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Abstract

In this paper, we analyze the performance of estimation algorithms for discrete-time stochastic linear

hybrid systems. The problem of being able to estimate both the discrete and continuous states of a hybrid

system given only the continuous output sequence is a difficult one, and while algorithms [1, 2] exist for

this purpose, little has been proved on the limitations of these algorithms, or even the dependence of their

performance on system parameters. We find conditions that must be satisfied to guarantee the convergence

of these hybrid estimation algorithms. We also derive expressions to determine bounds on the discrete

mode detection delay. These conditions also provide a means to predict a priori which transitions in a

hybrid system are relatively easy to detect, as a function of the system parameters. Finally, we validate

our conditions and predictions using a simple yet illustrative 1-D example, and a more complex aircraft

tracking example.

KEYWORDS: hybrid systems, estimation, mode transitions.

1 Introduction

Many complex systems can be modeled by hybrid systems with a number of discrete modes having different

continuous dynamics and discrete transition relations between the modes. There has been considerable interest

in hybrid estimation among researchers in estimation theory. The objective of hybrid estimation is to estimate

both the mode and the continuous state of a hybrid system at any given time. Hybrid estimators usually

consist of the combination of a bank of continuous state estimators (usually Kalman filters), designed for the

different discrete modes, and a hypothesis testing (mode selecting) algorithm. The form of the hypothesis

testing algorithm depends on the type of output data available. The class of hybrid estimators analyzed in this

paper addresses a challenging problem - that of mode detection and state estimation given only the continuous

output data of the system. In such cases, during hypothesis testing, it is necessary to use the differences in
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statistical properties (such as mean and covariance) of the outputs from the different Kalman filters to choose

the most likely mode.

Hybrid estimation algorithms have been developed for discrete-time stochastic linear hybrid systems in which

the discrete transitions are governed by finite-state Markov chains. The Multiple Model Adaptive Estimation

Algorithm (MMAE) [1] is an algorithm in which, during hypothesis testing, the residuals of the different Kalman

filters are used to form likelihood functions for the different modes, which in turn are used as adaptive weights

to find the most probable mode. A refinement of this algorithm, the Interacting Multiple Model Algorithm

(IMM) [2], mixes the initial conditions of each of the Kalman filters at each time-step. The original reason

behind this refinement was to enable keeping information from N 2 discrete time histories (where N is the

number of discrete modes) in just N Kalman filters, thus reducing the complexity. [1, 2, 3, 4] and references

therein give various other hybrid estimation algorithms and their applications.

The performance of hybrid estimators has been studied for several decades. Magill [5] provides sufficient

conditions for the convergence of the adaptive weights described above in the hybrid estimation of a specific

class of systems when a constant parameter vector is unknown and there is a single output from all the modes.

Lainiotis et al. [6, 7, 8] extend the results in [5] to multiple outputs and derive the recursive form of the

optimal adaptive estimator as well as its exact error covariance. Hawkes et al. [4] examine the asymptotic

behavior of the adaptive weights in hybrid estimation algorithms, which in turn determines the performance

of the hybrid estimators. The authors show, using the Kullback information function [9], that the weight

corresponding to the true model converges almost surely to unity and that the other weights converge to zero.

Many other approaches to the performance analysis of adaptive estimation (hybrid estimation in which the

hypothesis testing is performed using adaptive weights) can be found in the references cited in [4]. Baram

et al. [10] provide conditions under which, for a set of systems driven by stationary white Gaussian inputs

and no discrete transitions, the mode probability of the true model converges to unity, i.e,. the probability

that the estimated model is the true model converges asymptotically to unity. Baram [11] shows that for the

hybrid system in [10], the uniqueness of the prediction error covariance matrix is a sufficient condition for the

true model to be estimated asymptotically. However, the system in [10, 11] is a set of stochastic, stationary

Gaussian models which do not interact with each other. Thus, the conditions in [10, 11] are more relevant

to the observability of stochastic linear hybrid systems [12]. Caputi [13] derives a necessary condition for the

performance of hybrid estimation algorithms through the analysis of steady state residuals and shows that the

performance of the hybrid estimator depends on the DC gain of the linear systems. This condition is only valid

for a specific class of hybrid systems, in which the continuous dynamics for all the modes is the same, but the

inputs are distinct and consist of a constant bias vector and zero-mean white Gaussian random noise.

The research summarized above analyzes hybrid estimation in several special classes of systems, yet general

analytical analysis techniques for the performance of hybrid estimation algorithms have not been investigated

in detail. Maybeck [1] gives qualitative reasons for the performance of hybrid estimators but adds that no

rigorous general proofs are available for the (asymptotic convergence) properties of the hypothesis conditional

probabilities. In this paper, we analyze the properties of hybrid estimation algorithms and derive conditions

under which the computed hybrid estimates converge exponentially to the exact hybrid states. The results of

this analysis give some insight into which mode transitions are more detectable than others and also into how to
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improve the performance of hybrid estimators. (We say that a mode transition is more detectable than another

if the time taken for the mode estimate to converge to the true mode is less for the former transition than for

the latter). We then compare the performance of the Multiple Model Adaptive Estimation (MMAE) algorithm

with that of the Interacting Multiple Model (IMM) algorithm which has been widely (and successfully) used

in the area of multiple target tracking. We show analytically why the IMM algorithm has better performance

than the MMAE.

This paper is organized as follows: Section 2 presents the structure of a stochastic hybrid system and the

probabilistic analysis of its sojourn time, as motivation for this research. In Section 3, we describe a generic

hybrid estimation algorithm, which could be the MMAE, the IMM, or any other refinement of the basic hybrid

estimation algorithm. In Section 4, we analyze the performance of this hybrid estimation algorithm and derive

upper bounds for the mode estimation delay, as well as conditions that guarantee instant mode estimation and

exponential convergence of hybrid estimation algorithms. We begin with a steady-state analysis in Section 4.1

to derive necessary conditions for mode detection. We then proceed to perform a transient analysis in Sections

4.2, 4.3 and 4.4 to find bounds on the mode detection delay, as well as sufficient conditions for instantaneous

mode detection. Section 5 presents a comparison of the performance of different hybrid estimation algorithms.

Illustrative examples and conclusions are presented in Sections 6 and 7 respectively.

2 Discrete-time stochastic linear hybrid systems

We consider a discrete-time stochastic linear hybrid system [14]

H :

{

x(k + 1) = Aix(k) +Biu(k) + wi(k)

z(k) = Cix(k) + vi(k)
, k ∈ N (1)

where x ∈ Rn, u ∈ Rl and z ∈ Rp are the continuous state, control input, and output variables respectively.

The index i ∈ {1, 2, · · · , N} requires the discrete state whose evolution is governed by the finite state Markov

chain

µ(k + 1) = Πµ(k) (2)

where Π = {πij} ∈ RN×N is the mode transition matrix and µ(k) ∈ RN is the mode probability at time k.

The system matrices Ai ∈ Rn×n, Bi ∈ Rn×l, and Ci ∈ Rp×n for i ∈ {1, 2, · · · , N} are assumed known. We

denote the covariance of the initial state x(k0) as π0 ∈ RN , and assume that the process noise wi(k) and the

measurement noise vi(k) are uncorrelated, zero-mean white Gaussian sequences with the covariance matrices

E[wi(k)wi(k)
T ] = Qi ∈ Rn×n and E[vi(k)vi(k)

T ] = Ri ∈ Rp×p respectively. E[·] and (·)T denote expectation

and matrix transpose respectively. It is assumed that wi(k) and vi(k) are both uncorrelated with the initial

state, i.e., E[x(k0)wi(k)
T ] = E[x(k0)vi(k)

T ] = 0. We define Z(k) = {z(0), · · · , z(k)} as the measurement

sequence up to time k. Since the state evolution of a hybrid system has continuous trajectories as well as

discrete jumps, we define a hybrid time trajectory:

Definition 1 (Hybrid time trajectory) A hybrid time trajectory is a sequence of intervals

[k0, k1 − 1][k1, k2 − 1] · · · [ki, ki+1 − 1] · · ·
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where ki(i ≥ 1) is the time at which the i-th discrete state transition occurs.

In this paper, by ‘exponential convergence of a hybrid estimator’ we mean:

Definition 2 (Exponential convergence of a hybrid estimator) Given a hybrid system H with N discrete modes,

we say that a hybrid estimator is exponentially convergent if its discrete state estimate exhibits correct iden-

tification of the discrete-state transition sequence of the original system after a finite number of steps; and

at any given time, the continuous state estimate is unique, with an estimation error mean which converges

exponentially to zero.

2.1 Sojourn time analysis for stochastic linear hybrid systems

In [12], we derived a condition under which hybrid estimation algorithms converge exponentially to the true

hybrid state given the maximum mode estimation delay and the minimum sojourn time. If the minimum

sojourn time (∆̃ = mini ∆̃i where ∆̃i is the sojourn time at mode i) satisfies the following condition, the hybrid

estimation algorithms converge exponentially [12]:

∆̃ > β + δ (3)

where β is the time between mode changes required for the convergence of the Kalman filters and δ is the

maximum mode estimation delay, i.e. δ = maxi δi where δi is the mode estimation delay in correctly detecting

a transition into mode i. Intuitively, until the correct mode is detected after a transition, the estimator is

mismatched and its error diverges (for a time δ in the worst case) and therefore it needs enough time (β) in the

correct mode for the error to decrease before the next transition occurs. Therefore, ∆̃ > β + δ is the minimum

sojourn time of the system in any mode in order to guarantee exponential convergence of the hybrid estimator.

Since the sojourn time of the stochastic linear hybrid system is governed by a finite Markov chain, we cannot

compute the minimum sojourn time exactly, rather with some probability. The probability of mode j at time

k +∆i given mode i at time k (i.e. no mode transition in (k, k +∆i)) is:

P (mj(k +∆i)|mi(k)) = π∆i−1
ii πji (4)

where mi(k) denotes the event that the mode at time k is mode i. Thus, the probability that the sojourn time

is greater than or equal to ∆̃i is

P (∆i ≥ ∆̃i) =

∞
∑

∆i=∆̃i

π∆̃i−1
ii (1− πii) = π∆̃i−1

ii (5)

Proposition 1 Let ∆̃ = mini ∆̃i (i ∈ {1, · · · , N}) be the minimum sojourn time for the stochastic linear

hybrid system (1)-(2) and j = argmini ∆̃i. If ∆̃ ≥ β + δ, then hybrid estimation algorithms for the stochastic

linear hybrid system (1)-(2) can be guaranteed to converge exponentially to the true hybrid state with probability

π∆̃−1
jj .

Proof: The proof follows from (5) and Theorem 3 in [12].
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However, the probability in (5) becomes small rapidly as the required minimum sojourn time ∆̃ becomes large.

In this case, Proposition 1 holds with very small probability and we can obtain very little useful information

about the performance of hybrid estimation algorithms through sojourn time analysis alone. This observation

motivates the present work.

3 Hybrid estimation algorithm

In this section, we consider a generic hybrid estimation algorithm [1] for the discrete-time stochastic linear hy-

brid system (1)-(2). Following the Bayesian estimation derivation in [1], the state estimate of hybrid estimation

is the conditional mean:

x̂(k + 1) = E[x(k + 1)|Z(k + 1)] =

∫ ∞

−∞

x(k + 1)p(x(k + 1)|Z(k + 1))dx(k + 1) (6)

where p(·|·) is the conditional probability density function, given by:

p(x(k + 1)|Z(k + 1)) =
p(x(k + 1), Z(k + 1))

p(Z(k + 1))
=

∑N
i=1 p(x(k + 1), Z(k + 1),mi(k + 1))

p(Z(k + 1))
(7)

Thus, the state estimate (6) is

x̂(k + 1) =
∫∞

−∞
x(k + 1)

∑N
i=1 p(x(k + 1)|Z(k + 1),mi(k + 1))p(mi(k + 1)|Z(k + 1))dx(k + 1)

=
∑N

i=1 x̂i(k + 1)p(mi(k + 1)|Z(k + 1))
(8)

where x̂i(k+1) =
∫∞

∞
x(k+1)p(x(k+1)|Z(k+1),mi(k+1))dx(k+1) is the mode-conditioned state estimate

of x(k + 1) given mi(k + 1). x̂i(k + 1) is computed by the state estimator matched to mode i. Therefore, the

state estimate (8) is a weighted sum of N mode-conditioned state estimates produced by each Kalman filter

with the weight p(mi(k + 1)|Z(k + 1)). The weight can be expressed by

p(mi(k + 1)|Z(k + 1)) = p(z(k+1)|mi(k+1),Z(k))p(mi(k+1)|Z(k))
p(z(k+1)|Z(k))

= Λi(k+1)p(mi(k+1)|Z(k))
p(z(k+1)|Z(k))

(9)

where Λi(k+1) := N (ri(k+1); 0, Si(k+1)) is the likelihood function of mode i, ri(k+1) = z(k+1)−Cix̂i(k+1)

is the residual produced by the Kalman filter i, Si(k+1) ∈ Rp×p is the corresponding residual covariance, and

N (a; b, c) is the probability at a of a normal distribution with mean b and covariance c. p(mi(k + 1)|Z(k)) is
the mode probability estimate at time k + 1. If the mode transitions are governed by a finite Markov chain,

the mode probability estimate is

p(mi(k + 1)|Z(k)) =
∑N

l=1 p(mi(k + 1)|ml(k))p(ml(k)|Z(k))
=

∑N
l=1 πilp(ml(k)|Z(k))

(10)

Thus, the weight (mode probability) (9) is

p(mi(k + 1)|Z(k + 1)) =
1

c(k + 1)
Λi(k + 1)

N
∑

l=1

πilp(ml(k)|Z(k)) =: µi(k + 1) (11)
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where c(k + 1) is a normalization constant. The mode estimate at time k is chosen to be the mode which has

the maximum mode probability at that time. The mode probability depends not only on the finite Markov

chain but also on the likelihood produced by each Kalman filter. The sojourn time analysis based on a finite

Markov chain in Section 2.1, takes into account only the discrete dynamics of the hybrid system, and suggests

that the typical sojourn time in any mode is very small. However, we know that the assumption that a finite

Markov chain models the discrete dynamics well is not very realistic, since most physical hybrid dynamical

systems have longer sojourn times. We therefore need to incorporate knowledge from the continuous dynamics

(obtained through the likelihood functions of the Kalman filters) while computing the mode probability. Thus,

the accuracy of the mode probability is affected greatly by the likelihood function. The state estimate (8) is

x̂(k + 1) =

N
∑

i=1

x̂i(k + 1)
[ 1

c(k + 1)
Λi(k + 1)

N
∑

l=1

πilp(ml(k)|Z(k))
]

(12)

(11)-(12) is referred to as the Multiple Model Adaptive Estimation (MMAE) algorithm [1]. In the MMAE,

all individual Kalman filters run independently at every time step (which is different from the Interacting

Multiple Model (IMM) that will be described next). Equation (12) shows that the state estimate depends on

the likelihood function, the performance of the hybrid estimator thus greatly depends on the behavior of the

likelihood function.

We now describe the general structure of the IMM algorithm [2]. The IMM has the same structure as the

KF 1

x1(k-1|k-1),  P1(k-1|k-1) x2(k-1|k-1),  P2(k-1|k-1)^ ^

x01(k-1|k-1),  P01(k-1|k-1)
^

x02(k-1|k-1),  P02(k-1|k-1)

z(k) Λ1(k)

x1(k|k),  P1(k|k)^

KF 2z(k) Λ2(k)

^x2(k|k),  P2(k|k)

Mode
Probability

Update

Λ1(k)

Λ2(k)

µ(k|k )

µ(k)

State estimate
and covariance

combination

x1(k|k),  P1(k|k)^

x2(k|k),  P2(k|k)^

µ(k)

x(k|k)
 P (k|k)

^

^

µ(k-1|k-1 )Mixing/Interacting

x j(k|k),  P j(k|k): state estimate of Kalman filter j at time k and its covariance^

x0j(k|k),  P0j(k|k): mixed initial condition for Kalman filter j at time k
^

x(k|k),  P(k|k): combined state estimate and its covariance (output)
^

µ(k): mode probability at time k

µ(k|k ): mixing probability at time k

Λ j(k): likelihood function of Kalman filter j

Figure 1: Structure of the IMM algorithm (for two modes) from [15]

MMAE except that it has the Mixing/Interacting step at the beginning of the estimation process so that the

initial conditions for each Kalman filter are adjusted at the beginning of every time step, using a weighted sum

of the state estimates from the previous time step, as shown in Figure 1. The optimal hybrid estimator which
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minimizes the mean-square estimation error has to keep track of all the mode histories up to the current time,

and the number of such histories grows exponentially with time. The optimal estimator is therefore impossible

to implement in practice. The IMM is a suboptimal algorithm which, at each time step, keeps information from

N2 mode histories (where N is the number of modes) in just N mode histories by mixing the N mode histories

of the previous time step into inputs to the estimators that produce the N mode histories of the current time

step. Its complexity involves just N discrete histories, but its performance is close to that of more complex

algorithms that keep N2 mode histories [2].

4 Performance analysis for hybrid estimation

In this section, we first analyze the performance of the hybrid estimation algorithm (either the MMAE or the

IMM)) by analyzing the steady-state mean residuals. Since the steady-state analysis gives only necessary con-

ditions on the performance of hybrid estimation, we then analyze the transient behavior of mode probabilities,

which are functions of the likelihoods and therefore the residuals.

4.1 Analysis for the steady-state mean residuals

Motivated by Caputi [13], we derive the steady-state mean residual for each mode i for the hybrid system

(1)-(2). Using the notations in [16], we define the following quantities:

∆Ai := AT −Ai

∆Bi := BT −Bi

∆Ci := CT − Ci

∆uiss
:= uTss

− uiss
:= limk→∞ uT (k)− limk→∞ ui(k)

x̂iss
:= limk→∞ x̂i(k)

ēiss
:= limk→∞E[ei(k)] = limk→∞E[(x(k)− x̂i(k))]

(13)

where the subscript T ∈ {1, · · · , N} represents the true mode. Following a procedure similar to the one adopted

by Hanlon et al. [16], the steady-state mean residual for mode i is

r̄iss
= CTAT ēiss

+ (CT∆Ai +∆CiAT −∆Ci∆Ai)x̂iss
+ CTBT∆uiss

+ (CT∆Bi +∆CiBT −∆Ci∆Bi)uiss

= {CTAT [I − (I −KiCT )AT ]
−1[(I −KiCT )∆Ai −Ki∆CiAi] + (CT∆Ai +∆CiAT −∆Ci∆Ai)}x̂iss

+{CTAT [I − (I −KiCT )AT ]
−1(I −KiCT )BT + CTBT }∆uiss

+{CTAT [I − (I −KiCT )AT ]
−1[(I −KiCT )∆Bi −Ki∆CiBi] + (CT∆Bi +∆CiBT −∆Ci∆Bi)}uiss

(14)

where Ki is the steady-state Kalman filter gain for mode i. We assume that the matrix inverse in (14) exists.

If mode i is the correct mode (i = T ), then r̄iss
= 0. If r̄jss

6= 0 (∀j 6= i), then the correct mode can

be detected. However, even if mode i is not the correct mode (i 6= T ), the steady-state mean residual for

mode i is zero if the following is true: (I − KiCT )∆Ai − Ki∆CiAi = 0
∧

(CT∆Ai + ∆CiAT − ∆Ci∆Ai) =

0
∧

(I − KiCT )∆Bi − Ki∆CiBi = 0
∧

(CT∆Bi + ∆CiBT − ∆Ci∆Bi) = 0
∧

∆uiss
= 0. This means that if

at least two models are identical and the corresponding control inputs are the same, then the steady-state
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residuals of both the corresponding modes are zero. In this case, the hybrid estimation algorithm will not

work. In other words, the performance of the hybrid estimation algorithm depends on the differences between

the residuals which in turn arise from model differences and input differences. In the above condition, the

first four equalities come from model differences and the last equality comes from input differences. From this

condition, we know that the mode differences and/or the input differences should be large enough for hybrid

estimation to work; this supports Maybeck’s heuristic observation that the performance of the MMAE depends

on a significant difference between the residual characteristics [1]. We now study the transient characteristics

of the mode probability (a function of the residuals) in detail to estimate the mode estimation delay, which is

a good measure of the performance of hybrid estimation.

4.2 Transient analysis for mode probability

In this paper, we consider the mean behavior of a hybrid estimator, and analyze its performance in the sense

of exponential convergence as defined in Definition 2. A steady-state Kalman filter is assumed to be used as

the state estimator for each mode. For the sake of notational simplicity, we define:

µ−i (k) :=
∑N

l=1 πilµl(k − 1) (15)

Using µi(k) := p(mi(k)|Z(k)) in (11), the condition for correct mode detection at time k is: ∀i 6= T

µT (k) > µi(k)

⇐⇒ 1
c(k)ΛT (k)µ

−
T (k) >

1
c(k)Λi(k)µ

−
i (k)

⇐⇒ ΛT (k) > Λi(k)
µ−

i
(k)

µ−
T
(k)

(16)

Since Λi(k) = (2π)−n/2|Si|−1 exp[− 1
2 r̄i(k)

TS−1
i r̄i(k)] (Si = STi > 0) where r̄ is the mean residual, (16) becomes

0 ≤ r̄T (k)
TS−1

T r̄T (k) < r̄i(k)
TS−1

i r̄i(k) + 2 ln

( |Si|
|ST |

)

+ 2 ln

(

µ−T (k)

µ−i (k)

)

(17)

To detect the correct mode exactly for any k ∈ N, (17) must hold for all k ∈ N (∀i 6= T ). If there is a time

delay (δT ) for correct mode detection when a mode transition into mode T occurs at time kl (l ∈ N+), (17)

holds for k ∈ [kl + δT , kl+1). For the existence of a r̄T (k) satisfying (17), the right-hand-side in (17) must be

greater than or equal to zero. The following condition holds for a positive definite matrix S−1
i [17]:

λmin(S
−1
i )r̄i(k)

T r̄i(k) ≤ r̄i(k)
TS−1

i r̄i(k) ≤ λmax(S
−1
i )r̄i(k)

T r̄i(k) (18)

where λmin(S
−1
i ) and λmax(S

−1
i ) are the minimum and the maximum eigenvalues of S−1

i respectively. Thus,

we have the following condition:

Proposition 2 The correct mode can be detected in δT time steps after a mode transition at time kl if there

exists δT ∈ N+ such that for k ∈ [kl + δT , kl+1) (l ∈ N+, ∀i 6= T ), Condition 1 holds and either Condition 2 or

Condition 3 is true.

1. r̄i(k)
TS−1

i r̄i(k) + 2 ln
(

|Si|
|ST |

)

+ 2 ln
(

µ−
T
(k)

µ−
i
(k)

)

> 0.
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2. r̄T (k)
TS−1

T r̄T (k) < r̄i(k)
TS−1

i r̄i(k) + 2 ln
(

|Si|
|ST |

)

+ 2 ln
(

µ−
T
(k)

µ−
i
(k)

)

.

3. ‖r̄T (k)‖2 < λmin(S
−1

i
)

λmax(S
−1

T
)
‖r̄i(k)‖2 + 2

λmax(S
−1

T
)

[

ln
(

|Si|
|ST |

)

+ ln
(µ−

T
(k)

µ−
i
(k)

)

]

.

Condition 3 in Proposition 2 is a sufficient condition on, and might be a very conservative test for, the correct

mode detection. However, Condition 3 gives valuable insight into the performance of hybrid estimation. Fast

mode detection is dependent not only on the magnitudes of the residuals produced by each Kalman filter but

also on the residual covariances. If
λmin(S

−1

i
)

λmax(S
−1

T
)
is small and/or |Si|

|ST |
is small, it is difficult for Condition 3 to hold

and thus to detect the correct mode. Therefore, by checking the eigenvalues of S−1
i and the determinant of its

inverse, we can tell which mode transitions are more detectable than the others. This is similar to the idea of

the observability grammian as a measure of which states are more observable than others [18]. If we consider

the steady-state mean of the residual, Condition 3 becomes

‖r̄Tss
‖2 < λmin(S

−1
i )

λmax(S
−1
T )

‖r̄iss
‖2 + 2

λmax(S
−1
T )

[

ln

( |Si|
|ST |

)

+ ln
(µ−Tss

µ−iss

)

]

, ∀i 6= T (19)

Therefore, if the asymptotic behavior of the residuals satisfies (19) and the minimum sojourn time is long

enough for the residual to converge to its steady-state value, then the MMAE is guaranteed to estimate hybrid

states correctly.

4.3 Mode estimation delay

In this section, we derive the mode estimation delay δi using Condition 3 in Proposition 2. The mean residual

of the correct filter at time kl + δi (l ∈ N+), when i = T , are:

r̄T (kl + δT ) = CTAT [(I −KTCT )AT ]
δT−1ēT (kl) (20)

The mean residual and the mean estimation error of the incorrect filter i (i 6= T ) at time k are

r̄i(k) = CTAT ēi(k − 1) + [CT∆Ai +∆CiAT −∆Ci∆Ai]x̂i(k − 1) + [CT∆Bi +∆CiBT −∆Ci∆Bi]u(k − 1)

=
[

CTAT CT∆Ai +∆CiAT −∆Ci∆Ai CT∆Bi +∆CiBT −∆Ci∆Bi

]









ēi(k − 1)

x̂i(k − 1)

u(k − 1)









ēi(k) = (I −KiCT )AT ēi(k − 1) + [(I −KiCT )∆Ai −Ki∆CiAi]x̂i(k − 1) + [(I −KiCT )∆Bi −Ki∆CiBi]u(k − 1)

=
[

(I −KiCT )AT (I −KiCT )∆Ai −Ki∆CiAi (I −KiCT )∆Bi −Ki∆CiBi

]









ēi(k − 1)

x̂i(k − 1)

u(k − 1)









(21)
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For the sake of notational simplicity, we define

FT := (I −KTCT )AT

Fi := (I −KiCT )AT

Hx
i := CT∆Ai +∆CiAT −∆Ci∆Ai

Hu
i := CT∆Bi +∆CiBT −∆Ci∆Bi

Gx
i := (I −KiCT )∆Ai −Ki∆CiAi

Gu
i := (I −KiCT )∆Bi −Ki∆CiBi

Li :=
[

CTAT Hx
i Hu

i

]

(22)

The norm of the mean residual of the correct filter at time kl + δT is

‖r̄T (kl + δT )‖ = ‖CTATF
δT−1
T ēT (kl)‖ ≤ σ̄(CTAT )σ̄(FT )

δT−1‖ēT (kl)‖ (23)

where σ̄(·) denotes the maximum singular value. Similarly, from (21), the norm of the mean residual of the

incorrect filter at time kl + δT is

‖r̄i(kl + δT )‖ ≥ σ(Li)‖ēi(kl + δT − 1)‖ ≥ σ(Li)σ
([

Fi Gx
i Gu

i

])δT−1

‖ēi(kl)‖ (24)

where σ(·) denotes the minimum singular value. We define

α :=
λmin(S

−1

i
)

λmax(S
−1

T
)

β(k) := 2
λmax(S

−1

T
)

[

ln
(

|Si|
|ST |

)

+ ln
(µ−

T
(k)

µ−
i
(k)

)

] (25)

Using (23), (24), and (25) in Condition 3 of Proposition 2, we obtain the following condition:

σ̄(CTAT )
2σ̄(FT )

2(δT−1)‖ēT (kl)‖2 < ασ(Li)
2σ
([

Fi Gx
i Gu

i

])2(δT−1)

‖ēi(kl)‖2 + β(k + δT ) (26)

Even though we cannot find the mode estimation delay δT explicitly from (26), (26) will be used to derive

a condition for instantaneous mode estimation in the next section. To find δT explicitly, we try a different

approach. From (21), the mean residual of the incorrect filter at time kl + δT can be written as:

r̄i(kl + δT ) = CTATF
δT−1
i ēi(kl) +Hx

i x̂i(kl + δT − 1) + CTAT [F
δT−2
i Gx

i x̂i(kl) + · · ·+Gx
i x̂i(kl + δT − 2)]

+Hu
i u(kl + δT − 1) + CTAT [F

δT−2
i Gu

i u(kl) + · · ·+Gu
i u(kl + δT − 2)]

(27)

We define

bi(kl + δT − 1) := Hx
i x̂i(kl + δT − 1) + CTAT [F

δT−2
i Gx

i x̂i(kl) + · · ·+Gx
i x̂i(kl + δT − 2)]

+Hu
i u(kl + δT − 1) + CTAT [F

δT−2
i Gu

i u(kl) + · · ·+Gu
i u(kl + δT − 2)]

(28)

Then, Condition 3 of Proposition 2 becomes

σ̄(CTAT )
2σ̄(FT )

2(δT−1)‖ēT (kl)‖2 < ασ(CTAT )
2σ(Fi)

2(δi−1)‖ēi(kl)‖2 + Ji(kl + δT ) (29)

where Ji(kl+δT ) := α‖bi(kl+δT −2)‖2+β(kl+δT ). β(kl+δT ) =
2

λmax(S
−1

T
)

[

ln
(

|Si|
|ST |

)

+ ln
(µ−

T
(kl+δT )

µ−
i
(kl+δT )

)

]

might

be negative, yet its magnitude is usually not big because it is in a logarithmic scale. Thus, Ji(kl + δT ) ≥ 0 is

easily satisfied. If Ji(kl + δT ) ≥ 0, we can have the following condition:

δT > 1 +

{

2 ln

[

σ(Fi)

σ̄(FT )

] }−1{

− lnα+ 2 ln

[

σ̄(CTAT )

σ(CTAT )

]

+ 2 ln

[‖ēT (kl)‖
‖ēi(kl)‖

]}

(30)
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Proposition 3 The correct mode can be detected δT time steps after a mode transition if Condition 1 of

Proposition 2 holds and there exists δT ∈ N+, δT < kl+1 − kl, l ∈ N+, ∀i 6= T , such that either of the following

conditions is true.

1. σ̄(CTAT )
2σ̄(FT )

2(δT−1)‖ēT (kl)‖2 < ασ(Li)
2σ
([

Fi Gx
i Gu

i

])2(δT−1)

‖ēi(kl)‖2 + β(k + δT )

2. δT > 1 +
{

2 ln
[

σ(Fi)
σ̄(FT )

] }−1 {

− lnα+ 2 ln
[

σ̄(CTAT )
σ(CTAT )

]

+ 2 ln
[

‖ēT (kl)‖
‖ēi(kl)‖

]}

, when Ji(kl + δT ) ≥ 0.

For a system with only two discrete modes, we can further simplify (29) and also relax the condition that

Ji(kl + δT ) ≥ 0. To do this, we first consider (16). For a system with two modes, for any time k ∈ [kl, kl+1), if

T is the true mode in the interval [kl, kl+1),

µi(k + 1)

µT (k + 1)
=

Λi(k + 1)

ΛT (k + 1)

(

πiiµi(k) + (1− πTT )µT (k)

(1− πii)µi(k) + πTTµT (k)

)

(31)

Let Ω(k) = µi(k)
µT (k) . Then, for a diagonally dominant transition matrix Π,

Ω(k + 1) =
Λi(k + 1)

ΛT (k + 1)

(

πiiΩ(k) + (1− πTT )

(1− πii)Ω(k) + πTT

)

(32)

≈ Λi(k + 1)

ΛT (k + 1)

(

πiiΩ(k)

(1− πii)Ω(k) + πTT

)

(33)

We assume that the estimator converges before the transition takes place, which gives us

µi(kl − 1) ≈ 1 (34)

µT (kl − 1) ≈ 0 (35)

Ω(kl) =
Λi(kl)

ΛT (kl)

(

πii
1− πii

)

(36)

After the transition at time kl and before detection,

1 ≤ Ω(k) ≤ ∞
=⇒ Λi(k+1)

ΛT (k+1)

(

πii

(1−πii)+πT T

)

≤ Ω(k + 1) ≤ Λi(k+1)
ΛT (k+1)

(

πii

1−πii

) (37)

Detection occurs at the smallest δT when Ω(kl + δT ) < 1. Thus we try to find the smallest δT such that

Λi(kl + δT )

ΛT (kl + δT )

(

πii
1− πii

)

< 1 (38)

=⇒ r̄T (kl + δT )
TS−1

T r̄T (kl + δT ) < r̄i(kl + δT )
TS−1

i r̄i(kl + δT ) + 2 ln

( |Si|
|ST |

)

− 2 ln

(

πii
1− πii

)

(39)

Using (23), (24), and (25) in (40), we obtain the following condition:

Proposition 4 For a hybrid system with two discrete modes, the correct mode can be detected δT time steps

after a mode transition if there exists δT ∈ N+, δT < kl+1 − kl, l ∈ N+, i 6= T , such that

σ̄(CTAT )
2σ̄(FT )

2(δT−1)‖ēT (kl)‖2 < ασ(Li)
2σ
([

Fi Gx
i Gu

i

])2(δT−1)

‖ēi(kl)‖2

+ 2
λmax(S

−1

T
)

[

ln
(

|Si|
|ST |

)

− ln
(

πii

1−πii

)] (40)

Proposition 4 implies that if (40) is satisfied, then the mode probability of the correct mode is definitely greater

than those of the other modes after δT time steps after a mode transition at time kl. Thus, the correct mode

is detected δT time steps after a mode transition.
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4.4 Instantaneous Mode Estimation

In this section, we derive the conditions under which the mode change detection is instantaneous. Consider the

case of a system with two modes. Assuming that the time between discrete transitions is sufficient to allow the

Kalman filters to converge, we can assume that the mode probabilities before the transition have converged.

Following a procedure similar to (31)-(40) in Section 4.3, we obtain

σ̄(CTAT )
2‖ēT (kl − 1)‖2 < ασ(Li)

2σ
([

Fi Gx
i Gu

i

])2

‖ēi(kl − 1)‖2 (41)

+
2

λmax(S
−1
T )

[

ln

( |Si|
|ST |

)

− ln
( πii
1− πii

)

]

(42)

We can extend this to the instantaneous detection of a transition in a system with n modes.

Proposition 5 The correct mode is detected instantaneously if the following condition holds:

σ̄(CTAT )
2‖ēT (kl − 1)‖2 < ασ(Li)

2σ
([

Fi Gx
i Gu

i

])2

‖ēi(kl − 1)‖2

+ 2
λmax(S

−1

T
)

[

ln
(

|Si|
|ST |

)

+ ln
(πjT

πjj

)

min

] (43)

where
(πjT

πjj

)

min
is the smallest ratio of off-diagonal to diagonal elements in any row of the transition matrix.

4.5 Exponential convergence of hybrid estimation algorithms

Finally, to present a complete picture, we present a result from the authors’ previous work [12], of the conditions

to guarantee exponential convergence of the hybrid estimator once the correct mode sequence has been detected.

Theorem 1 (Theorem 3 from [12]): Consider a given stochastic linear hybrid system, an error convergence

set M0 and rate of convergence ζ, |ζ| < 1, |α(Ai −KiCi)| ≤ |ζ| for all i = 1 . . . N , where α(A) is the maximal

absolute value of the eigenvalues of A. Let κ(A) = ‖Q‖‖Q−1‖, the condition number of A under the inverse,

where Q−1AQ = J , the Jordan canonical form. Then if the following seven conditions are satisfied:

1. The system is observable in the sense of a hybrid system [12]

2. {Ai, Ci} couples are observable for all i = 1 . . . N

3. {Ai, Q
1/2
i } couples are controllable for all i = 1 . . . N

4. (Ai −KiCi) is stable for all i = 1 . . . N with all distinct eigenvalues

5. There exists X > 0 such that ‖x(k)‖∞ ≤ X, i, j = 1...N , k = 1, 2, ... such that

‖[(Ai −Aj)−Ki(Ci − Cj)] x̄(k)‖∞ ≤ U = max ‖(Ai −Aj)−Ki(Ci − Cj)‖1X (44)

6. The discrete decision time, δ satisfies the relation

δ ≤ M0√
nUmax[κ(Ai −KiCi)]

(45)

12



7. The time between switching events (sojourn time), ∆̃ satisfies the conditions

∆̃ > βmin + δ, where (46)

βmin > max[
1

| log ζ| log
∣

∣

∣

∣

(

1−
√
nUδκ(Ai −KiCi)

M0

)∣

∣

∣

∣

,

max
log[κ(Ai −KiCi)]

| log[α(Ai −KiCi)]|
] (47)

we can design a hybrid estimator that converges to the set M0 with a rate of convergence greater than or equal

to ζ.

The discrete decision time assumed in this theorem is in fact the mode detection delay δ that we have now

derived. This theorem presents the conditions under which if there is a mode detection delay δ, the sojourn

time is long enough for the error convergence during the period of correct detection (∆̃ − δ) to balance the

divergence of the error during the mode mismatch. From the present results, we now have a way of determining

δ. Therefore, combining the two results, we can evaluate the performance of a given hybrid estimator and also

find the minimum sojourn time required in each mode to guarantee exponential convergence of the mean square

error.

5 Performance comparison between hybrid estimation algorithms

In this section, we discuss the performance of hybrid estimation and also compare the performance of the

MMAE and the IMM algorithms. We focus on the mode estimation delay since usually, the smaller the mode

estimation delay, the smaller the estimation error. By investigating (30), we can explain the performance of

hybrid estimation algorithms qualitatively. For the mode estimation delay to be small, the following must be

small if Ji(kl + δT ) ≥ 0:

{

log

(

λmax(S
−1
T )

λmin(S
−1
i )

)

+ 2 log

[

σ̄(CTAT )

σ(CTAT )

]

+ 2 log

[‖ēT (kl)‖
‖ēi(kl)‖

]}

, (∀T ∈ {1, · · · , N}, ∀i 6= T ) (48)

where mode T is the correct mode after the mode transition at time kl (l ∈ N+). Firstly,
λmax(S

−1

T
)

λmin(S
−1

i
)
must

be small. Here, the pre-computed residual covariance Si = CiP
ss
i Ci + Ri, and P ss

i (the steady-state error

covariance matrix computed by Kalman filter i) satisfies the algebraic Riccati equation. Therefore,
λmax(S

−1

T
)

λmin(S
−1

i
)

depends only on the system parameters Ai, Ci, Qi, Ri and AT , CT , QT , RT . Thus, by checking the residual

covariance matrices for each Kalman filter (which can be done without any measurements), we can tell which

mode transition is more detectable than the others. In addition, since Qi and Ri are design parameters for

the Kalman filter i, and QT and RT are design parameters for the Kalman filter T , we can make
λmax(S

−1

T
)

λmin(S
−1

i
)

small by adjusting these parameters (also known as Kalman filter tuning) and thus reduce the mode estimation

delay. Secondly, if the condition number of CTAT is close to 1, the second term becomes small. Thus, we also

say which mode is more easily estimated than the others by checking the condition number of CTAT for all T .

Thirdly, ‖ēT (kl)‖
‖ēi(kl)‖

must be small, i.e. the mean state estimation errors produced by mode-mismatched Kalman

filters should be small (and close to the error produced by the correct Kalman filter).
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The mixing step was originally devised to reduce the complexity of the algorithm, yet it also keeps the estimation

errors produced by mismatched Kalman filters small. The IMM readjusts, through the mixing step at each time

instant, the initial conditions for each Kalman filter, and shifts them closer to the (correct) estimate computed

by the IMM at the previous time step. Therefore the means of the state estimation errors produced by the

incorrect Kalman filters are close to that of the correct Kalman filter. Thus, the mode estimation delay of

the IMM is smaller than that of the MMAE (which does not have this mixing mechanism). The smaller time

delay translates to better estimation performance of the IMM compared to the MMAE. Maybeck [1] proposes

two ad hoc methods to improve adaptability of the MMAE: enforcing a lower bound on the mode probabilities

and adding pseudonoise to the the Kalman filter models. The IMM does both inherently. We illustrate this

through examples in the next section.

6 Examples

We first consider mode detection in a simple, one-dimensional system such as the one in [14]. The dynamics is

of the form

x(k) = aix(k − 1) + biu(k) + wi(k) (49)

y(k) = cix(k) + vi(k) (50)

u(k) = 5cos(
2πt

100
) (51)

where the state variables and model parameters are scalar, there are 2 discrete modes, and the input is

deterministic and sinusoidal. We estimate the hybrid state sequence from the output sequence using both

the MMAE and the IMM. We first check for instantaneous mode detection at a switch using (42). We then

compute the maximum mode detection delay (or the minimum sojourn time needed to guarantee correct mode

detection) using (30) and (40). We perform this experiment for various values of the model parameters and

compare our predictions with the simulations.

MMAE and IMM Performance vs. Parameters (Monte Carlo Simulation, 100 trials)

Case Algorithm Mode Parameters
Instant Detection Mode detection delay λmax(S

−1

T
)

λmin(S
−1

i
)

(b1 = b2 = 1) Condition Predicted Observed

a1 a2 c1 c2 2 → 1 1 → 2 δ∗1 δ∗2 δ1 δ2 T=1 T=2

1 MMAE 0.95 0.25 1 0.8
√ × 0 2 0 2 0.48 2.09

IMM
√ × 0 2 0 2

2 MMAE 0.85 0.85 0.8 0.2 × × 6 2 4 0 1.29 0.77

IMM × √
2 0 0 0

3 MMAE 0.95 0.85 1 0.4 × × 10 2 5 1 1.13 0.89

IMM
√ √

0 0 0 0

Table 1: Two mode example

Clearly, the IMM performs better than the MMAE, especially in cases 2 and 3. Also, since we only compute
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MMAE and IMM Performance vs. Parameters (Monte Carlo Simulation, 100 trials)

Case Algorithm Mode Parameters
Mode detection delay

max
λmax(S

−1

T
)

λmin(S
−1

i
)

(b1 = b2 = b3 = 1) Predicted Observed

a1 a2 a3 c1 c2 c3 δ∗1 δ∗2 δ∗3 δ1 δ2 δ3 T=1 T=2 T=3

1 MMAE 1.2 0.25 0.95 0.8 1.0 0.8 2 0 7 1 0 5 1.2 0.80 1.26

IMM 1 0 5 1 0 4

Table 2: Three mode example

a conservative estimate of the mode detection delay, it is quite possible that the observed delay is less than

the computed bound (as in cases 2 and 3). Figure 2 shows the mode probabilities and estimates for case 2.

The reason for the difference in the performance of the MMAE and IMM algorithms is clear when we consider

the estimation errors in Figure 3. At the mode transition times, the errors of the matched and mismatched

filters of the IMM are almost equal, thus keeping (48), and therefore the mode detection delay, small. In our

example, (48) simply reduces to
λmax(S

−1

T
)

λmin(S
−1

i
)
in the case of IMM estimation. Comparing these values for the

different transitions with the values of the delay in Table 1, it is seen that as predicted, the smaller the value

of (48), the smaller the mode detection delay. The biggest advantage of this result is that given a system and

its error bounds, this gives us a way to determine a priori transitions to which modes are the most detectable.

We also try a three-mode example for the same system. The results are as expected, and are shown in Table 2.

We now consider an aircraft tracking example, which has two discrete states, the constant velocity (CV) mode

and the coordinated turn (CT) mode. This represents flight trajectories composed of straight lines and circular

arcs. For brevity, we only include the two mode example in this paper but the performance analysis conditions

can be applied to multiple-mode cases. The dynamics of both modes is given by

x(k + 1) =













1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1













x(k) +













T 2/2 0

T 0

0 T 2/2

0 T













ui(k) + wi(k) (52)

y(k) =

[

1 0 0 0

0 0 1 0

]

x(k) + vi(k), (i ∈ {CV,CT}) (53)

where x = [ x1 ẋ1 x2 ẋ2 ]T where x1 and x2 are the position coordinates, u = [ u1 u2 ]T where u1 and

u2 are the acceleration components. The control input has a different constant value for each mode:

uCV =

[

0

0

]

for CV mode, uCT =

[

1.5

1.5

]

for CT mode (54)

T is the sampling interval, wi is the process noise, and vi is the sensor noise. We choose an operating velocity

of 150 knots. We design a flight trajectory such that the mode change from CV mode to CT mode occurs at

time=45 seconds and the mode change CT mode to CV mode occurs at time=56 seconds. Using Proposition

3 for the IMM, we find that the mode estimation delay for the mode switching from mode CV to mode CT is

δct = 1 and the mode estimation delay for the mode switching from mode CT to mode CV is δcv = 2. Thus,
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Figure 2: Mode estimates by (a) IMM and (b) MMAE: 100 trial Monte Carlo simulation results. The asterisks

denote mode estimation delay.
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Figure 3: Estimation error by (a) IMM and (b) MMAE: 100 trial Monte Carlo simulation results.

we expect the mode switching from mode CV to CT is more detectable than the mode switching from mode

CT to CV. Similarly, we obtain δct = 7 and δcv = 12 for the MMAE. Figure 4-(a) shows that the IMM detects

the mode change from mode CV to mode CT after a 1 time step delay and the mode change from mode CT

to mode CV after a 2 time step delay. Similarly, Figure 1-(b) shows that the MMAE detects the mode change

from mode CV to mode CT after a 6 time step delay and the mode change from mode CV to mode CT after

a 10 time step delay. The performance analysis predicts that the IMM performs better than the MMAE and

the simulation results support this.
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Figure 4: Mode estimates by (a) IMM and (b) MMAE: 100 trial Monte Carlo simulation results (mode CV =

0, mode CT = 1).

7 Conclusions

Although several algorithms have existed for many years to estimate stochastic linear hybrid systems, the issues

of their performance and limitations have not been addressed in much detail. In this paper, we have performed a

detailed steady-state and transient analysis of the behavior of these algorithms and derived necessary conditions

for correct mode detection, bounds on their performance in terms of the mode detection delay and the minimum

sojourn time, and also proposed a way to predict a priori which mode transitions are the easiest to detect. We

have also validated our results using simulated experiments. Most importantly, our results give a mathematical

yet intuitive explanation for why the IMM algorithm achieves its high levels of performance in the estimation

of stochastic linear hybrid systems.
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