S (WkW)‖ .

Applying linear dynamics (8) and (9) recursively yields
v(k) = V0,kZ0v (0) ,

W(k) =W0,kZ0W(0)ZT
0 .

In the above, given initial and final time instants k0 and kf ,
Vk0,kf := Vkf−1

Vkf−2
· · · Vk0 , (18)

Wk0,kf :=Wkf−1
Wkf−2

· · ·Wk0 , (19)
and Z0 : RNn → RNn is the operator that adjusts initial
conditions vi(0) and Wi(0) by the initial topology (discrete
mode) distribution, (z1, · · · , zN )

Z0v = (diag [zi]⊗ In)v.

Analogously, we define
Yk0,kf := Ykf−1Ykf−2 · · · Yk0 , (20)
Ck0,kf := Ckf−1Ckf−2 · · · Ck0 , (21)

such that
‖y(k)‖ ≤ ‖Yk0,ky(k0)‖ , (22)

S (W(k)) := Ck0,kS (W(k0)) . (23)
Since x(k) takes on only nonnegative values,

‖v(k)‖1 =

N∑
j=1

n∑
i=1

vij(k) =

N∑
j=1

n∑
i=1

E [xi(k)1Zk=j ]

=

N∑
j=1

E

[
n∑
i=1

xi(k)1Zk=j

]
=

n∑
i=1

xi(k)

= ‖x(k)‖1 (24)
where vij(k) denotes the i-th entry of vj(k). A useful norm
property also holds for y(k). Without loss of generality,
suppose Zk equals 1. Then

‖x(k)‖2 = y1(k) =
√

ΣNi=1yi(k)2 = ‖y(k)‖ . (25)
The following norm-related facts are also useful in deriv-

ing the main results in this paper.



Proposition 5: Given a nonzero vector x in Rn,∥∥xxT
∥∥ = ‖x‖2

Proof: Since xxT has rank one, exactly N -1 of its
eigenvalues are zero. Now, noting that

xxT =

x1

...
xN


x1

...
xN


T

=

 x2
1 · · · x1xN
...

. . .
...

x1xN · · · x2
N

 ,
if λ>0 and λi

(
xxT

)
denote the sole nonzero and the i-th

eigenvalues of xxT, then we have

λ>0 =

N∑
i=1

λi
(
xxT

)
= tr

(
xxT

)
= x2

1 + · · ·+ x2
N = ‖x‖2 .

Proposition 6: Given network states x(k) and W(k), as
in (3a) and (6), then for all nonnegative k∥∥x(k)x(k)T

∥∥ = ‖W(k)‖ .
Proof: Without loss of generality, suppose the network

is in mode 1, i.e., Zk = 1. It follows that
‖W(k)‖ = sup

‖z‖=1

‖W(k)z‖

= sup
‖z‖=1

∥∥[x(k)x(k)T 0 · · · 0
]
z
∥∥

= sup
‖z‖=1

∥∥x(k)x(k)Tz
∥∥ =

∥∥x(k)x(k)T
∥∥ .

Remark 1: Results in this section aim at representing
some moment dynamics of (3) as deterministic linear sys-
tems, a common procedure in MJLS literature [17], [15],
[21], [20]. Such description is amenable to several notions
of stochastic stability, and sets the stage for the main contri-
butions of this paper, presented in the next two sections.

III. FINITE-TIME STABILITY OF SWITCHING NETWORKS

Definition 1: Inclusion and exclusion probabilities. [18]
Consider the discrete-time stochastic system

x(k + 1) = f (x(k), Zk) , (26)
where x(k) ∈ Rn is the state vector, {Zk}k∈N is a stochastic
process, and f : Rn×T→ Rn is a vector function describing
the dynamics of the system. The associated inclusion and
exclusion probabilities with respect to (α, β, k0, kf , ‖·‖) are

Pin (x(k)|α, β, k0, kf , ‖·‖) := P (Ωin) ,

Pex (x(k)|α, β, k0, kf , ‖·‖) := P (Ωex) ,

where
Ωin := {ξ ∈ Ω : ‖x(k)‖ ≤ β, k0 < k ≤ kf , ‖x(k0)‖ ≤ α} ,
Ωex := {ξ ∈ Ω : ‖x(k)‖ > β, k0 < k ≤ kf , ‖x(k0)‖ ≤ α} .

Definition 2: Finite-time stochastic stability. [18] The
stochastic discrete-time system described by (26) is said
to be finite-time stochastic stable (FTSS) with respect to
(α, β, k0, kf , λ, ‖·‖) if

Pin (x(k)|α, β, k0, kf , ‖·‖) ≥ 1− λ.
Remark 2: Definition 1 implies P (Ωin) ≥ 1 − λ and

P (Ωex) < λ are equivalent.
Theorem 1: Suppose α > 0 and β > 0, and let λ ∈ (0, 1),

and k0, kf be nonnegative integers such that

‖x(k0)‖1 ≤ α, and sup
k0<k≤kf

‖Vk0,k‖1 <
β

α
λ,

where Vk0,k is given by (18). The switched system (3) is
FTSS with respect to (α, β, k0, kf , λ, ‖·‖1).

Proof: Let k0 and kf be nonnegative integers such that
k0 < kf , and let α > 0 be such that ‖x(k0)‖1 ≤ α. Also,
let β > 0 and λ > 0, with λ in (0, 1). Markov’s Inequality
and (24) imply

Pex = P

({
ξ ∈ Ω

∣∣∣∣∣ sup
k0<k≤kf

‖x(k)‖1 > β, ‖x(k0)‖1 ≤ α

})

≤ 1

β
E

[
sup

k0<k≤kf

‖x(k)‖1

∣∣∣∣∣ ‖x(k0)‖1 ≤ α

]

=
1

β
sup

k0<k≤kf

E

[
n∑

i=1

xi(k)

∣∣∣∣∣ ‖x(k0)‖1 ≤ α

]
≤ α

β
sup

k0<k≤kf

‖Vk0,k‖1 .

Therefore, if

sup
k0<k≤kf

‖Vk0,k‖1 <
β

α
λ,

then Pex (x(k) |α, β, k0, kf , ‖·‖1 ) < λ, and the system (3)
is FTSS with respect to (α, β, k0, kf , λ, ‖·‖1).

Theorem 2: Let α > 0 and β > 0, λ ∈ (0, 1), and assume
k0, kf nonnegative integers such that

‖x(k0)‖ ≤ α, and sup
k0<k≤kf

‖Ck0,k‖ <
(
β

α

)2

λ,

with Ck0,k given by (21). The switching system (3) is FTSS
with respect to (α, β, k0, kf , λ, ‖·‖).

Proof: Suppose α > ‖x(k0)‖, and let β > 0, λ ∈ (0, 1).
First, note that because ‖·‖, α and β are nonnegative,
‖x(k0)‖ ≤ α, ‖x(k)‖ < β ⇐⇒ ‖x(k0)‖2 ≤ α2, ‖x(k)‖2 < β2.

To conclude the proof, we can use similar arguments to those
involved in proving Theorem 1, plus Propositions 5 and 6 to
replace ‖W(k)‖ for ‖x(k)‖2.

Corollary 1: Suppose α ≥ ‖x(k0)‖, and assume β > 0,
λ ∈ λ in (0, 1). Also, assume k0 > 0 and kf > 0 such that

sup
k0<k≤kf

k∏
j=k0

‖Cj‖ <
(
β

α

)2

λ.

with Ck0,k given by (21). The switching system (3) is FTSS
with respect to (α, β, k0, kf , λ, ‖·‖).

Proof: Suppose α ≥ ‖x (k0)‖, and consider k0, kf
nonnegative integers such that k0 < kf . For k > k0,
Proposition 4 and (11) imply

‖Wk0,kW(k0)‖ = ‖Wk−1Wk−2 · · ·Wk0W(k0)‖

≤ ‖W(k0)‖
k−1∏
j=k0

‖Cj‖ .

Hence, if supk0<k≤kf
∏k
j=k0

‖Cj‖ < β2α−2, then

sup
k0<k≤kf

‖Wk0,k‖ <
(
β

α

)2

λ.

Therefore, from Theorem 2, the switching system (3) is FTSS
with respect to (α, β, k0, kf , λ, ‖·‖).

Theorem 3: Let α, β, and λ be positive real numbers, with



λ in (0, 1). Let k0 and kf be nonnegative integers such that

‖x(k0)‖ ≤ α, and sup
k0<k≤kf

‖Yk0,k‖ <
(
β

α

)2

λ,

with Yk0,k given by (20). Then, the switching system (3) is
FTSS with respect to (α, β, k0, kf , λ, ‖·‖).

Proof: The statement can be proved following simi-
lar steps previously used: bounding P (Ωex) via Markov’s
Inequality, exploring a norm identity—(25) in this case—
and recursively applying the linearly-dominated dynamics of
stochastic state, y(k), through Proposition 2.

Remark 3: Theorems 2 and 3 are not a restatement of
Theorem 1 using the 2-norm. The different operators that
naturally appear in each of the proofs stress that the results
concern fundamentally different characteristics, namely, state
volatility and aggregate state. Although norm equivalence
could be used to write all statements using the same operator,
not only the norm equivalence constants would introduce
conservatism, but the statement itself would be artificial.

Remark 4: Theorems 1 to 3 show network topologies have
a clear impact on system stability because, along with the
Markov chain, they determine linear operators (10), (11), and
(14). There is a much broader class of systems (including
non-networked ones) for which our results are valid, but
we explicitly adopted this general setting because the real-
world networks we are interested in do not adhere to special
topologies, such as ring or star, as empirical evidence shows
[17]. Instead, focus is on networks previously ignored by
the literature, i.e., networks with time-varying and unstable
topologies.

IV. RELATIONSHIP BETWEEN FTSS AND ASYMPTOTIC
STABILITY

In this section, we explore the relationship between finite-
time stability and a classical notion of asymptotic stability:
mean stability.

Definition 3: Mean Stability. The networked system
described by (3) is said to be mean stable (MS) if the
expected value of its state converges in norm to zero, that is,

lim
k→∞

E [‖x(k)‖] = 0, (27)

for any initial conditions x(0) and Z0.
Definition 4: Exponential Mean Stability. The net-

worked system described by (3) is said to be exponentially
mean stable (EMS) if there exist positive real numbers c and
r, where r belongs to (0, 1), such that

E [‖x(k)‖] < crk ‖x(0)‖ , (28)
for any initial conditions x(0) and Z0.

An immediate consequence of the above definitions is
that EMS implies MS (but not vice-versa), since in addition
to convergence, the former also guarantees an exponential
decay rate.

Theorem 4: Let k0 and kf be nonnegative integers, and
assume α ≥ ‖x(k0)‖. If MJLS (3) is mean stable, then there
exist β and λ such that (3) is also FTSS with respect to
(α, β, k0, kf , λ, ‖·‖).

Proof: Suppose the networked system described by (3)
is MS, i.e.,

lim
k→∞

E [‖x(k)‖] = 0. (29)

Then, given ε > 0, there exists an integer kε such that
E [‖x(k)‖] < ε,∀k > kε.

Indeed, suppose E [‖x (k)‖] is unbounded. Then, for every
L > 0, there exists some integer kL such that E [‖x(kL)‖] >
L. Put
εmax = max

0≤k≤kε
{E [‖x(k)‖]} , L = max {ε, εmax}+ 1,

with an associated kL. Since L is greater than εmax, kL
must be greater than kε. Hence, there exists some kL > kε
such that E [‖x(kL)‖] > ε, which contradicts (29). Now,
suppose ‖x(0)‖ ≤ α, and since E [‖x (k)‖] is bounded, let
γ (α, k0, kf , ‖·‖) be such that

sup
k0<k≤kf

E [‖x(k)‖] < γ(α, k0, kf , ‖·‖).

Markov’s Inequality yields

P (Ωex) <
γ(α, k0, kf , ‖·‖)

β
.

Therefore, by picking β, λ such that βλ > γ(α, k0, kf , ‖·‖),
(3) is FTSS with respect to (α, β, k0, kf , λ, ‖·‖).

Theorem 5: Let α > 0, β > 0 and assume λ ∈ (0, 1),
such that α < βλ. If switching system (3) is MS, then there
exists k0 for which ‖x(k0)‖ ≤ α, and such that for any
kf greater than k0, the networked system (3) is FTSS with
respect to (α, β, k0, kf , λ, ‖·‖).

Proof: Assume (3) is MS. Then, there is k0 such that
E [‖x(k)‖] ≤ α for every k ≥ k0, and Markov’s Inequality
implies

P (Ωex) ≤ 1

β
sup

k0<k<∞
E [‖x(k)‖] < β−1α.

Assuming α, β and λ are such that α < βλ, by definition
(3) is FTSS with respect to (α, β, k0, kf , λ, ‖·‖).

A. Periodic Markovian transitions

Finite-time stochastic stability and mean stability are in-
dependent notions, so in general one does not imply the
other. Nevertheless, sufficient conditions to establish both
FTSS and MS can be obtained by restricting the choice of
time-varying Markov transition matrices, Mk. In particular,
consider periodic Markovian transition matrices (with period
K):

Mk+K =Mk,∀k ∈ N. (30)
Lemma 1: Consider positive real numbers α, β, λ, and

nonnegative integers k0, kf such that hypotheses from The-
orem 3 are satisfied. In addition, assume Mk periodic with
period K, kf ≥ k0+K, and

(
βα−1

)2
λ < 1. Then, switching

system (3) is both FTSS with respect to (α, β, k0, kf , λ, ‖·‖)
and EMS.

Proof: Let α, β, λ be positive real numbers, and let
k0, kf ≥ k0 +K be nonnegative integers such that

‖x(k0)‖ ≤ α, sup
k0<k≤kf

‖Yk0,k‖ <
(
βα−1

)2
λ < 1.

Under these assumptions, Theorem 3 guarantees (3) is
FTSS with respect to (α, β, k0, kf , λ, ‖·‖). It remains to



prove it’s also EMS.
Consider a nonnegative integer k > k0. From (22), it

follows that
‖y(k)‖ ≤ ‖Y0,k‖ ‖y(0)‖

≤ ‖Y0,k0‖ ‖Yk0,k0+K‖ · · · ‖Yk0+nK,k‖ ‖y(0)‖

<

[(
βα−1

√
λ
)2n+1

k

]k
‖Y0,k0‖ ‖y(0)‖ .

Because ‖Y0,k0‖ is constant and, by hypothesis,(
βα−1

)2
λ < 1, the (3) is both FTSS with respect to

(α, β, k0, kf , λ, ‖·‖) and EMS.
The assumption the Markov chains are periodic enables

us to reconcile the notions of FTSS and EMS, but satisfying
both conditions requires an excessively conservative crite-
rion that compromise the advantages of considering each
notion separately. From the FTSS point of view, limiting
the “amplification-probability” product (βα−1)2λ to unity
imposes a severe constraint on the spectral radius of oper-
ators Yk0,k. On the other hand, considering the supremum
over all time window [k0, kf ] is unnecessarily restrictive for
EMS, since ‖Yk0,k0+K‖ being unity-bounded is sufficient to
prove exponential decay.

V. NUMERICAL EXAMPLES

Theorems 1 to 3 look fairly similar, making it difficult
to compare, offhand, their performance and computational
properties. The following numerical examples highlight the
differences between the criteria, and show how they provide
insight on how airport flight delays propagate.

A. Stable/unstable mode networks

Consider a simple network consisting of two nodes whose
topology alternates between two randomly generated modes:

Γ1 =

[
0.55 0.24
0.28 1.02

]
, Γ2 =

[
0.37 0.05
0.33 0.42

]
,

the first of which is unstable (‖Γ1‖ = 1.13), whereas the sec-
ond is stable (‖Γ2‖ = 0.61). To assess finite-time stability of
this system, we compute the evolution of ‖V0,k‖1 and ‖Y0,k‖
for k ranging from 1 to 24 when the Markov transitions are
time-varying, taking different randomly generated values at
each time-step.

As depicted in Figure 1, switching between the two
modes prevents one operator norm from bounding the other.
The switches also preclude operator norm monotonicity:
the stable mode eventually dominates the dynamics, driving
‖V0,k‖1 and ‖Y0,k‖ to zero, but each peaks at different time
steps. Figure 1 also shows that as the stable mode prevails,
‖Y0,k‖ consistently produces smaller values than ‖V0,k‖1
does. To see if there is numerical evidence that supports this
trend, consider another randomly generated network

Γ1 =

[
0.19 1.05
0.27 0.73

]
, Γ2 =

[
0.32 0.11
0.03 0.39

]
,

again consisting in an unstable mode (‖Γ1‖ = 1.32), and a
stable one (‖Γ2‖ = 0.44).

Figure 2 shows ‖V0,k‖1 has a lower initial value, but
then exceeds the maximum value of ‖Y0,k‖, which then
upper bounds ‖V0,k‖1 for the rest of the series. Therefore,
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under different conditions Theorem 1 may be more or less
conservative than Theorem 3, because amplification ratios
(or the amplification-probability product) are different for
each theorem: βα−1 and

(
βα−1

)2
, respectively. In the first

example, Theorem 1 is less conservative than Theorem 3;
the amplification ratio must be greater than 0.923 for the
former, as opposed to 0.998 for the latter. On the other
hand, Theorem 1 is more conservative in the second case; a
minimum amplification ratio of 1.246 is required, compared
with 1.110 for Theorem 3. Similar remarks apply replacing
Theorem 3 with Theorem 2, for which reason we omit
numerical examples.
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B. Large-scale, air traffic delay network example

To compare computational properties and performance of
conditions from theorems 1-3, we consider a networked
system that models the propagation of air traffic delays at the
thirty largest airports in the US. The associated topologies,



modes and Markov transition matrices were identified in
[17], [8] using data provided by the Bureau of Transportation
Statistics from the years 2011-2012. We ignore resets in con-
tinuous state that can occur during discrete mode transitions
[17].

Several factors impact the operations of these airports, pro-
ducing various dynamics throughout the day [17], described
by six delay modes. Each mode is then divided according
to whether delays are decreasing or increasing, resulting in
twelve discrete modes, each representing a network topology.
In short, the air traffic delay network can be modeled by an
MJLS, and the model parameters learned from operational
data is [17]:

x (k + 1) = ΓZkx (k) (31)
P (Zk+1 = j|Zk = i) = πij (k) , (32)

where x(k) is a vector in R60, representing inbound and
outbound delays, ΓZk is a matrix in R60×60 that denotes
the network topology, and Zk is the random variable taking
values on {1, · · · , 12} that determines the current network
topology.
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Air traffic delays typically increase in the morning hours,
when weather and congestion impacts can result in the net-
work switching to unstable modes, build up over the course
of the day, reaching peak values late in the evening, until
the volume of flights decreases, and airports start absorbing
accumulated delays.

This behavior is illustrated by Figure 3, which shows the
numerical values of the conditions from Theorems 1 and
3, considering model (31)-(32). Both supk0<k≤kf ‖Vk0,k‖1
and supk0<k≤kf ‖Yk0,k‖ rise until 6PM and 7PM Eastern
Time, respectively, when the values start decreasing. The
peak value obtained via Theorem 1 is approximately 11.7,
whereas Theorem 3 saturates at 33.7.

Despite the significantly smaller (by a factor of three)
upper bound obtained using Theorem 1, in reality, Theorem 3
is less conservative. Since both upper bounds depend linearly

on λ, the quadratic amplification factor makes is favorable to
the stability criteria determined by Theorem 3. For example,
for λ = 0.5, βα−1 must be greater than 23.4 for system
(31)-(32) to be FTSS according to Theorem 1, whereas
βα−1 greater than 8.22 is sufficient to guarantee FTSS using
Theorem 3.

Results concerning Theorem 2 were again omitted, but
for a different reason. The derivation of Theorem 2 benefits
from the linear dynamics of state W(k), in contrast with
y(k), which is only upper bounded by linear dynamics. Thus,
Theorem 2 is less conservative. The associated computational
effort, however, is substantially higher. In the last example,
calculations with Theorem 3 manipulate 12-by-12 matrices
and require determining the spectral radius of twelve 60-
by-60 matrices, which needs to be done only once, whereas
Theorem 2 requires dealing with 43200-by-43200 matrices.
Thus, even for moderate-sized networks, conditions from
Theorem 2 become untractable.

VI. FINAL REMARKS

The notion of finite-time stochastic stability enables the
amplification of an initial state in a limited amount of time
to be seamlessly combined with uncertainty in dynamics,
when analyzing Markov Jump Linear Systems. Motivated
by this observation, we presented sufficient FTSS conditions
that are well-suited for assessing the volatility of networked
systems that randomly switch between different topologies.
By relaxing some of the assumptions made in prior literature
(e.g., considering stable networks, unweighted/undirected
networks, and fixed topologies), we generalized the class of
networks that can be considered. We determined an approach
to estimate how much initial conditions can be amplified, and
also the probability with which this can occur. Connections
between finite-time and asymptotic stability were derived,
and we presented conditions under which mean stability
or exponential mean stability implies finite-time stochastic
stability, and criteria that simultaneously guarantee both
forms of stability.
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