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Abstract— In this paper, we develop a distributed identity
management algorithm for multiple targets in sensor networks.
Each sensor is assumed to have the capability of managing
identities of multiple targets within its surveillance region
and of communicating with its neighboring sensors. We use
the algorithm from our companion paper [1] to incorporate
local information about the identity of a target when it is
available to a local sensor and at the same time reduces the
uncertainty of the target’s identity as measured by entropy.
Identity information fusion is crucial for distributed identity
management to compute the global information of the system
from information provided by local sensors. We formulate
this problem as an optimization problem and present three
different cost functions, namely, Shannon information, Cher-
noff information, and the sum of Kullback-Leibler distances,
which represent different performance criteria. Using Bayesian
analysis, we derive a data fusion algorithm that needsa prior
probability of the given data. Finally, we demonstrate the
performance of the distributed identity management algorithm
using scenarios from multiple-aircraft tracking in a sensor
(radar) network with different fusion criteria.

I. I NTRODUCTION

The last few decades have seen many advances in wire-
less communication techniques and in sensor technology.
These advances, combined with growing interest in both
military and civilian applications in using distributed sen-
sors, have led to the concept of a sensor network. These
applications include battlefield surveillance and enemy
tracking in military applications, and habitat monitoring,
environment observation, and traffic surveillance in civilian
applications ([2], [3] and references therein). A sensor
network is a network of sensor nodes which have local
sensing, processing, and communication capabilities. Many
applications of sensor networks, such as target tracking and
habitat monitoring using only local information (i.e., infor-
mation obtained by each sensor), have a unique problem that
does not arise in a centralized network: scalable distributed
information fusion. This implies that the global states of
the system must be estimated and maintained using only
local information available to local sensors. In this paper, we
present a Distributed Multiple-Target Identity Management
(DMIM) algorithm which can estimate the identities of
multiple maneuvering targets in sensor networks.

For DMIM in sensor networks, information about the
identity of a target may become available to a local sensor,
and thus we need methods which can incorporate this new

information to reduce the uncertainty of the system. For
the case in which the number of targets is constant, the
Sinkhorn algorithm [4] is used in [5], [6], [7]. However,
in distributed sensor networks, the number of targets in the
surveillance region of each sensor may change over time
and the Sinkhorn algorithm may not converge for this case.
In [1], we have developed an algorithm which can solve
this problem in polynomial time and in this paper, we use
this algorithm for local information incorporation. A crucial
part of the DMIM algorithm is distributed information
fusion. In distributed sensor networks, identity information
of multiple targets is maintained by individual sensors
and each sensor can manage only identities of the targets
within its surveillance region. Thus, each sensor has only a
knowledge about its neighborhood, not the global picture of
the whole system. To get the global information from infor-
mation maintained by individual local sensors, we need an
information fusion algorithm. To fully exploit the capability
of sensor networks, this algorithm should bescalable, i.e.,
adding/deleting sensors or targets into a sensor network can
be handled efficiently, anddistributed, i.e., the algorithm
can be implemented in individual sensors. We formulate the
information fusion problem as an optimization problem and
propose three different cost functions: Shannon information,
Chernoff information, and the sum of Kullback-Leibler
distances to represent different performance criteria. Using
Bayesian analysis, we also derive an information fusion
algorithm that needsa prior probability of the given data.
Finally, we apply the DMIM algorithm to multiple-aircraft
tracking problems in sensor networks and demonstrate the
performance of the proposed information fusion algorithms
under different scenarios.

This paper is organized as follows: In Section II, the
Distributed Multiple-Target Identity Management (DMIM)
algorithm including local information incorporation and
belief information fusion is presented. Section III presents
applications of the DMIM algorithm to multiple-aircraft
tracking in sensor networks. Finally, our conclusions are
presented in Section IV.

II. D ISTRIBUTED MULTIPLE-TARGET IDENTITY

MANAGEMENT (DMIM)

In this section, we consider the problem of managing
identities of multiple targets in sensor networks. Each sensor



is assumed to have its own surveillance region, and to
communicate with its neighboring sensors. A two-sensor
example is shown in Figure 1 in which the circles represent
the surveillance regions of the sensors. We assume that
each sensor has the capability to compute the position
estimates and manage the identity of targets within its
surveillance region. For distributed identity management,
we have to consider the possibility that the number of
targets within the surveillance region of a sensor could
change over time. For example, a target might leave or
enter the surveillance region of a sensor. Another important
problem that has to be addressed is scalable and distributed
information fusion to get the global estimate of the system
from information computed by individual local sensors.
These problems are unique for distributed sensor network
applications. Therefore, we propose a scalable Distributed
Multiple-Target Identity Management (DMIM) algorithm
that can manage multiple-target identities efficiently in a
distributed sensor network environment. The structure of
DMIM is shown in Figure 2: let us start with the identity
management algorithm.
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Fig. 1. A distributed multiple-target identity management scenario for a
two-sensor network.
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Fig. 2. The structure of the Distributed Multiple-Target Identity Manage-
ment (DMIM) algorithm for a two-sensor example.

A. Data Association

Suppose there areT targets andT identities, for example,
T aircraft with idenitites{piper, cherokee, cessna,· · · },
in the surveillance region of sensori. Then, the problem
of managing identities of multiple targets is to match each

target to its identity over time. For this, we use the idea
of the Identity-Mass-Flow in [5]. The idea of the Identity-
Mass-Flow is that an identity is treated as a unit mass
assigned to a target. These masses cannot be destroyed
or created, and flow from a target into another through
the mixing matrix, M(k) at time k. The mixing matrix
is an T × T matrix whose elementMij(k) represents the
probability that targeti at timek − 1 has become targetj
at time k. Thus, the mixing matrix is a doubly stochastic
matrix; that is, its column sums and row sums are equal to
1. The output of theData Associationblock is the mixing
matrix.

B. Belief Matrix Update

We use abelief vector to represent the identity of a
target probabilistically. For multiple targets, we have abelief
matrixB(k) whose columns are belief vectors of the targets.
Thus, entryBij(k) represents the probability that targetj
can be identified as label (or name)i at timek. The Belief
Matrix Updateblock maintains identity information stored
in a T × T belief matrixB(k) over time. The evolution of
this belief matrix is governed by the equation [5]:

B(k) = B(k − 1)M(k) (1)

We can show that (1) keeps row and column sums of the
belief matrix constant when the numbers of targets and
identities are the same. However, this is not the case for
distributed identity management since the number of the
targets within the surveillance region of individual sensors
may change over time. There are two possible cases: a
target leaves or enters the surveillance region of a sensor.
When a target leaves, we delete the corresponding column
in the belief matrix managed by the sensor. When a target
enters the surveillance region of a sensor, there are two
possible cases: (i) the target comes from the surveillance
region of another sensor, which may be queried, or (ii) the
target comes from the outside of the surveillance region of
a sensor network. For these cases, we propose a scalable,
event-driven, query-based belief matrix update algorithm:

Algorithm 1: Event-driven, query-based Belief Matrix
Update
• For sensori and targett
if targett leaves the surveillance region of sensori. then

delete the corresponding column in the belief matrix.
end if
if a target enters the surveillance region of sensori. then

send a query about the identity of targett.
if there is an answer “yes” and receive the belief vector
of targett, then

augment the belief matrix with the belief vector
received.

else
augment the belief matrix with a belief vector with
a new identity assigned to the target.

end if
end if



For distributed identity management, a belief matrix
managed by each sensor may not be a square matrix but
might more likely be a skinny matrix which has more
rows than columns. The belief matrix may not be a doubly
stochastic matrix, but it should be a stochastic matrix with
column sums equal to one. Its row sums remain constant
because an identity mass cannot be destroyed or created. It
also has the property that the sum of column sums is equal
to the sum of row sums; that is, even though the number
of targets in the surveillance region of each sensor changes,
the identity mass is conserved in the surveillance region.
Since the evolution of the belief matrix is governed by (1),
these characteristics of the belief matrix are preserved over
time.

C. Local Information Incorporation

In this section, we consider the case in whichlocal
information about the identity of a target is available to a
local sensor. The local information has the form of a belief
vector and when available, we use the local information to
decrease the uncertainty of the belief matrix measured by
entropy. The entropy of aL × T belief matrix is defined
asH(B(k)) , −∑L

i=1

∑T
j=1 Bij(k) log Bij(k). Then, the

problem is how to incorporate this information to the belief
matrix. From the idea of the Identity-Mass-Flow and the
characteristics of (1), we know that the belief matrix should
have the following properties: its column sums are equal to
one, its row sums remain constant, and the sum of row
sums and the sum of column sums are equal. However,
if we replace the column in the belief matrix with the
local information, it is not guaranteed that the new belief
matrix has the above properties. Thus, we have developed
a polynomial-time algorithm that can check whether the
available local information can be incorporated (i.e., the
new belief matrix isalmostscalable) and if so, can make
the new belief matrix have the above properties. We refer
the reader to our companion paper [1] for the details. The
local information incorporated may not necessarily decrease
the uncertainty (entropy) of the belief matrix. Therefore,
local information is incorporated only when it reduces
the uncertainty of the belief matrix. The local information
incorporation algorithm can be described as follows:

Algorithm 2: Local Information Incorporation

• Given: local information (belief vector) of a target and
a belief matrixB(k).

• Make a matrixB′(k) by replacing the column corre-
sponding to the target inB(k) with the local informa-
tion.

if B′(k) is almost scalablethen
Bnew(k) := S(B′(k))
if H(Bnew(k)) ≤ H(B(k)) then

B(k) := Bnew(k)
else

B(k) := B(k)
end if

else

B(k) := B(k)
end if

where is the operatorS represents the matrix scaling process
in [1].

D. Belief Information Fusion

In this section, we consider the problem of combining
two belief vectors of the same target from two differ-
ent sensors. Information fusion can be formulated as an
optimization problem such that the fused information is
the one that minimizes a cost function which represents a
performance criterion. For optimization, we propose three
different cost functions: Shannon information, Chernoff
information, and the sum of Kullback-Leibler distances.

Shannon information: The Shannon information is de-
fined as

H(b′) =
n∑

i=1

−b′(i) log b′(i) (2)

where b′ ∈ [0, 1]n with
∑

i b′(i) = 1. The Shannon
information (also known asentropy) is a measure of the
uncertainty of a system. Thus, the minimization of the
Shannon information selects a belief vector that is most
informative in the sense of minimum entropy. Supposeb1

and b2 are belief vectors of targett computed by sensor
1 and sensor 2 respectively. Since the most common data
fusion algorithms compute alinear combinationof two data,
we propose the following fusion strategy:

b′ = ωb1 + (1− ω)b2 (3)

where ω ∈ [0, 1], bi ∈ [0, 1]n with
∑n

j=1 bi(j) = 1 for
i ∈ {1, 2}, and

∑n
j=1 b′(j) = 1. Then, the problem of

computing the fused belief vector becomes a problem to
find a weight,ω, which minimizes the cost function in (2).
If we use the fusion strategy in (3), the Shannon information
of the new fused information is

H(b′) = H(ωb1+(1−ω)b2) ≥ ωH(b1)+(1−ω)H(b2) (4)

From (4), we can see that the minimum is always achieved
at either ω = 0 or ω = 1. This means that a fused
belief vector that has the minimum Shannon information
is either of the two given belief vectors, which is ahard
choice. For some applications such as identity management
in this paper, the hard choice may not be desirable since it
ignores one possibility completely and thus might quickly
lead to a wrong answer over time if not immediately. Thus,
we propose asoft choice method which hasω ∈ (0, 1)
for almost all cases. Motivated by the fact that Shannon
information minimization chooses a belief vector which has
the minimum entropy, we propose to use the inverse of the
Shannon information of a belief vector as a weight. Thus,
we put large confidence on a belief vector which has small
Shannon information. Then, a new belief vectorb′ = [b′(i)]
is

b′(i) =
H(b1)−1b1(i)

H(b1)−1 + H(b2)−1
+

H(b2)−1b2(i)
H(b1)−1 + H(b2)−1

(5)



From (3) and (5), we get

ω =
H(b1)−1

H(b1)−1 + H(b2)−1
=

H(b2)
H(b1) + H(b2)

(6)

When H(b1) = H(b2) = 0, we set ω = 1
2 . ω = 0

if H(b2) = 0 (no uncertainty inb2) and ω = 1 when
H(b1) = 0 (no uncertainty inb1). In these cases, the fused
belief vector computed by the proposed fusion algorithm
is a belief vector which has no uncertainty. This fusion
algorithm is a soft choice method since the fused data is
a convex combination of the two given data with a larger
weight on the data which has smaller entropy than the other.
From (4) and (6), the Shannon information of the new belief
H(b′) has the property that:

H(b′) ≥ 2H(b1)H(b1)
H(b1) + H(b2)

or 2H(b′)−1 ≤ H(b1)−1+H(b2)−1

(7)
Inequality (7) tells us that the achievable minimum uncer-
tainty of the fused belief vector with the fusion strategy in
(3) with (6) as a weight is under-bounded by uncertainties
of the given information. In other words, the maximum
achievable certainty (inverse of the Shannon information)
is upper-bounded by the arithmetic mean of the inverse of
the Shannon information of the given belief vectors. If we
use the fusion strategy in (3), we can also derive the upper
bound of the Shannon information of the new belief vector:

H(b′) ≤ ω2H(b1) + (1− ω)2H(b2) + ω(1− ω)(H(b1)
+H(b2) + D(b1 ‖ b2) + D(b2 ‖ b1))

(8)
whereD(p ‖ q) ,

∑
i p(i) log(p(i)

q(i) ) is the Kullback-Leibler
distance [8]. If we useω in (6), then

H(b′) ≤ 2H(b1)H(b1)

H(b1) + H(b2)
+

H(b1)H(b2)[D(b1 ‖ b2) + D(b2 ‖ b1)]

(H(b1) + H(b2))2
(9)

Thus, we can analytically compute the upper and lower
bounds of the Shannon information of the new belief vector
using the fusion strategy in (3) with (6). Thus, the Shannon
information cost function would be useful when we have
good knowledge about the performance and/or fidelity of
each sensor, since we can get a solution which has lower
entropy by weighing information that has smaller entropy
more than the other. However, if we do not have such knowl-
edge, we may get a biased solution by consistently putting
more confidence on one piece of information (possibly the
wrong one) than the other.

Chernoff information: The Chernoff information is de-
fined as

C(b1, b2) = − min
0≤ω≤1

log(
n∑

i=1

b1(i)ωb2(i)1−ω) (10)

If ω∗ minimizes (10), the new belief vectorb′ (= [b′(i)] for
i = {1, 2, · · · , n}) is

b′(i) =
b1(i)ω∗b2(i)1−ω∗

∑n
j=1 b1(j)ω∗b2(j)1−ω∗ (11)

The new belief vector in (11) satisfies ([8], [9])

D(b′ ‖ b1) = D(b′ ‖ b2) (12)

This fusion strategy is different from that in (3) which
is a convex combination of the two data. From (12), the
minimization of the Chernoff information is equivalent
to finding a function that is in themiddle of the two
original functions, where the middle is defined in terms
of the Kullback-Leibler distance. In other words, Chernoff
information minimization could be interpreted as selecting a
probability vector which is “equally close” in terms of the
Kullback-Leibler distance to the original probability vec-
tors. This fusion algorithm does not put more confidence on
one than the other. Thus, this cost function could be useful
when we do not know the quality of information obtained
from individual sensors; by choosing the middle point of
the two pieces of information, we could minimize the bias
over time. However, the fused belief vector computed by
the Chernoff information minimization algorithm may have
larger entropy than that computed by the algorithm in (3)
with (6).

Sum of the Kullback-Leibler distances: Since the
Kullback-Leibler distance is not symmetric, we consider
two possible optimization problems:

minimize D(b′ ‖ b1) + D(b′ ‖ b2)
subject to

∑n
j=1 b′(j) = 1

b′(j) ≥ 0
(13)

minimize D(b1 ‖ b′) + D(b2 ‖ b′)
subject to

∑n
j=1 b′(j) = 1

b′(j) ≥ 0
(14)

where b′(j) is the jth element of a vectorb′. Let us first
consider the optimization problem in (13). The Lagrangian
is given by

L(b′, λ) = D(b′ ‖ b1)+D(b′ ‖ b2)+λ(
n∑

j=1

b′(j)−1) (15)

To get an optimal solution, we set the derivatives ofL with
respect tob′(i) and toλ to be equal to zero. Then, we get
a new belief vector:

b′(i) =

√
b1(i)b2(i)∑n

j=1

√
b1(j)b2(j)

(16)

From (16), we see that the fused data is a geometric mean
of the given data. The fused data is the same as that in (11)
for Chernoff information minimization whenω∗ = 1

2 . Thus,
this data fusion strategy can be interpreted as a special case
of the Chernoff information minimization method.

Now, let us consider the optimization problem in (14).
The Lagrangian is given by

L(b′, λ) = D(b1 ‖ b′)+D(b2 ‖ b′)+λ(
n∑

j=1

b′(j)−1) (17)

Similarly, we get an optimal solution:

b′(i) =
b1(i) + b2(i)∑n

j=1[b1(j) + b2(j)]
=

b1(i) + b2(i)
2

(18)

In this case, the fused data is the arithmetic mean of the
given data. This fusion strategy is the same as that in (3)



whenω = 1
2 . Thus, from (4) and (8), we get the lower and

upper bounds of Shannon information of the new belief
vector:

H(b′) ≥ H(b1)+H(b2)
2

H(b′) ≤ H(b1)+H(b2)
2 + D(b1‖b2)+D(b2‖b1)

4

(19)

Therefore, the fusion algorithms obtained by solving the
optimization problems in (13) or (14) are to average the
given data either geometrically or arithmetically. This is
similar to Chernoff information minimization and thus these
fusion strategies would be useful when we want to get
unbiased fused data in situations where we do not have good
a prior information about a system. An example would
be a case in which information from one sensor is wrong
due to failure of the sensor or the malicious intent of the
sensor that is unknowna priori. These information fusion
strategies would be robust to this wrong information since
they do not put more confidence on one (possibly incorrect
information) than the other, but average them to compute a
fused belief vector.

Bayesian approach: In this section, we derive a fused
belief vector using a Bayesian approach. Suppose the
target’s identityθ ∈ {1, 2, · · · , N} and without loss of
generality, suppose there are two sensors. Denote events
X1 and X2 to be observations at sensor 1 and sensor
2 respectively. We are assumed to be given information
b1(θ) , P (θ|X1) from sensor 1 andb2(θ) , P (θ|X1) from
sensor 2 whereP (·|·) is a conditional probability. Then,
the problem of information fusion is to find thea poste-
riori probability P (θ|X1, X2). We assumeP (X1, X2|θ) =
P (X1|θ)P (X2|θ) since given the identity of a target, the
events that it is observed by sensor 1 or sensor 2 are
independent in distributed identity management. Using the
Bayes rule, we get

P (θ|X1, X2) =
P (X1|θ)P (X2|θ)P (θ)

P (X1, X2)
(20)

SinceP (θ|Xi) = P (Xi|θ)P (θ)
P (Xi)

for i ∈ {1, 2}, we obtain

P (θ|X1, X2) =
b1(θ)b2(θ)

P (θ)
P (X1)P (X2)
P (X1, X2)

(21)

Therefore, a fused belief vector is

b′(θ̂) = arg max
θ

P (θ|X1, X2) =
b1(θ)b2(θ)

P (θ)
· 1
c

(22)

wherec is a normalization constant. This is an interesting
result because the fused data does depend only on the
given data (b1(θ), b2(θ)) and thea priori probabilityP (θ).
Thus, if we knewa priori information, we could compute
the a posterioriprobability (i.e., the fused data). However,
since we may not know thea priori probability for some
applications such as distributed identity management in this
paper, we cannot compute the fused data from (22). In
order to compute the fused data for this case, we have to
assumeP (θ) either from the characteristics of the systems
or from that of applications. For example, due to the lack of

information about the system, we assume that thea priori
probability is a geometric mean of the given data(P (θ) =√

b1(θ)b2(θ)). Then, we can get exactly the same result as
that in (16) which minimizes the sum of Kullback-Leibler
distances to the original data in (13). Thus, thea posteriori
probability is the same as thea priori probability; that is,
we cannot extract any information from the given data.
From Bayesian analysis, we can see that the data fusion
strategies such as Chernoff information minimization and
the minimization of the sum of Kullback-Leibler distances
in (13) compute the solution in a similar form to the solution
produced by the Bayesian approach.

III. S IMULATIONS

Several simulations are presented in this section to
highlight the performance and capabilities of the DMIM
algorithm. Specifically, the scenarios consist of stationary
sensors (e.g., air traffic control radars) tracking multiple
aircraft through two-dimensional space. Individual sensors
are assumed to have the capability to compute the position
estimates of aircraft. Measurements are available to sensors
when inside a sensing radius, set to 10 km, while two sen-
sors can communicate if inside the communication radius,
set to 20 km.
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Fig. 3. Aircraft trajectories for two-aircraft, two-sensor scenario.
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Fig. 4. A cooperative two-sensor scenario. (a) Belief of aircraft 1 having
identity A. (b) Efficiency of belief estimates as measured in bits. (Solid
lines are local estimates and dashed lines are global estimates. Symbols ‘x’
and ‘+’ are used for sensor L and R respectively. SymbolsM, O, and¤ are
used for the identity fusion algorithms using the sum of Kullback-Leibler
distances between the local estimates and the global estimate (correspond-
ing to an arithmetic mean), the sum of Kullback-Leibler distances between
the global estimate and the local estimates (corresponding to a geometric
mean), and Shannon information, respectively.)

The first two simulations involve a system of two sensors,
denoted sensor L for left and R for right, observing two



aircraft, denoted 1 and 2. Aircraft 1 starts in sensor L’s
surveillance region, while aircraft 2 starts in R’s surveillance
region, as shown in Figure 3. This figure shows the true
positions of the aircraft (solid lines and x’s) and the global
position estimates made by the sensors (dashed lines and
o’s). Both aircraft travel southeast with velocity 200 m/s.
The true identity of aircraft 1 and 2 are A and B respectively,
but simulation is initialized with belief vectors[0.8 0.2]T

for aircraft 1 and [0.2 0.8]T for aircraft 2 respectively.
[0.8 0.2]T means that aircraft 1 is thought to have identity
A with 80% probability and B with20% probability. Three
times correspond to important events in the simulation. At
time 7, aircraft 1 enters R’s surveillance region, allowing
global belief estimates based on fusion techniques discussed
in the previous section and sensor R receives the identity
information about aircraft 1 from sensor L using Algorithm
1. At time 11, local information is obtained by sensor R.
Aircraft 2 is now thought to have belief[0.1 0.9]T . Since
this local information makes a new belief matrix scalable
and decreases entropy (uncertainty) of the belief matrix, we
replace the belief vector of aircraft 2 in the belief matrix
with this local information. Since row sums of the belief
matrix should remain constant, the belief vector for aircraft
1 in the new belief matrix becomes[0.9 0.1]T . This local
information incorporation is performed using Algorithm 2.
Finally, at time 18, aircraft 1 leaves sensor L’s surveillance
region.

Because the two aircraft must share identity A and B, an
estimate of the probability of aircraft 1 having identity A
determines fully the belief matrix for the system. Thus, only
P1(A) (probability that aircraft 1 has identity A) is plotted
in Figure 4-(a), which presents belief information according
to different estimators. Solid lines indicateP1(A) for each
observer, while the various dashed lines indicateP1(A) for
three global estimate methods discussed in the previous
section. The three methods are using Shannon information,
minimizing the sum of Kullback-Leibler distances between
the local estimates and the global estimate (corresponding
to an arithmetic mean of the local beliefs), and minimizing
the sum of Kullback-Leibler distances between the global
estimate and the local estimates (corresponding to a geomet-
ric mean of the local beliefs). The Bayesian approach and
the Chernoff approach have a similar form to the geometric
mean and are thus not plotted.

Figure 4-(b) presents the efficiency of each method of
estimating the belief of aircraft 1. This figure only covers
times 7 to 17, since these are the times when the information
fusion algorithms are used. We use the Kullback-Leibler
distance between the correct belief vector and the esti-
mated belief vector (i.e., D(btrue ‖ best) as a performance
measure since this Kullback-Leibler distance measures the
inefficiency of estimators [8], [10], [11]. As shown in the
figure, the inefficiency in sensor L’s belief of aircraft 1 is
constant, since it always has beliefP1(A) = 0.8. Sensor
R’s inefficiency drops at time 11 when local information is
incorporated. The various global estimates lie between the

two local belief estimates. For this scenario, global belief
estimates are best obtained through Shannon information
mixing in (3) with (6) as expected.
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Fig. 5. A malicious two-sensor scenario. (a) Belief of aircraft 1 having
identity A. (b) Efficiency of belief estimates as measured in bits. (Solid
lines are local estimates and dashed lines are global estimates. Symbols ‘x’
and ‘+’ are used for sensor L and R respectively. SymbolsM, O, and¤ are
used for the identity fusion algorithms using the sum of Kullback-Leibler
distances between the local estimates and the global estimate (correspond-
ing to an arithmetic mean), the sum of Kullback-Leibler distances between
the global estimate and the local estimates (corresponding to a geometric
mean), and Shannon information, respectively.)

The second scenario presents the same aircraft and tra-
jectory, but sensor R, through error or malice, reverses the
local information received at time 11. That is, it believes
P1(A) = 0.1, rather thanP1(A) = 0.9. The trajectory
plot is exactly the same as in Figure 3, but belief esti-
matesP1(A) are now those shown in Figure 5-(a). The
inefficiency of the belief estimate is shown in Figure 5-(b).
As in the previous scenario, sensor L’s belief of aircraft
1 and thus its inefficiency in that belief remain constant.
However, sensor R receives incorrect local information,
thereby increasing its inefficiency to 3.32 bits, above the
scale of Figure 5-(b). The global belief estimates again
fall somewhere in between. However, because sensor R
contributes incorrect information, the global belief estimate
with the least inefficiency is now the arithmetic average
of the local estimates in (18), while the method based on
the Shannon information results in the highest inefficiency.
That is, the arithmetic average method is most robust to
incorrect information. To analyze the performance of the
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Fig. 6. Cooperative efficiency versus malicious efficiency for each global
belief estimate, for the two scenarios presented above. SymbolsM, O, and
¤ are used for the identity fusion algorithms using the sum of Kullback-
Leibler distances between the local estimates and the global estimate (cor-
responding to an arithmetic mean), the sum of Kullback-Leibler distances
between the global estimate and the local estimates (corresponding to a
geometric mean), and Shannon information, respectively.)



various belief fusion methods, we present Figure 6 that
plots the ordered pairs (Dcoop,Dmal) for each method of
global belief fusion. The quantitiesDcoop and Dmal refer
respectively to the efficiency of the global estimates for the
cooperative and malicious scenarios and are taken from
Figures 4-(b) and 5-(b). A point closer to the origin in
both axes is more efficient overall than another point. From
Figure 6, one can argue that using Shannon information is
more efficient for scenarios in which all sensors are known
to be cooperative, while arithmetic combination is more
efficient for scenarios in which there is a high probability of
malicious sensors. For example, for battlefield surveillance
with low fidelity sensors, the safest bet would be to use
arithmetic combination, since sensors might be more likely
to malfunction. However, for highway traffic surveillance
with high fidelity sensors, using Shannon information would
produce the most efficient global estimate since local es-
timates would likely agree. Geometric combination, and
similarly, use of Chernoff information and the Bayesian
approach, lie somewhere in between the two extremes.

−200 −100 0 100 200

−150

−100

−50

0

50

100

150

x

y

t=0

A
B

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

t

P
ro

b
(T

a
rg

e
t 
1
=

A
ir
c
ra

ft
 A

)

Arith. mean
Geom. mean
Shannon info.

(a) (b)

Fig. 7. A general sensor network scenario. (a) Aircraft trajectories for
two-aircraft, 41-sensor scenario. (b) Global belief estimates of aircraft 1
having identity A.

Figure 7 shows a complex scenario involving many sen-
sors. It is assumed that sensors that can see the targets are all
initialized to the same belief vectors. Target 1 is initialized
to [0.8 0.2]T and target 2 to[0.2 0.8]T . Figure 7-(a) shows
the track of each target and the coverage areas of the 41
sensors. Sensors with solid lines are malicious, meaning
their local estimates are[β α]T when [α β]T is sensed.
Sensors with thick solid lines gather local information;
this information is always that target 1 is aircraft A with
probability 0.9. Target 2 exists to create confusion at the
start of the scenario; however, identity information is not
presented for this target. For target 1, local estimates are
made at each time step by those sensors that can observe the
target. The global estimates are made at each time step by
combining the local identity estimates. In Figure 7-(b), the
global estimates, using each of the three methods described
in the previous section, are plotted over time. Initially,
all sensors have local belief[0.8 0.2]T , yielding the same
global estimate. At times 6, 26, and 31, sensors with local
information start observing target 1, leading to improved
global estimates; these events are noted by dashed lines in
Figure 7-(b). At times 16 and 24, malicious sensors begin

observing target 1, leading to degraded global estimation, as
noted by dotted lines in the figure. As in previous scenarios,
arithmetic mean combination is most robust to malicious
sensors, while Shannon information yields the best results
after local information incorporation. This scenario exhibits
the DMIM algorithm applied to a large set of sensors
tracking the identity of a maneuvering target.

IV. CONCLUSIONS

We have developed a scalable Distributed Multiple-Target
Identity Management (DMIM) algorithm which can manage
identities of multiple maneuvering targets in sensor net-
works and efficiently incorporate local information about
the identity of a target, when available, to reduce the un-
certainty of the system. For identity fusion to obtain global
information using local sensor information, we have for-
mulated an optimization problem and have presented three
different cost functions: Shannon information, Chernoff
information, and the sum of Kullback-Leibler distances,
which represent different performance criteria that could
be useful for different applications. Using Bayesian anal-
ysis, we have also derived an information fusion algorithm
that needsa priori probability of the given data. Finally,
we have applied the DMIM algorithm to the problem of
managing identities of multiple aircraft in sensor networks
and demonstrated the performance of the proposed fusion
algorithms.
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