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Abstract—In this paper, we develop a distributed identity information to reduce the uncertainty of the system. For
management algorithm for multiple targets in sensor networks.  the case in which the number of targets is constant, the
Each sensor is assumed to have the capability of managing Sinkhorn algorithm [4] is used in [5], [6], [7]. However,

identities of multiple targets within its surveillance region . . . .
and of communicating with its neighboring sensors. We use N distributed sensor networks, the number of targets in the

the algorithm from our companion paper [1] to incorporate ~ Surveillance region of each sensor may change over time
local information about the identity of a target when it is and the Sinkhorn algorithm may not converge for this case.

available to a local sensor and at the same time reduces the |n [1], we have developed an algorithm which can solve
uncertainty of the target's identity as measured by entropy. this problem in polynomial time and in this paper, we use

Identity information fusion is crucial for distributed identity this algorithm for local inf tion i tion. A ial
management to compute the global information of the system IS algorithm tor local information incorporation. A crucia

from information provided by local sensors. We formulate Part of the DMIM algorithm is distributed information
this problem as an optimization problem and present three fusion. In distributed sensor networks, identity information
different cost functions, namely, Shannon information, Cher-  of multiple targets is maintained by individual sensors
noff information, and the sum of Kullback-Leibler distances, g4 each sensor can manage only identities of the targets
which represent different performance criteria. Using Bayesian TR . .
analysis, we derive a data fusion algorithm that needs: prior within its surveﬂlapce rgg'on' Thus, each sensor ha_ls only a
probability of the given data. Finally, we demonstrate the knowledge about its neighborhood, not the global picture of
performance of the distributed identity management algorithm  the whole system. To get the global information from infor-
using scenarios from multiple-aircraft tracking in a sensor  mation maintained by individual local sensors, we need an
(radar) network with different fusion criteria. information fusion algorithm. To fully exploit the capability
of sensor networks, this algorithm should $zalable i.e.,
adding/deleting sensors or targets into a sensor network can

The last few decades have seen many advances in witee handled efficiently, andistributed i.e., the algorithm
less communication techniques and in sensor technologyan be implemented in individual sensors. We formulate the
These advances, combined with growing interest in botimformation fusion problem as an optimization problem and
military and civilian applications in using distributed sen-propose three different cost functions: Shannon information,
sors, have led to the concept of a sensor network. The&hernoff information, and the sum of Kullback-Leibler
applications include battlefield surveillance and enemglistances to represent different performance criteria. Using
tracking in military applications, and habitat monitoring,Bayesian analysis, we also derive an information fusion
environment observation, and traffic surveillance in civiliaralgorithm that needa prior probability of the given data.
applications ([2], [3] and references therein). A sensoFinally, we apply the DMIM algorithm to multiple-aircraft
network is a network of sensor nodes which have locatacking problems in sensor networks and demonstrate the
sensing, processing, and communication capabilities. Mamerformance of the proposed information fusion algorithms
applications of sensor networks, such as target tracking andder different scenarios.
habitat monitoring using only local information., infor- This paper is organized as follows: In Section I, the
mation obtained by each sensor), have a unique problem tizistributed Multiple-Target Identity Management (DMIM)
does not arise in a centralized network: scalable distributetlgorithm including local information incorporation and
information fusion. This implies that the global states obelief information fusion is presented. Section Ill presents
the system must be estimated and maintained using ordpplications of the DMIM algorithm to multiple-aircraft
local information available to local sensors. In this paper, wiacking in sensor networks. Finally, our conclusions are
present a Distributed Multiple-Target Identity Managemenpresented in Section IV.
(DMIM) algorithm which can estimate the identities of
multiple maneuvering targets in sensor networks.

For DMIM in sensor networks, information about the
identity of a target may become available to a local sensor, In this section, we consider the problem of managing
and thus we need methods which can incorporate this nadentities of multiple targets in sensor networks. Each sensor

I. INTRODUCTION

II. DISTRIBUTED MULTIPLE-TARGET IDENTITY
MANAGEMENT (DMIM)



is assumed to have its own surveillance region, and target to its identity over time. For this, we use the idea
communicate with its neighboring sensors. A two-sensaf the Identity-Mass-Flow in [5]. The idea of the Identity-
example is shown in Figure 1 in which the circles represemilass-Flow is that an identity is treated as a unit mass
the surveillance regions of the sensors. We assume tregsigned to a target. These masses cannot be destroyed
each sensor has the capability to compute the positiar created, and flow from a target into another through
estimates and manage the identity of targets within ithe mixing matrix M (k) at time k. The mixing matrix
surveillance region. For distributed identity managements anT' x T' matrix whose elemend/;;(k) represents the

we have to consider the possibility that the number oprobability that target at time k — 1 has become target
targets within the surveillance region of a sensor couldt time k. Thus, the mixing matrix is a doubly stochastic
change over time. For example, a target might leave enatrix; that is, its column sums and row sums are equal to
enter the surveillance region of a sensor. Another importadt The output of théData Associatiorblock is the mixing
problem that has to be addressed is scalable and distributedtrix.

:{nform_a‘uon fu_S|on to get the gIob_aI Qgtlmate of the systerg_ Belief Matrix Update

rom information computed by individual local sensors.
These problems are unique for distributed sensor network We use abelief vectorto represent the identity of a
applications. Therefore, we propose a scalable Distributd@rget probabilistically. For multiple targets, we havesdief
Multiple-Target Identity Management (DMIM) algorithm matrix B(k) whose columns are belief vectors of the targets.
that can manage multiple-target identities efficiently in dNus, entryB;;(k) represents the probability that target
distributed sensor network environment. The structure &@n be identified as label (or nameat time k. The Belief
DMIM is shown in Figure 2: let us start with the identity Matrix Updateblock maintains identity information stored

management algorithm. in a7 x T belief matrix B(k) over time. The evolution of
this belief matrix is governed by the equation [5]:
B(k)=B(k—1)M (k) Q)
<
acs We can show that (1) keeps row and column sums of the
censor 2 belief matrix constant when the numbers of targets and
*

identities are the same. However, this is not the case for

distributed identity management since the number of the

targets within the surveillance region of individual sensors
may change over time. There are two possible cases: a
target leaves or enters the surveillance region of a sensor.
Fig. 1. A distributed multiple-target identity management scenario for §\/hen a target leaves, we delete the corresponding column
two-sensor network. in the belief matrix managed by the sensor. When a target
event-driven, query-based enters the surveillance region of a sensor, there are two

possible cases: (i) the target comes from the surveillance

region of another sensor, which may be queried, or (ii) the

target comes from the outside of the surveillance region of
a sensor network. For these cases, we propose a scalable,

communi cati on — comruni cati on

Information N B I nformation
! bel i ef vector bel i ef vector or!
Fusi on Fusi on

| dentity | dentity event-driven, query-based belief matrix update algorithm:
Managerment Management Algorithm 1: Event-driven, query-based Belief Matrix
\ 7 Update
censor 1 sensor 2 « For sensor and target
if targett leaves the surveillance region of sensdhen
= oo delete the corresponding column in the belief matrix.
Associ ati on I ncor poration end If
if a target enters the surveillance region of seristiren
send a query about the identity of target
I'dentity management if there is an answer “yes” and receive the belief vector

of targett, then

Fig. 2. The structure of the Distributed Multiple-Target Identity Manage- augment the belief matrix with the belief vector

ment (DMIM) algorithm for a two-sensor example.

o received.
A. Data Association else
Suppose there afE targets and’ identities, for example, augment the belief matrix with a belief vector with
T aircraft with idenitites{piper, cherokee, cessna,- }, a new identity assigned to the target.
in the surveillance region of sensar Then, the problem end if

of managing identities of multiple targets is to match each end if



For distributed identity management, a belief matrix  B(k) := B(k)
managed by each sensor may not be a square matrix buend if
might more likely be a skinny matrix which has morewhere is the operat® represents the matrix scaling process
rows than columns. The belief matrix may not be a doublyn [1].
stochastic matrix, but it should be a stochastic matrix wit
column sums equal to one. Its row sums remain constant
because an identity mass cannot be destroyed or created. Ith this section, we consider the problem of combining
also has the property that the sum of column sums is equ#f0 belief vectors of the same target from two differ-
to the sum of row sums; that is, even though the numb@nt sensors. Information fusion can be formulated as an
of targets in the surveillance region of each sensor chang@ptimization problem such that the fused information is
the identity mass is conserved in the surveillance regiofe one that minimizes a cost function which represents a
Since the evolution of the belief matrix is governed by (1)performance criterion. For optimization, we propose three
these characteristics of the belief matrix are preserved ovéifferent cost functions: Shannon information, Chernoff

Belief Information Fusion

time. information, and the sum of Kullback-Leibler distances.

C. Local Information Incorporation ; Sgannon information The Shannon information is de-
In this section, we consider the case in whikital necas , = .

information about the identity of a target is available to a H({Y') = Z —b'(i) log b'(i) @)

local sensor. The local information has the form of a belief =1

vector and when available, we use the local information tovhere o < [0,1]* with " ¥'(i) = 1. The Shannon

decrease the uncertainty of the belief matrix measured Wyformation (also known agntropy is a measure of the
entropy. The entroEy of & x T belief matrix is defined uncertainty of a system. Thus, the minimization of the
asH(B(k)) = - >, Zle B;;(k)log B;;(k). Then, the Shannon information selects a belief vector that is most
problem is how to incorporate this information to the beliefnformative in the sense of minimum entropy. Suppése
matrix. From the idea of the Identity-Mass-Flow and theand b, are belief vectors of target computed by sensor
characteristics of (1), we know that the belief matrix should and sensor 2 respectively. Since the most common data
have the following properties: its column sums are equal tiision algorithms computelamear combinatiorof two data,

one, its row sums remain constant, and the sum of rowe propose the following fusion strategy:

sums and the sum of column sums are equal. However, /

if we replace the column in the belief matrix with the b= whi + (1 - w)by (3)
local information, it is not guaranteed that the new belieivherew € [0,1], b; € [0,1]™ with Z;;l bi(j) = 1 for
matrix has the above properties. Thus, we have developeds {1,2}, and Y7, ¥'(j) = 1. Then, the problem of

a polynomial-time algorithm that can check whether theomputing the fused belief vector becomes a problem to
available local information can be incorporateice( the find a weight,w, which minimizes the cost function in (2).
new belief matrix isalmostscalable) and if so, can make If we use the fusion strategy in (3), the Shannon information
the new belief matrix have the above properties. We refesf the new fused information is

the reader to our companion paper [1] for the details. The |
local information incorporated may not necessarily decreasd! (V) = H(wbi+(1-w)b2) = wH (b1)+(1-w)H(b2) (4)

the uncertainty (entropy) of the belief matrix. Thereforerrom (4), we can see that the minimum is always achieved
local information is incorporated only when it reducesgt eitherw = 0 or w = 1. This means that a fused
the uncertainty of the belief matrix. The local informationpelief vector that has the minimum Shannon information

incorporation algorithm can be described as follows: s either of the two given belief vectors, which ishard
Algorithm 2: Local Information Incorporation choice. For some applications such as identity management
« Given: local information (belief vector) of a target and in this paper, the hard choice may not be desirable since it
a belief matrixB (k). ignores one possibility completely and thus might quickly

« Make a matrixB’(k) by replacing the column corre- lead to a wrong answer over time if not immediately. Thus,
sponding to the target if(k) with the local informa- we propose asoft choice method which has < (0,1)

tion. for almost all cases. Motivated by the fact that Shannon
if B'(k) is almost scalabléhen information minimization chooses a belief vector which has

Bhew(k) := S(B'(K)) the minimum entropy, we propose to use the inverse of the

if H(Bypew(k)) < H(B(K)) then Shannon information of a belief vector as a weight. Thus,
B(k) := Bpew(k) we put large confidence on a belief vector which has small

else Shannon information. Then, a new belief vedibe [v/(i)]
B(k) := B(k) IS

end if H(bl)ilbl(l) H(bg)ile(Z)

else YO = BT HG T T HO) S F )T



From (3) and (5), we get This fusion strategy is different from that in (3) which
1 is a convex combination of the two data. From (12), the
H(by) H(b2) L - . . .
w= HOo0 " + H(by) ! = Tlo0) + H(ba) (6) m|n|.m|;at|on of the Chernpff.lnformgtlon is equivalent
to finding a function that is in themiddle of the two

When H(by) = H(by) = 0, we setw = 3. w = 0 original functions, where the middle is defined in terms
if H(b:) = 0 (no uncertainty inbs) andw = 1 when of the Kullback-Leibler distance. In other words, Chernoff
H(b1) = 0 (no uncertainty inb;). In these cases, the fusedinformation minimization could be interpreted as selecting a

belief vector computed by the proposed fusion algorithmprobability vector which is “equally close” in terms of the

is a belief vector which has no uncertainty. This fusiorKullback-Leibler distance to the original probability vec-
algorithm is a soft choice method since the fused data ters. This fusion algorithm does not put more confidence on
a convex combination of the two given data with a largeone than the other. Thus, this cost function could be useful
weight on the data which has smaller entropy than the othevhen we do not know the quality of information obtained
From (4) and (6), the Shannon information of the new beliefrom individual sensors; by choosing the middle point of

H(V') has the property that: the two pieces of information, we could minimize the bias
over time. However, the fused belief vector computed by

/ 2H(bl)H(b1) n—1 -1 -1 . . L . .
H(V) > or 2H(b')™" < H(b1)" " +H(b2)"" the Chernoff information minimization algorithm may have

H(b1) + H(b2) (7) larger entropy than that computed by the algorithm in (3)

Inequality (7) tells us that the achievable minimum uncerwith (6).

tainty of the fused belief vector with the fusion strategy in Sum of the Kullback-Leibler distances Since the
(3) with (6) as a weight is under-bounded by uncertaintiekullback-Leibler distance is not symmetric, we consider
of the given information. In other words, the maximumtWo possible optimization problems:

achievable certainty (inverse of the Shannon information) minimize D || by) + D || by)
is upper-bounded by the arithmetic mean of the inverse of subjectto S W/(j) =1 (13)
the Shannon information of the given belief vectors. If we b’(Jjj >0

use the fusion strategy in (3), we can also derive the upper L , ,
bound of the Shannon information of the new belief vector: mIS'ImItZte D(b, Hb’b ) _D1<b2 I'5) "
HOY) < w?H(b) + (1— w)2H(bz) + w(1 — w)(H(b1) subject to I?j':1> éﬁ = (14)
+H(bz) + D(br || b2) + D(bz || b1)) ()

A _ )\ . 8)  where b'(j) is the jth element of a vectdr. Let us first
whereD(p || q) = >, p(4) log(%5) is the Kullback-Leibler

: 4 q(iiw consider the optimization problem in (13). The Lagrangian
distance [8]. If we usev in (6), then is given by
n oo 2H(b1)H (1) | H(bi)H(b2)[D(b || b2) + D(b2 || b1)] / , , L
H) < oy T B CIOES DI L', A) = D" || b)+ DY | b”“@f’ ()-1) (15)
=

Thus, we can analytically compute the upper and lowefg get an optimal solution, we set the derivativesLofvith

bounds of the Shannon information of the new belief vectafespect tob/(i) and to to be equal to zero. Then, we get
using the fusion strategy in (3) with (6). Thus, the Shannog new belief vector:

information cost function would be useful when we have

good knowledge about the performance and/or fidelity of V(i) = — bl(i)b?(i) . (16)
each sensor, since we can get a solution which has lower > i1 Vb1(5)b2(4)

entropy by weighing information that has smaller entropy-rom (16), we see that the fused data is a geometric mean
more than the other. However, if we do not have such knowlss ihe given data. The fused data is the same as that in (11)
edge, we may get a biased solution by consistently puttingy chernoff information minimization when* = 1. Thus,

more confidence on one piece of information (possibly thgis gata fusion strategy can be interpreted as a special case

wrong one) than the other. _ o of the Chernoff information minimization method.
Chernoff information: The Chernoff information is de- Now, let us consider the optimization problem in (14).

fined as

n X The Lagrangian is given by
C(by,b2) = — min log(d_bi1(i)“b2(i)' ™)  (10) , , , noo
o=wst TS L', ) = D(by || )+ D(bs || ¥)+AO_ ¥ () —1) (17)
If w* minimizes (10), the new belief vectét (= [v()] for J=t
1={1,2,--- ,n})is Similarly, we get an optimal solution:
. b (i) by(i)' by (i) + ba(i) by (i) + ba(i)
V(i) = == VTR, p (11) b (i) = L 2 _ 0 2 18
Sy b () b ) )= S () + 20 2 (18)
The new belief vector in (11) satisfies ([8], [9]) In this case, the fused data is the arithmetic mean of the

Db || b)) = DV || ba) (12) given data. This fusion strategy is the same as that in (3)



whenw = % Thus, from (4) and (8), we get the lower andinformation about the system, we assume thatahmiori
upper bounds of Shannon information of the new beligprobability is a geometric mean of the given défa(6) =

vector: b1(0)b2(0)). Then, we can get exactly the same result as
HY) > H (by)+H(b2) that in (16) which minimizes the sum of Kullback-Leibler
H) - H(by)FH (bs) L Dbillba)+D(ba o) (19) distances to the original data in (13). Thus, ¢hposteriori
— 2 4

probability is the same as thee priori probability; that is,
Therefore, the fusion algorithms obtained by solving theve cannot extract any information from the given data.
optimization problems in (13) or (14) are to average th&rom Bayesian analysis, we can see that the data fusion
given data either geometrically or arithmetically. This isstrategies such as Chernoff information minimization and
similar to Chernoff information minimization and thus these¢he minimization of the sum of Kullback-Leibler distances
fusion strategies would be useful when we want to geh (13) compute the solution in a similar form to the solution
unbiased fused data in situations where we do not have goptbduced by the Bayesian approach.

a prior information about a system. An example would
be a case in which information from one sensor is wrong
due to failure of the sensor or the malicious intent of the Several simulations are presented in this section to
sensor that is unknowa priori. These information fusion highlight the performance and capabilities of the DMIM
strategies would be robust to this wrong information sinc@lgorithm. Specifically, the scenarios consist of stationary
they do not put more confidence on one (possibly incorreg€nsors €.g, air traffic control radars) tracking multiple

information) than the other, but average them to compute&ircraft through two-dimensional space. Individual sensors
fused belief vector. are assumed to have the capability to compute the position

Bayesian approach In this section, we derive a fused €stimates of aircraft. Measurements are available to sensors
belief vector using a Bayesian approach. Suppose tiéen inside a sensing radius, set to 10 km, while two sen-

Il. SIMULATIONS

target's identityd € {1,2,---,N} and without loss of SOrs can communicate if inside the communication radius,
generality, suppose there are two sensors. Denote evefg to 20 km.
X; and X, to be observations at sensor 1 and sensor % 10°

2 respectively. We are assumed to be given information
b1(0) £ P(|X,) from sensor 1 and,(#) = P(0|X;) from
sensor 2 whereP(-|-) is a conditional probability. Then,

[km]

the problem of information fusion is to find the poste- 5 o ‘K'X
riori probability P(6] X, X5). We assumeP (X, X5|0) = < 1 f \‘
P(X,|0)P(X2|0) since given the identity of a target, the
events that it is observed by sensor 1 or sensor 2 are -
independent in distributed identity management. Using the 5 1 w05 0,05 1 1is

Xpositon K] x 10"

Bayes rule, we get
Fig. 3. Aircraft trajectories for two-aircraft, two-sensor scenario.

P(X10) P(X5|0)P(6)

P(0] X1, X3) = 20
( | 1 2) P(X17X2) ( ) ‘ 5
i P(X:]0)P(0) ; ; * EAR Y B
Since P(0|X;) = =Py for i € {1,2}, we obtain - ; 03 ‘
; 0.28
P(Q‘X17X2) _ bl(e)bQ(g) P(XI)P(XQ) (21) EL(20,56 %’7%%’%@%% OZi

P(6) P(Xy,X5)
Therefore, a fused belief vector is

~L distance (bits)
o o
S ¢
N

0.84 %Z::ﬁiiﬁ’i:ﬁ::g:igiiﬂ

K
o
o

0.82

=3
=
&

=3
e
>

7 - _ by (9)b2 (9> 1 o.&wﬂvﬂvmfw—wéﬂH%H—x
b'(0) = arg max P61 X1, X5) = 20 - (22)

wherec is a normalization constant. This is an interesting (a) (b)

result because the fused data does depend only on the . ) ) ) .
Fig. 4. A cooperative two-sensor scenario. (a) Belief of aircraft 1 having

given qata lél (9)a b2(9).) and thea priori prObabi"tyP(Q)- identity A. (b) Efficiency of belief estimates as measured in bits. (Solid
Thus, if we knewa priori information, we could compute lines are local estimates and dashed lines are global estimates. Symbols ‘X’

the a posteriori probability (.e., the fused data). However, and +' are used for sensor L and R respectively. Symtaols, andC are

. K h L. bability f used for the identity fusion algorithms using the sum of Kullback-Leibler
since we may not know tha priori probability Tor SOome gjstances between the local estimates and the global estimate (correspond-

applications such as distributed identity management in thisy to an arithmetic mean), the sum of Kullback-Leibler distances between

paper, we cannot compute the fused data from (22)_ [Re global estimate an_d the Iopal estimate_s (corresponding to a geometric
. mean), and Shannon information, respectively.)

order to compute the fused data for this case, we have 10

assumeP () either from the characteristics of the systems The first two simulations involve a system of two sensors,

or from that of applications. For example, due to the lack oflenoted sensor L for left and R for right, observing two



aircraft, denoted 1 and 2. Aircraft 1 starts in sensor L'two local belief estimates. For this scenario, global belief
surveillance region, while aircraft 2 starts in R’s surveillancestimates are best obtained through Shannon information
region, as shown in Figure 3. This figure shows the trumixing in (3) with (6) as expected.

positions of the aircraft (solid lines and x’s) and the global

position estimates made by the sensors (dashed lines angssssevsogooooo 18
0's). Both aircraft travel southeast with velocity 200 m/s. o; ‘-
The true identity of aircraft 1 and 2 are A and B respectively, os
but simulation is initialized with belief vector).8 0.2]7 _ s .
for aircraft 1 and[0.2 0.8]7 for aircraft 2 respectively. < o ¥RTTEEY
[0.8 0.2]7 means that aircraft 1 is thought to have identity os ;
A with 80% probability and B with20% probability. Three o '.
times correspond to important events in the simulation. Ato G S
time 7, aircraft 1 enters R’s surveillance region, allowing 5 o = 2 8w 2z w6

global belief estimates based on fusion techniques discussed (@) (b)

in the previous section and sensor R receives the identity

information about aircraft 1 from sensor L using AlgorithmFig. 5. A malicious two-sensor scenario. (a) Belief of aircraft 1 having

1. At time 11, local information is obtained by sensor RIST () Effciency of belef esimates as messured n bis (Sold,
Aircraft 2 is now thought to have beligf.1 0.9]7. Since and “+' are used for sensor L and R respectively. Symaqls, andC] are

this local information makes a new belief matrix scalablaised for the identity fusion algorithms using the sum of Kullback-Leibler
and decreases entropy (uncertainty) of the belief matrix, wli<2nces between he local estmatesan he goba etite conesponc
replace the belief vector of aircraft 2 in the belief matrixihe global estimate and the local estimates (corresponding to a geometric
with this local information. Since row sums of the beliefmean), and Shannon information, respectively.)

matrix should remain constant, the belief vector for aircraft The second scenario presents the same aircraft and tra-

; ) . el
1 in the new belief matrix become8.9 0.1]". This local jectory, but sensor R, through error or malice, reverses the
information incorporation is performed using AlGorithm 2.|,c4) information received at time 11. That is, it believes
Finally, at time 18, aircraft 1 leaves sensor L's surveillancqgl(A) — 0.1, rather thanP;(A4) = 0.9. The trajectory

region. plot is exactly the same as in Figure 3, but belief esti-

Because the two aircraft must share identity A and B, 3fhates P, (A) are now those shown in Figure 5-(a). The
estimate of the probability of aircraft 1 having identity Ajnefficiency of the belief estimate is shown in Figure 5-(b).
determines fully the belief matrix for the system. Thus, onlyzg in the previous scenario, sensor L's belief of aircraft
P1(A) (probability that aircraft 1 has identity A) is plotted 1 anq thus its inefficiency in that belief remain constant.
in Figure 4-(a), which presents belief information accordingq\yever, sensor R receives incorrect local information,
to different estimators. Solid lines indica& (A) for each erepy increasing its inefficiency to 3.32 bits, above the
observer, while the various dashed lines indicgteA) for g5l of Figure 5-(b). The global belief estimates again
three global estimate methods discussed in the previogs; somewhere in between. However, because sensor R
section. The three methods are using Shannon informatiqtyntriputes incorrect information, the global belief estimate
minimizing the sum of Kullback-Leibler distances between, i the least inefficiency is now the arithmetic average
the local estimates and the global estimate (correspondigg he |ocal estimates in (18), while the method based on
to an arithmetic mean of the local beliefs), and minimizingpe shannon information results in the highest inefficiency.
the sum of Kullback-Leibler distances between the globap ot is, the arithmetic average method is most robust to

estimate and the local estimates (corresponding to & ge0mglsqrect information. To analyze the performance of the
ric mean of the local beliefs). The Bayesian approach and

the Chernoff approach have a similar form to the geometric o
mean and are thus not plotted.

Figure 4-(b) presents the efficiency of each method of
estimating the belief of aircraft 1. This figure only covers
times 7 to 17, since these are the times when the information
fusion algorithms are used. We use the Kullback-Leibler
distance between the correct belief vector and the esti-
mated belief vectorife., D(byrye || best) @s a performance MATAr dr R e s
_mea_SL_jre since thI_S Kullback-Leibler distance meas_ures tllg% 6. Cooperative efficiency versus malicious efficiency for each global
inefficiency of estimators [8], [10], [11]. As shown in the pelief estimate, for the two scenarios presented above. Symabats and
figure, the inefficiency in sensor L's belief of aircraft 1 isU are used for the identity fusion algorithms using the sum of Kullback-
constant, since it always has belief(4) — 0.5, Sensor Leer dsances beeer, he local esimates e gave eeinate (cor
R’s inefficiency drops at time 11 when local information ispetween the global estimate and the local estimates (corresponding to a
incorporated. The various global estimates lie between tlggometric mean), and Shannon information, respectively.)
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various belief fusion methods, we present Figure 6 thaibserving target 1, leading to degraded global estimation, as
plots the ordered pairsiioop,Dmai) for each method of noted by dotted lines in the figure. As in previous scenarios,
global belief fusion. The quantitieB.,,, and D,,,; refer arithmetic mean combination is most robust to malicious
respectively to the efficiency of the global estimates for theensors, while Shannon information yields the best results
cooperative and malicious scenarios and are taken froafter local information incorporation. This scenario exhibits
Figures 4-(b) and 5-(b). A point closer to the origin inthe DMIM algorithm applied to a large set of sensors
both axes is more efficient overall than another point. Fronracking the identity of a maneuvering target.

Figure 6, one can argue that using Shannon information is

more efficient for scenarios in which all sensors are known IV. CONCLUSIONS

to be cooperative, while arithmetic combination is more e have developed a scalable Distributed Multiple-Target
efficient for scenarios in which there is a high probability ofdentity Management (DMIM) algorithm which can manage
malicious sensors. For example, for battlefield surveillandgentities of multiple maneuvering targets in sensor net-
with low fidelity sensors, the safest bet would be to us@orks and efficiently incorporate local information about
arithmetic combination, since sensors might be more likelthe identity of a target, when available, to reduce the un-
to malfunction. However, for highway traffic surveillancecertainty of the system. For identity fusion to obtain global
with high fidelity sensors, using Shannon information wouldnformation using local sensor information, we have for-
produce the most efficient global estimate since local egulated an optimization problem and have presented three
timates would likely agree. Geometric combination, andlifferent cost functions: Shannon information, Chernoff
Simi|ar|y’ use of Chernoff information and the Bayesiar’information, and the sum of Kullback-Leibler distances,
approach, lie somewhere in between the two extremes. which represent different performance criteria that could
be useful for different applications. Using Bayesian anal-
ysis, we have also derived an information fusion algorithm
that needsa priori probability of the given data. Finally,
we have applied the DMIM algorithm to the problem of
managing identities of multiple aircraft in sensor networks

‘ o and demonstrated the performance of the proposed fusion
~Aihmean | || algorithms.
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