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An Empirical Study of the Resilience of the
US and European Air Transportation Networks

Barış Başpınar, Karthik Gopalakrishnan, Emre Koyuncu, and Hamsa Balakrishnan

Abstract—Air travel connects people and goods across vast
geographical regions. However, operational inter-dependencies in
the air transportation system due to factors such as aircraft, crew,
and passenger connectivity also result in the spread of disruptions
in the system. Our work uses tools from network science and
control theory to characterize the relation between the inter-
connectivity (i.e., network structure, both in terms of flights and
delays) and the robustness of the air transportation system. These
methods are applied to characterize the resilience of the air
transportation networks in the United States (US) and Europe
by considering the flight and delay network structures and delay
dynamics. Our study reveals that stronger inter-connectivity in
the US makes the system more susceptible to disruptions that
spread rapidly. However, we also find that this higher connectivity
enables greater flexibility and controllability while recovering
from disruptions.

Index Terms—Air traffic management, air transportation net-
works, United States, Europe, delay propagation, robustness,
resilience.

I. INTRODUCTION

Air transportation is a major driver of global connectivity,
offering significant economic benefits. However, increasing
traffic and limited investments in infrastructure have led to
increased flight delays and cancellations, adversely affecting
system performance. Modeling and analysis tools are therefore
needed to develop insights into the air transportation system,
and to efficiently serve the increasing traffic demand.

The air transportation system displays a high degree of
inter-connectivity, both in terms of flights and delays. The
physical movement of aircraft between airports is referred to
as flight connectivity. The spread of delays between airports,
known as delay connectivity, can occur not only due to flight
connectivity, but also due to factors such as crew connections
and correlated weather impacts across airports. The temporal
evolution of delay connectivity is referred as the delay dynam-
ics. Flight connectivity enables passengers and goods to reach
their destinations, and is realized through multiple non-stop
flight legs. By contrast, geographical proximity, traffic flows
between airports, and airline operating practices lead to delay
connectivity.
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Graphs or networks are natural abstractions of the interde-
pendencies in the air transportation system. Airports represent
the nodes of the network, and the meaning of the edges can
vary depending on the quantity of interest. In case of flight
connectivity networks, the presence of an edge between two
airports may represent the existence of at least one daily non-
stop flight. Weighted, directed graphs, in which each edge is
associated with a weight and direction, can be used to capture
metrics such as delays, traffic, or flight cancellations from
one airport to another. Consequently, network abstractions
can be used to model the propagation of delays, assess the
susceptibility of airports to delays, and evaluate the resilience
of the air transportation network to disruptions.

In this paper, we are interested in evaluating the effect
of network connectivity on delay dynamics. In particular,
we would like to know how flight and delay connectivity
influence the susceptibility of airports to disruptions, their
post-disruption recovery, and the ability to regulate the system
after a disruption.

The US and European air transportation systems are among
the largest in the world, but differ in important ways [1].
Firstly, Europe, unlike the US, has slot controls at nearly all
its major airports, potentially ensuring the smoothing of peaks
in demand [2]. Secondly, the number of airlines operating in
Europe is significantly higher than the US, resulting in more
distributed operations, and lower susceptibility of the system to
disruptions that affect just one airline or its hub airports. These
differences in their operational characteristics make the US and
European aviation systems ideal candidates for a comparative
analysis of their underlying connectivity structures, and the
effects on delay dynamics.

A. Related literature

The role of network structure in driving flight connectivity
[3], [4], delay dynamics [5], [6], and system resilience [7] has
been considered in prior studies. Flight connectivity networks,
typically represented as graphs with an edge between two
nodes (airports) if there is a direct non-stop flight between
them, have received the most attention among these [8], [9],
[10]. Similar analysis has been extended to weighted graphs,
where the magnitude of traffic flows are also considered [11],
[12], [13]. There is, however, limited literature on estimating
the delay connectivity graphs, since it may require informa-
tion on airline schedule buffers, tail assignment, and crew
assignments. Delay networks, where edges are weighted by the
average flight delays on the route, have been used to represent
the state of the system. Representative delay networks have
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been identified through clustering in prior works [14], [15],
[16]. The temporal evolution of these delay networks have
also been studied [17], [5], [18].

Prior work on network resilience has focused on flight
connectivity, and the loss in connectivity due to node removal
attacks [3], [19], [20]. More recently, the susceptibility of
US airports to delay propagation [21], and the recovery of
European airports from delay-disruptions [22], have been
studied. More generally, dynamic measures of operational
network resilience have been restricted to specific contexts
(e.g., epidemics [23], communication networks [24], financial
institutions [25]). These studies illustrate that the underlying
graph structure can result in different levels of robustness
depending on the process that evolves on the graph [26]. Sim-
ilarly, the robustness of aviation networks must be evaluated
with respect to the delay propagation context – a gap in the
literature that we aim to fill in this work. Finally, we illustrate
our methods through a comparative analysis of the US and
European air transportation networks.

B. Contributions and findings

Our main contributions are as follows:

1) We use network-theoretic measures to compare the
connectivity of multi-layer networks (the network layers
represent flights and delays, in our case).

2) We propose a novel approach and different metrics from
other domains to assess the characteristics of the delay
networks.

3) We develop a method to compare the resilience of
networked systems based on the dynamics of disruptions
and recovery.

4) We compare the US and European air transportation net-
works to distinguish their delay spreading characteristics
and obtain operational insights.

Our comparison of the US and European air transportation
networks leads to the following findings:

1) The US has stronger flight and delay connectivity than
Europe.

2) This increased connectivity makes the US more suscep-
tible than Europe to the spread of delays, and subsequent
losses in flight connectivity.

3) Although the stronger connectivity in the US increases
the propagation of delays, it also enables a faster recov-
ery and a greater ability to regulate system performance.

C. Outline

For clarity of presentation, we analyze each aspect of
connectivity separately, for the US and Europe. We discuss
flight connectivity in Section II, delay connectivity in Section
III, and delay dynamics in Section IV. The structure of the
paper is constructed such that the case studies in different
network levels support each other to reveal the correct opera-
tional insights. Additional details on the underlying network-
theoretic measures are provided in the appendix.

II. ANALYSIS OF FLIGHT CONNECTIVITY

First, we compare the structures of the traffic networks in
Europe and US. The networks are represented by directed
graphs, in which each node denotes an airport, and each edge
is weighted by the average number of daily flights from one
airport to the other. Flight data are obtained for a 1-year
period from ALLFT+ [27] for Europe (2017), and from BTS
[28] for the US (2015). The ALLFT+ dataset includes the
transcontinental flights, thus allowing us to study the US and
European networks separately, as well as jointly. We only
include edges with at least one flight per day on average.

TABLE I: High-level comparison of the US and Europe air
traffic networks

Graph Properties European Network US Network
# of Nodes 460 337
# of Edges 4781 3901
Avg. Degree 20.79 23.15

Avg. Strength 70.04 114.07
% of Core Nodes 21.1 19.3

Table I presents some basic properties of the European and
US networks. The numbers of nodes and edges are higher
in the European network, since there are more airports and
routes served with at least one flight a day in Europe than in
the US. However, the average strength, and to a lesser extent
the degree, of nodes in the US is higher than that in Europe. In
other words, the US, despite being a smaller network, not only
has more connections per airport, but they are stronger (i.e.,
more flights between the nodes). This difference could be due
to the dominance of regional operations and more operations
to smaller airports in Europe. However, the percentages of core
nodes in the US and Europe are similar, indicating that both
networks are dominated by similar fractions of central nodes.
Table VIII in the appendix lists the names and locations of
the airports identified by their ICAO codes in our results and
discussions.

The average number of flight operations, a commonly-used
metric to capture the prominence of the airport, is captured by
its node strength. A less frequently-used metric, the number of
non-stop destinations from an airport, is captured in its degree.
We present a list of the top 10 airports in the US and Europe
based on their degree and strength centrality in Table II. We
observe that the 5 airports with the highest degree centralities
in the US all have higher degrees than any of the airports
in Europe. Chicago (KORD) covers 41% (277/(2× 337)) of
the US network with direct connections, whereas Amsterdam
(EHAM) covers only 24% of the European network with direct
connections. These results imply that the US network has
higher reachability than the EU network, an observation that
will be further supported when we consider the expansion
metric.

A. Flight connectivity: Comparison of US and Europe

Firstly, we discuss the clustering coefficient and the rich-
club parameter to understand the role played by airports in
the entire network. These metrics have been selected to assess
the local connection characteristics of the networks. While
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TABLE II: Top 10 airports by degree centrality

European Traffic Network US Traffic Network
Airport Degree Strength Airport Degree Strength
EHAM 223 1036.15 KORD 277 1968.15
EDDM 199 879.16 KDFW 273 1555.15
LTBA 186 731.94 KATL 270 2077.84
EDDF 179 893.96 KDEN 237 1287.84
LFPG 168 853.51 KCLT 224 1277.50
EGKK 168 588.81 KDTW 198 908.16
LEBL 157 704.16 KIAH 187 983.19
EGSS 156 359.91 KMSP 184 876.20
LEMD 154 757.54 KPHL 174 897.27
EKCH 142 593.80 KSEA 143 862.95

the clustering coefficient captures the tendency of forming
triangles in the network, the rich-club parameter quantifies the
tendency for high-degree nodes to be more densely connected
among themselves than nodes of a lower degree. Specifically,
the clustering coefficient is a relatively local metric for a node,
and captures the tendency of the incident edges on a node to
form triangles. Thus, if there are flights from airport A to B,
and flights from C to A, this metric captures the likelihood of
there being a direct flight from B to C. The route structure
of airlines, and whether they operate a hub and spoke or
point-to-point operation determines the clustering coefficient.
More importantly, it has implications both for passenger flight
connectivity as well as for delay propagation. Thus, when
there is a reduction in airport capacity and limited schedule
slack, a high degree of feedback in the system, captured
by the clustering coefficient, can accentuate the spread of
delays and magnify their impact. Edge weights are normalized
to 1 for each of the respective networks before evaluating
the coefficient, and the histogram of the node clustering
coefficients are presented in Fig. 1. We observe that most of
the nodes have a very small clustering coefficient, indicating
a low tendency to form triangles. This is to be expected, since
many peripheral airports will only be connected to one major
hub, and not to each other through direct flights. Nevertheless,
in the US, there is a slightly higher fraction of airports that tend
to form connected triplets; this increases the potential for delay
propagation in the absence of robust scheduling practices.

Fig. 1: Comparison of clustering coefficients of flight networks

The rich-club coefficients, which reflect the extent to which

high degree nodes are connected to each other, of both flight
networks are illustrated in Fig. 2. We see that the US network
has a larger rich-club parameter than the European network,
and both show a sharp decline around d = 120. This point can
be interpreted as a transition to the high-degree nodes. Fig. 2
shows that the connections between the high-degree nodes in
the US network are stronger than in the EU network. This also
suggests that traffic flows in the US can be controlled through
a smaller fraction of airports than in Europe.
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Fig. 2: Comparison of the rich-club parameters for the US and
European flight networks

Next, we classify the nodes into communities by maximiz-
ing the modularity, and evaluate the gateway coefficient for
each node. The community detection via modularity is a well-
known algorithm. The presentation of the community detection
is not a novel aspect of this study. But, there has been no study
that compares the US and EU communities to figure out their
differences in terms of the heterogeneity characteristics. We
use an aggregated network in which the US and European
networks and intercontinental flights are included. We perform
a joint community detection on this aggregated network to
distinguish the heterogeneity characteristics in the continents
to provide an operational insight.

Fig. 3 presents the communities that are detected via
modularity maximization. For a resolution threshold of 1 (the
typically used hyperparameter value), we identify 16 commu-
nities in the aggregated network. Two of these communities
cover the US airports exclusively, and the rest partition the
European airports. The results show that the US has a more
homogeneous traffic network structure than Europe. Even in
Europe, there are only 3 major communities with a large
number of airports; the others contain just 2 or 3 airports each.
The heterogeneous structure of the European airspace network,
although indicative of more fragmented connectivity among
the airports, can be advantageous in limiting delay propaga-
tion across communities. Furthermore, the tight geographical
proximity of most members of a community helps localize
the delay and cancellation impacts of weather disruptions, and
avoid cascading effects. The role of the gateway airports for
such communities are paramount. If resources are directed
towards gateway airports to maintain acceptable levels of
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Fig. 3: Community structure and gateway coefficients in the
combined US-Europe flight network

performance, then the chance of a disruption spreading from
one community to another is minimized.

The airports with the highest gateway coefficients are pre-
sented in Table III. The right side of the table contains the
gateway coefficients that are calculated according to the 16
communities in Fig. 3, whereas the left side includes the
gateway coefficients that are computed assuming that there
is only one community in each continent. The latter setup
is used to identify key airports in either continents that
not only are well connected within the continent, but also
provide significant transcontinental connectivity. Naturally, the
gateway coefficients are heavily affected by the community
structure that is chosen. In the case of the join community
detection (16 communities), Copenhagen (EKCH) and Istanbul
(LTBA) have the highest gateway coefficients in Europe. While
Copenhagen is the main gateway that connects the northern
European community (marked in green) to the rest of Europe,
Istanbul is the major gateway that connects the south-east
European community (marked in blue) to the rest of Europe. In
the US, Denver (KDEN) and Los Angeles (KLAX) have high
gateway coefficients, and they are among the top gateways
that connect the west coast community (yellow) to the east

coast community (magenta). However, none of EKCH, LTBA,
KDEN, and KLAX are among the top 10 ranked gateways
between US and Europe (Table III, left). The top three airports
connecting the US and Europe communities are New York’s
JFK (KJFK), London Heathrow (EGLL), and Shannon (EINN)
airports. The node strength and gateway coefficient together
provide a comprehensive method to identify airports that
connect the two continents. Thus, we ignore the lower strength
airports in the list (which are mainly cargo hubs), and conclude
that KJFK and EGLL provide the best gateways into the US
and European continents.

TABLE III: Top 10 airports based on their gateway coefficients
(flight networks)

Coeff. between two Continents Coeff. between 16 Communities

Airport Gateway Strength Airport Gateway StrengthCoeff. Coeff.
KJFK 0.36 778.69 EBLG 0.64 14.92
EGLL 0.35 955.30 KJFK 0.63 778.69
EINN 0.35 18.22 EKCH 0.62 596.61
EBLG 0.26 14.92 KDEN 0.61 1287.84
KORD 0.21 2026.58 KLAX 0.60 1310.28
KEWR 0.21 821.74 LTBA 0.60 739.47
LFPG 0.20 929.69 EGLL 0.56 955.30
KATL 0.20 2110.08 KSFO 0.56 922.09
EDDF 0.18 958.07 KLAS 0.56 805.58
EHAM 0.18 1097.11 LLBG 0.55 254.89

B. Implications of higher flight connectivity on robustness

Robustness analysis via targeted node removal has been
studied from flight’s and passenger’s perspectives in the liter-
ature [19], [20], [29]. But, there has been no study addressing
the differences in the US and EU networks. Our intention
is not to do the similar robustness analysis in the literature
or identify only the most effective metric, but to compare
the both networks and identify the differences in their flight
networks’ characteristics using the robustness analysis via
targeted node removal strategy. We measure the robustness
of a network with respect to a targeted node attack strategy.
In this process, a node is removed from the network according
to a specific network metric, and the impact of this removal
on the size of the giant component is presented as a measure
of robustness of the network. After each node removal, the
network metric is recomputed, and the process repeated until
the entire network is dismantled. We evaluate six different
attacking strategies to determine which one is the most ef-
fective, and to evaluate if there are any differences between
the US and Europe networks. The six metrics used are degree
centrality, strength, eigenvector centrality, gateway coefficient,
betweenness centrality, and damage (evaluated using a locally
greedy heuristic).

The robustness of the EU, US and combined US-EU net-
works with respect to different node removal attack strategies
are shown in Fig. 4. The three plots show the relative sizes
of the giant components as a function of the fraction of nodes
removed. Smaller the size of the giant component, the lower
the robustness of the network to a given attack strategy.

We make four observations from the results in Fig. 4.
First, for both networks where Europe was considered, the



5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Attack Length (Fraction of Removed Airports)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
R

o
b

u
s
tn

e
s
s
 (

G
ia

n
t 

C
o

m
p

o
n

e
n

t 
S

iz
e

)
Europe

Degree

Strength

Eigenvector C.

Gateway Coeff.

Betweenness C.

Damage

(a) European network.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Attack Length (Fraction of Removed Airports)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
o

b
u

s
tn

e
s
s
 (

G
ia

n
t 

C
o

m
p

o
n

e
n

t 
S

iz
e

)

US

Degree

Strength

Eigenvector C.

Gateway Coeff.

Betweenness C.

Damage

(b) US network.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Attack Length (Fraction of Removed Airports)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
o

b
u

s
tn

e
s
s
 (

G
ia

n
t 

C
o

m
p

o
n

e
n

t 
S

iz
e

)

US-Europe Network

Degree

Strength

Eigenvector C.

Gateway Coeff.

Betweenness C.

Damage

(c) Combined US-Europe network.

Fig. 4: Size of the giant component of flight networks under targeted node removal attacks

best attack strategy among the predefined metrics, i.e., the
one that leads to the smallest size of the giant component,
varies depending on the attack length (the number of nodes
removed). For instance, in the Europe-only network, between-
ness centrality and damage lead to the greatest reduction in the
size of the giant component until about 75% of the network
is dismantled; after that, the betweenness centrality alone is
the most effective. In the joint Europe-US network, damage
is initially the most effective metric between the predefined
metrics, and then for more intense attacks, the betweenness
centrality strategy dominates. This is not the case in the US,
where several of the metrics lead to similar decreases in the
size of the giant component, with the betweenness centrality,
damage, and degree being marginally better than others. A
factor contributing to this similarity is the homogeneous nature
of the US network. This structure is associated with the high
connectivity between the airports, and thus multiple centrality
metrics (degree, betweenness, damage) yield the same ordering
of airports for targeted attacks.

A further consequence of the homogeneous structure of
the US network (and the consistent ordering of airports for
different attack strategies) is that it is easier to identify critical
airports in the US, as compared to Europe. The first 10
airports that are removed from the network according to
damage-, betweenness- and degree-based attacks are presented
in Table IV. In the US, 8 of the top 10 airports are the
same, independent of the attack strategy used. However, this
is not the case for the European network, where only 4 of
the 10 airports are the same for attacks based on betweenness
centrality and damage. In other words, the risks in Europe
are more distributed (with different airports being critical
depending on the choice of the metric), making the European
network robust to a larger number of attack strategies.

Our third observation is that the US network is also less
robust than the European network with respect to the attack
length. We consider a network as being dismantled when the
size of the giant component is less than 1% of the total nodes.
In Europe, 21% of the nodes have to removed for the network
to be dismantled, while only 14% of the airports need to
be removed to dismantle the US network. Even for a fixed
fraction of node removals, say 0.1 (i.e., 10%), the size of the
giant component is significantly higher in Europe (35-55%

depending on the attack strategy) compared to the US (5-
20%). The dismantling the whole network or a specific percent
of a network leads to similar conclusions when comparing
the focused networks. The observation implies that, in US,
the minority of the network has great impact on the overall
network. We will see that this observation also supports the
results obtained in the control effectiveness analysis.

Finally, we note that the US-Europe combined network,
because of its natural partition into two primary sub-networks,
is highly susceptible to attacks based on the betweenness
centrality metric. There is a sharp decline in the size of the
giant component of the combined network when about 2.5%
of the nodes are removed based on the betweenness centrality,
due to the removal of gateway nodes that serve to connect
the two continents. Beyond this threshold, all of the airports
in the giant component belong to the one of the continents.
Interestingly, the number of airports needed to obtain this sharp
decline in robustness (i.e., size of the giant component) is only
19. The 19 airports that divide the network into two parts are
KORD, KJFK, EHAM, EDDF, KBOS, LFPG, ESSA, LSZH,
EIDW, EGLL, EGKK, KSFO, EGCC, EDDK, KEWR, KIAD,
KATL, LEMD, KCVG.

TABLE IV: First 10 airports that would be removed under
different attack strategies on flight networks

European network US network
Damage Between. Degree Damage Between. Degree
LGAV ESSA EHAM KDFW KDEN KORD
EFHK EGKK EDDM KORD KORD KDFW
ESSA ENGM LTBA KDEN KDFW KATL
LFPO EGPD EDDF KMSP KMSP KDEN
EDDM EHAM EGKK KSLC KSEA KCLT
ESSB EKCH LFPG KSEA KSLC KDTW
EKCH ENTO EGSS KANC KDTW KIAH
ENGM EGLL LEBL KDTW KCLT KMSP
ENTC EGSS LEMD KATL KATL KPHL
ENBR EFHK EKCH KCLT KIAH KSEA

C. Discussion

The analysis of the traffic networks highlights some key
differences between the US and European air transportation
systems. The US has fewer airports, and fewer direct links
between airports (i.e., fewer nodes and edges); however, it
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has significantly more operations between these airports com-
pared to Europe (higher average strength). Complementing this
denser connectivity, the US also has stronger connections be-
tween the high-degree airports (rich-club parameter), a greater
tendency to form locally-aggregated clusters (clustering coeffi-
cient), and is more homogeneous (smaller number of distinct
communities). The greater connectivity in the US, however,
also affects network robustness: local disruptions at a few
highly-central airports have the ability to significantly impact
system performance.

III. ANALYSIS OF DELAY CONNECTIVITY

Next, we investigate the flight delay networks in Europe and
US. The delay networks are modeled as weighted directed
graphs, in which each node represents an airport, and the
weight on each edge denotes the magnitude of delay for the
corresponding Origin-Destination (OD) pair. The OD pairs are
originated from direct flights. Since delays vary at timescales
of the order of hours, having a single representative network
for the US (or Europe) would hide the subtleties of the delay
dynamics. We therefore consider hourly delay networks, where
each edge weight corresponds to the median delay of all flights
that took off on that route in that hour. We only consider
those OD pairs with at least seven flights a day, along with
the associated airports.

We use a network to describe the state of the system for
each hour; however, this still results in a very large number
of networks over the course of a year (24 × 365 = 8, 760).
We therefore identify representative delay networks using
clustering. A feature vector consisting of all the edge weights
is used to identify clusters, or groups, of hours with a similar
network delay structure (see [15] for details on the clustering)
using the k-means clustering algorithm. The centroid of each
cluster is then considered as the representative delay state for
that group of hours. The number of clusters in both the US
and Europe is chosen to be eight, since a further increase does
not result in qualitatively different network structures.

The delay states in the EU network and the US network are
illustrated in Figs. 5 and 6, respectively. Although the networks
are directed, for visualization purposes, they are symmetrized.
Tables V and VI present the occurrence frequencies and high-
level descriptions of the delay centroids. Henceforth, we use
these eight representative networks to understand delays in the
system, as they characterize the main trends that are observed,
and provide a tractable set of graphs for analysis. As expected,
the most common state of the system (i.e., the centroid with
the highest frequency of occurrence) is characterized by low
delays. We note that the scales for the color bars differ
considerably between the US and European networks. The
low delay state in the EU network corresponds to an average
OD delay of 5 min, whereas the low delay in the US network
corresponds to an average OD delay of 10 min. In general, the
low delay states are more frequent in Europe than in the US.
87% of hours in Europe correspond to some low delay state
(states 5, 6, and 1), whereas this fraction is only about 76%
in the US (corresponding to states 2 and 3). The high delay
states in both Europe and the US see major airports being

disrupted – London, Amsterdam and Paris in Europe, and
Chicago, Atlanta, Dallas, and the New York/Northeast airports
in the US. Further analyses of the networks corresponding to
these delay states are presented in the subsequent sections.

TABLE V: Description of delay states for the European
network

Delay Frequency of Qualitative descriptionState occurrence (%)
1 20.2 Medium network delay
2 1.6 EHAM very high delay
3 3.4 EGLL, LFPG, EDDF medium delay
4 2.7 LFPG, EHAM high delay
5 34.4 Very low network delay
6 32.0 Low network delay
7 4.1 EDDF, LFPG high delay
8 1.6 EGLL very high delay

TABLE VI: Delay states for the US network

Delay Frequency of Qualitative DescriptionState occurrence (%)
1 1.9 KORD very high, KATL medium delay
2 31.8 Low network delay
3 44.2 Very low network delay
4 2.4 KLGA, KORD, KATL high delay
5 2.4 KDFW high, KORD, KIAH, KATL medium
6 9.3 KORD, KATL, KLGA medium delay
7 1.2 KATL high, KORD medium delay
8 6.8 KLAX, KORD medium delay

A. Delay connectivity: Comparison of US and Europe

Firstly, we present a novel approach to assess the char-
acteristics of delay networks. The first set of analyses we
conduct on delay networks helps us identify and understand
which groups of high delay edges are connected. For this
purpose, we use the size of the giant component as a metric of
connectivity, and compute it for varying thresholds of delay.
In this setup, the size of the giant component corresponds
to the volume of the delay spreading in the network, and
the delay thresholds refer to the possible amounts of delay
compensations. Specifically, we compute the size of the giant
component for the delay network while only considering
edges with weights higher than the threshold. The threshold
represents the compensation of delays through some external
action; this metric therefore reflects the ability of the system
to absorb delays. The threshold has an operational meaning.
The delays originated from a problem in an airport can spread
along the network. But, the impact of a departure delay on the
destination airport or consecutive flights can also be mitigated
by intervening the in-flight operation. For example, the cost
index can be increased to reduce flight time or direct routes
can be requested to reduce the travel distance, so the travel
duration. The delay thresholds refer to how much delay can
be compensated via these types of interventions. And, by
changing the delay threshold, the analysis shows how the
volume of delay spreading or cascading effect change as a
function of delay threshold. In this way, the impact of varying
delay thresholds on the delay spreading in the network is
assessed, and the required delay thresholds to prevent the delay
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Fig. 5: Visualization of the delay states for the European Network
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Fig. 6: Visualization of the delay states for the US Network

spreading or to restrain delay spreading into a smaller network
are identified. Then, the delay spreading and compensation
characteristics of the EU and US networks are compared.

The size of the giant component with respect to varying
delay thresholds for the network corresponding to each char-
acteristic delay state is shown in Fig. 7. We observe that
the very low delay states in both Europe and the US can
be dismantled at even small delay thresholds. However, the
specific thresholds – 3 min for Europe and 6 min for the US
– reflect the higher baseline delay levels seen in the US.

The next set of delay states, ones with moderate delays
(states 6 and 8 in the US, and states 1,3,4, and 7 in Europe),
show a similar behaviour. The decrease in the size of the giant
component in these delay states is more gradual, and tends to
have a longer tail with an elbow-like feature. In other words,
dismantling the last few nodes requires a significant increase

in the delay threshold. In practice, this means that there is
a set of highly-delayed airports that can be isolated from the
majority of the network if a reasonable amount of delay (about
25 min for the US delay states, and 15 min for the European
delay states) is compensated.

The delay states representing the most severe network
impacts are different in Europe and the US, primarily due to
the strength of high delay edges in the US. As a consequence,
although the number of connected airports is higher in Europe
to begin with, most of the airports can be isolated from the
giant component with a modest amount of delay compensation.
In the most severe delay states, the size of the giant component
in Europe decreases sharply with an increase in the delay
threshold, whereas it decreases slowly in US. For instance,
let us consider the following high-delay states: state 2 in
Europe, and state 7 in the US. Initially, more airports are a
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Fig. 7: Analysis of giant components in the characteristic delay
states

part of the giant component in Europe compared to the US.
However, with just 8 min of delay compensation (i.e., a delay
threshold of 8 min), the size of the giant component in Europe
reduces to 27 airports; by contrast, the US has 77 airports
still connected for a 8 min delay threshold. The decrease in
giant component size comes at much higher thresholds for the
US: with a delay compensation of 19 min, the size reduces
to 51 airports. Not surprisingly, a significantly higher delay
threshold is required to completely isolate all the airports in
the US. Another interesting characteristic is the occurrence
of relatively flat regions in the curve, indicating that there is
a group of airports which experience similar delays. While
this trend is sometimes repeated twice in the US at different
ranges of the delay threshold, such repetition is not common
in Europe. The repeated pattern indicates that there may be
different sets of delay sources.

The results in Figure 7 pertain to the eight characteristic
delay networks (each, for the US and Europe) that are ob-
served. Similar trends hold when we consider all the actual
realized delay networks (a total of 8,760 networks). While we
do not show those plots for brevity, the same information,
namely, the distribution of giant component sizes for each
delay threshold, can be calculated. We find that half the
network is dismantled for a delay threshold of 30 min in

Europe, while the corresponding threshold is 75 min for the
US. Furthermore, the delay threshold needed to dismantle 95%
of the network is 60 min in Europe and 170 min in the US. We
also observe that the size of the giant component in Europe
decreases sharply with respect to delay threshold, but is more
gradual in the US. One can therefore conclude that not only
does the US have more high delay routes than Europe, but
that these routes are more tightly connected to each other and
form a larger giant connected component.

The second analysis focuses on the direction of the delay
propagation. The aim here is to not just identify groups of
high-delay edges and their connectivity, but rather understand
the directions in which these high delay edges are pointed. The
bow-tie structure metric will be used as a proxy to identify
airports that serve as sources or sinks of delays in the system.
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Fig. 8: Bow-tie structures in Europe.
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Fig. 9: Bow-tie structures in US

We wish to divide the airports in the giant component into
three groups. The first group of airports has only outbound
delay edges, the second group only has inbound delay edges
incident on it, and the third group has both outbound and
inbound edges. These are referred as the left, right, and center
regions in the bow-tie structure, respectively. We restrict our
analysis to the eight characteristic delay networks for Europe
and the US. Fig. 8 and Fig. 9 present the number of airports
in each of the three identified regions for the Europe and US
characteristic delay networks, at threshold levels of 2 min and
10 min. A network that has several airports in all three groups
is said to have a classic bow-tie structure. Operationally, this
means that there are a reasonable number of airports that act
as buffers or sources of delay in the system. Note that there
should be some delays in the system to discuss the existence
of the bow-tie structure. In case the delays are very low (e.g.,
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the delay state 5 in Europe), there will be no discussion about
the bow-tie structure.

An important observation from the analysis of the direc-
tional properties of these delay edges is that the US network
does not form a strong bow-tie structure, whereas the Europe
network does. This means that in Europe, there is a tendency
for a reasonable fraction of airports to either be sources or
sinks of delays. In the US however, there is no such distinction
about the roles played by airports, and all of them tend to
have outbound and inbound delays. This conclusion is driven
by the results in Fig. 8 for Europe and Fig. 9 for the US.
We present the bow-tie structures at two different threshold
levels, with the higher level specifically chosen to bring out
the structural trends more prominently. In the US, except
delay state 8, which has some airports in the right region,
almost all the airports are in the central region of the bow-
tie structure. Even though a lot of the networks only tend to
have airports belonging to the central region, the airports that
actually belong to the left, or right may also be interesting
to analyze. For instance, consider state 5 in the US. This is
the state where Atlanta (KATL) and Dallas (KDFW) are the
worst affected airports. In the corresponding bow-tie structure
for 30-min threshold, Atlanta (KATL) gets classified into the
center region, indicating that its the source of delays in this
network, and most of the airports have inbound as well as
outbound delays as a result. Interestingly, Dallas (KDFW),
Chicago (KORD), and Houston (KIAH), which are major hub
airports in the US get classified into the right region, indicating
that they are acting as sinks for delays in this particular case.
However, in Europe, there are several delay state networks
where the distribution of airports is not focused on the center
region. For instance, there are significantly more airports that
are sources of delays in state 2 and 8, whereas many airports
act as sinks in state 4. On the other hand, as expected from the
US example, states where the delays are more concentrated,
tend to have the affected airport as the sources.

B. Impact of higher delay connectivity on robustness
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While the giant component informs us that the network is
more connected, and has higher delay magnitude in the US as

compared to Europe, it does not quantify how close or far away
these airports are from each other. In other words, the same
n airports can be a part of the giant component because they
are all linearly connected, with the degree of the nodes being
1 or 2, or they can all be connected to one hub airport. This
property is important in understanding the temporal dynamics
in the propagation of delays- if there are fewer hops between
two connected airports, delays can propagate much faster
than if there are multiple edges that need to be traversed to
travel from one airport to another. Essentially, when there is
a disrupted airport that has flight delays, firstly the delays
are propagated to its neighbors, and they spread it to their
neighbors. The expansion metric captures this process, and is
defined as the the average size of reachable set in the network
for a fixed number of hops from a node.

The expansion functions for Europe and US are presented
in Fig. 10. The expansion metric curves are relatively close
for all the 8 delay state networks, and we present a weighted
average line for US and Europe. As evident from the figure, all
airports in US can be reached within a specific radius (of 4),
whereas 10% of the airports in Europe cannot be reached on
an average. To cover 90% of the airports in Europe, the radius
(or number of hops) should be 7, whereas the corresponding
metric for the US is just 4. Therefore, the US network has a
higher rate of spreading than the European network.

C. Discussions

It is known through several studies and statistics that delays
in the US are higher than in Europe. However, our finding is
that delay spreading characteristic in the US is also different
than in Europe. The giant component analysis shows that the
US has a stronger cascading effect, and even with high delay
thresholds some network delay states contain majority of the
airports as a connected giant component. But, the cascading
effect is not stronger in Europe in most delay states, and the
delay spreading can be prevented using relatively low delay
thresholds. It is observed that while Europe shows a bow-tie
structure, this is not the case in US.

The strong connectivity of the US network in terms of both
the traffic and delays in relation to Europe could be a result of
the high traffic volumes, lower buffers in flight schedules, lack
of slot controls, and other factors. These factors not only end
up resulting in stronger directional trends in delay propagation
(as evident by the bow-tie structure) but also a faster, and
more expansive spreading of delays from disrupted airports
(as suggested by the expansion metric)

IV. MODELING AND CONTROL OF AIRPORT DELAY
DYNAMICS

In this section, we present novel metric of resilience of
networked systems grounded in network models and their
control theoretic properties. The primary advantage of such
measures is that they are based on the dynamics of the
process on the network, rather than just the structure and
connectivity of the system. In this section, we show how a
data-driven model for a networked system can be interpreted
as a measure of resilience. Further, we use the system model
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to quantify the controllability of delays spreading to present a
practical measure of the ability of the system to recover from
disruptions.

While this network-model based approach to quantifying
resilience is independent of the model per-se, we use a specific
class of data-driven network model called the Markov Jump
Linear System (MJLS) to perform our analysis. It is however
important that the model can be learnt from data, in order to
capture the actual dynamics of the system, and not just rely on
idealized first principles to quantify resilience. We also wish to
emphasize that while there are several approaches to modeling,
simulating, and predicting flight delays, analytically tractable
models would be preferred for this analysis as the scale of the
network may be prohibitively large for reliable simulations.
In the remainder of the section, we describe the MJLS model
along with the optimal controller, and a comparison between
the European and US airport delay models.

A. Markov Jump Linear System (MJLS) Model

The MJLS model (presented in [21], validated in [30])
is used to represent the hourly evolution of total inbound
and outbound delays at airports. We develop the model, and
provide intuition for the terms in it. In terms of notations, let
there be N airports, and xout

i (t) and xin
i (t) represent the total

outbound and inbound delays along all incident OD pairs for
airport i in the one-hour interval starting at t. A simple linear
model for the delays at the next time step is given by

xout
i (t+ 1) = αix

out
i (t) +

∑
j

βjiw̄jix
in
j (t) (1)

xin
i (t+ 1) = αix

in
i (t) +

∑
j

βjiw̄ijx
out
j (t) (2)

where w̄ji are the elements of a normalized weight matrix, and
α, β are model parameters. The weight matrix is associated
with the delay network corresponding to the hour t, but is row-
normalized. It represents the relative strength of interaction
between any two airports in terms of the delays for that hour.
The equations qualitatively describe the delay evolution using
two factors: the persistence of delays due to queuing effects,
and network spreading effects. The queuing effects results in
persistence of delays at an airport and is represented with the
first term in the equation. The second term is the weighted
average effect of the connected airports on the delays at the
particular airport i. The resultant equations can be written in
a simplified matrix form as x(t+ 1) = A(t)x(t), where x(t)
consists of total outbound and inbound delays of all airports
and A(t) = [α]+[β]W̄ (t). In the model, W (t) is chosen to be
one of the eight characteristic network delay states (computed
in the previous section). Each of the different states indicates a
different pattern of interaction between the airports that result
in different evolution of the delay state. Thus, the system is
described as

x(t+ 1) = Am(t)x(t) (3)

where Am(t) is the system matrix for the delay mode m(t)
at time t. m(t) belongs to the set {1, . . . ,M}. Since the delay
modes are changing, depending on the weather phenomenon,

random disruption, or just temporal traffic flow effects, the
delay modes can transition from time to time. These transitions
are modeled as a time-dependent Markovian process, with the
transition probability given by:

P[m(t+ 1) = j | m(t) = i] = πi,j(t) (4)

The delay modes, transition matrices, and coefficient α and
β are learnt from data. The MJLS model is thus characterized
by the finite set of system matrices Am(t), a time-dependant
transition probability given by πij(t), and an initial condition.
The equations are non-deterministic, meaning that they de-
scribe the various possible evolutions of the airport delays in
the system due to randomly varying network topologies. It has
been shown in prior works that these models are representative
of the air traffic delay dynamics and have a reasonable
prediction performance too [21], [30]. Thus, their use for
comparing the resilience of the networks using operation delay
information is justified.

The last methodological detail we wish to highlight is the
control of such systems. The study [31] has proposed an
integrated control structure for the MJLS model to manage
the system via node and topology control. But, our intention
is not to develop an advanced control structure for the MJLS
model. We aim to present how a control-centric method can be
used to compare the delay spreading characteristics of different
networks and obtain the operational insights by comparing the
US and European networks. In this study, we use an LQR
algorithm to implement the optimal control strategy, but the
comparison strategy is not limited to the presented algorithm.
Operationally, controlling the state of the MJLS model, x(t)
through an input vector u(t) means that we can change the
inbound or outbound delays at the airports by u(t). In such a
case, the system would evolve as

x(t+ 1) = Am(t)x(t) +Bu(t) (5)

where u(t) is the control input, B is a 0-1 matrix to determine
which airports can be controlled, the initial conditions x(0)
and m(0) are given, and the probability of transitions are
governed by Equation (4). Operationally, we could control
delays at particular airports at such tactical time scales by a
combination of preferential routing, airspace flow control pro-
grams that can re-distribute delays, or ground delay programs
(in the US). While the exact mechanics of how such a control
action can be achieved is not a focus of this paper, we wish to
study the potential effect of one airport, or a group of airports
on the entire system.

A metric of resillience for an airport would be its ability
to reduce delays in the entire system. Formally, we define it
in this setup. Suppose we wish to minimize the delay-cost,
i.e the sum of delays during the course of a day for a given
initial delay state. In other words, we want to minimize the
following quadratic cost function:

E[
T∑

t=1

(x(t)Tx(t) + ηu(t)Tu(t))] (6)

where η ≥ 1 is a positive scalar. Naturally, to minimize
delays, we would have to take a control action u(t). This



11

control action comes with a penalty, that is scaled by η.
Thus, the ability of control actions at specific airports to
reduce this objective function, for a given η is defined as the
controllability of the airport. Lower the total cost, greater is
the airports ability to influence the delay dynamics and help
improve system performance. A specific way to allow for
control actions only at specific airports would be to set the
corresponding columns of B to zero.

The optimal control law that minimize this cost function is
a state feedback law [32] and is given by:

u∗(t) = Fm(t)(t)x(t) (7)

Analytical, closed form expressions for the gain matrix F ,
and the optimal cost are presented in [32], and is a standard
LQR control problem.

B. Comparing the model parameters in European and US
Networks

First, we identify these model parameters (i.e the α, β, π,
A) for the Europe and US models. The discrete modes, i.e the
weight influence matrix W are chosen based on the 8 char-
acteristic delay states. Additionally, since each corresponding
delay state may represent either an increasing or decreasing
delay trend, they are further split into two, based on the trend
for the total system delay. For instance, delay state 1 in the US,
corresponding to Chicago ORD high delays is split into two
modes, one corresponding to Chicago increasing delays, and
other corresponding to Chicago decreasing delays. Thus, there
are 16 discrete modes for each of the networks. This allows
for the empirical evaluation of the transition matrices and the
average weights W for each of the modes. The parameters α
and β are evaluated through linear regression.

TABLE VII: Weighted Average Values of α and β Parameters
for the EU and US Networks.

Weighted Average
α β

Europe 0.164 0.027
US 0.142 0.022

The model parameters α and β are interesting novel mea-
sures of delay resilience. Unlike conventional network theo-
retic measures that just depend on the structure and connectiv-
ity of the airports, these measures explicitly take into account
the delay process that is evolving on the network. From data,
we learn an α (and β) for each airport (or airport pair) and
mode. Thus, when we refer to the alpha-value of an airport,
it is the mode-frequency weighted average value. Formally, if
fm denotes the empirically observed frequency of occurrence
of mode m ∈ {1, . . . , ,M}, then the average value of alpha,
for an airport is given by

∑M
m=1 fmam. Consequently, the

average alpha for the whole network is the average over all
the airports in the network. A similar analogy exists for the
betas. It is worth reminding that the α parameter represents the
persistence term in the delay dynamics. Higher the α, higher
is the persistence of the delay level. This not only means that
high delays at an airport tend to take longer to die down, but

(a) Airports in the European Network

(b) Airports in the US Network

Fig. 11: Weighted average value of the model parameters for
the 30 busiest airports. Airports are sorted in the descending
order of α/β.

also that an increase in delay also is a slow process. Overall, it
simply means that the inertia, or resistance to change in delay
levels is high. Airports where demand is very close to capacity,
and with very little buffer in terms of operations tend to have
highly disciplined schedules to avoid delays. This explains the
high resistance to change, when the delays are low. On the
other hand, when delays are inevitably encountered, the limited
buffer also provides very little relief to aid in the recovery, thus
making it slow. The beta term refers to the airports ability to
influence, or get influenced by others. When β is high, the in-
bound and out-bound delays at an airport depend strongly on
the outbound and inbound delays at other airports respectively.
Airports with high values of β are typically well connected in
the system, both in terms of traffic, and also the nature of
airports it is connected to.

The mode and airport averaged values of alpha and beta for
the US and Europe network is presented in Table VII. On the
whole, both networks have a similar value for the α and β
parameter. Going one step further, the ratio α/β is used to
identify which network tends to have more inter-connectivity
effects dominate the delay dynamics. Interestingly, this param-
eter is also similar for both Europe and the US network.

A more nuanced view emerges when we look at α, β,
and their ratio at an airport level (Fig. 11). In Europe, the
three airports that have highest average α values are London
(EGLL), Palma Spain (LEPA) and Amsterdam (EHAM), and
the airports that have highest average β values are Amsterdam
(EHAM), Paris (LFPG), and Frankfurt (EDDF). All these
airports that have high α or β, except Palma, are large hub
airports. However, the characteristics of these hub airports
are not all the same. The airports in Fig. 11 are sorted in
descending order of the ratio α/β. This means that London
(EGLL) is more persistence to delays rather than network in-
teractions when compared with the Paris (LFPG). This fidelity
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of characterization of airport hubs is only possible through
our analysis using the dynamics of delays on networks. The
other airports in Europe having high α/β ratios are Istanbul
Sabiha (LTFJ), Palma (LEPA), and Helsinki (EFHK). In US,
the top three airports that have highest average α values are
San Francisco (KSFO), New York Laguardia (KLGA), and
New York Kennedy (KJFK), and the airports that have highest
average β values are Houston (KIAH), Chicago (KORD), and
Los Angeles (KLAX). All these airports that have high α or
β are also large hubs. The airports that have highest α/β
values are New York Kennedy (KJFK), San Francisco (KSFO),
and Honolulu (KHNL). These airports are more sensitive
to the persistence of delays than the network interactions
when compared with the airports that have relatively small
α/β values such as Houston (KIAH) and Dallas/Fort Wroth
(KDFW).

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

0.2

0.4

0.6

0.8

1

Fig. 12: Comparison of the full and partial control strategies

(a) European airports

(b) US airports

Fig. 13: Expected cost when the control action is restricted to
one airport in the network

C. Comparing the control effectiveness of US and European
airports

We also analyse the European and US networks in terms of
the ability of airports to reduce the spread of delays. We utilize
the aforementioned LQR-based controller to reduce the delays
as described by the MJLS models for both networks. In the
first analysis, we compare the performance of the full control
and partial control strategies. The full control corresponds to
the control of all airports in the network, while the partial
control refers to the control of a subset of the airports in the
network. This controllable set of airports is specified by setting
the B matrix. In the first analysis, the controllable set contains
the top five airports that have highest degree centralities in the
network. The aim is to analyse the impact of the highest degree
airports on the control performance. The expected costs in the
full control and partial control strategies are presented for both
networks in Fig. 12 as a function of the penalty parameter η.
Recall that the total cost is the sum of the expected delay cost
over the 24 hour period and the penalty for the control action.
The cost is normalized such that when no action is taken,
the total is 1, and any control action would lead to a total
cost strictly less than 1. For a fixed η, lower the cost, more
effective is the chosen subset of airports in controlling the
spread of delays. As shown in Fig. 12, in US, the performance
of the partial control setting is closer to the performance of
the full control. However, this is not the case for Europe. The
performance difference between the full and partial control
settings in EU are higher than the difference in US. Therefore,
the high-degree nodes have higher impact on the control of the
network in US when compared with the European network.

In the second analysis, we focus on the individual airports
to quantify their influence on the system. In this case, only one
airport in the network is controllable. The parameter η is set
to be 1. For both networks, the individual control performance
of the busiest 30 airports are presented in Fig. 13. In Europe,
the performances of the first 23 airports are closer to each
other, while the rest of the airports have worse performances
than these airports. For the first 23 airports, the consecutive
airports have approximately same effectiveness, but there is a
steady increase in the expected cost. So, there is a performance
difference between the 1st and 23rd airports. The top three
airports that have highest impact on the control performance
are LEPA, EFHK, and LTFJ. It is interesting to see that these
three airports have also highest α/β ratios. However, it is not
always the case. For example, LTBA is one of the airports
that have high impact on the control performance, whereas it
has an average α/β ratio. The control performance is affected
from the model’s parameters, connectivity structure and delay
levels, so it is more complicated than the model’s parameters.
However, when compared with the US network, the airports
that have high α/β ratio in Europe have a tendency to have
high impact on the control performance. In US, the top three
airports that have highest impact on the control performance
are KLGA, KPHL, and KATL. In these three airports, only
KLGA is one of the airports that have highest α/β ratio.
Besides, KATL and KDFW are in the third and fourth places
in terms of control effectiveness, and these two airports are 2
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of 3 airports that have highest degree centralities in US. When
compared with Europe in terms of the control effectiveness,
there is a tendency in US to prefer the high degree nodes to
the nodes that have high α/β ratio. Furthermore, as is the case
in Europe, the performances of the first 21 airports in US are
closer to each other, while the rest of the airports have worse
performances than these airports. However, the performance
difference between the first and second groups of airports in
US is not as large as the difference in Europe. The performance
difference between the best and worst cases in US is smaller
than the difference in Europe. Therefore, the US network has
a more homogeneous control effectiveness than the European
network.

D. Discussions

On the whole, the US and Europe networks have similar
delay persistence and delay-spreading tendencies. However,
we do identify specific airports that have high persistence
(α) and delay-interconnections (β). The control effectiveness
of an airport in reducing the delays in the entire system is
a novel, and practical measure of the role of the airport in
system performance. In fact, as seen with the example of
the Europe network, it is clear that this metric is different
from the traditional notion of degree centrality. Thus, a more
operationally driven measure of resilience, that incorporates
information about the dynamics of delays is more valuable
for researchers in identifying critical airports. Lastly, we re
emphasize that the stronger inter-connectivity in terms of
traffic in the US is a double edged sword- it not only increased
the delays and contributes to greater spreading, but also
provides greater flexibility and controllable in recovering from
disruptions.

V. CONCLUSIONS

This work compared the resilience of aviation networks in
the US and Europe in terms of flight connectivity and delay
propagation. The main objective was to compare the resilience
of the two systems, and identify critical airports for these two
major regions of aviation traffic in the world.

Through our analysis, we identify that the US airport
network is more dense in terms of the traffic, has stronger
connections between major hubs, has higher delays on an
average, and can lead to greater spreading of flight delays.
On the other hand, such high inter-connectivity also enables
better disruption management and recover, as highlighted from
the control theoretic analysis and the MJLS network models.
A key contribution of our work is the identification of airports
that are critical for the resilience and robustness of the system
both in Europe and the US.

A comparison of different aviation infrastructures is useful
for understanding the geographical and historical context for
many of the observed effects on system resilience. Using
models and control theoretic measures to quantify the role of
airports is a new approach towards quantifying resilience not
only in the aviation context, but also other networked systems
ranging from transportation, communication, and critical in-
frastructures. The use of our simple, data-driven MJLS model

to analyze other systems from a network resilience perspective
is an area of ongoing work.

APPENDIX A
Consider a weighted directed graph with N nodes and

the edge weights represented using the weight matrix W ∈
ℜN×N . The underlying connectivity is represented using the
adjacency matrix A ∈ ℜN×N , where aij = 1 if wij > 0, and
aij = 0 if wij = 0. And, the symmetrized weight matrix is
defined as follows: W sym = (W +WT )/2.

A. Node properties

a) Degree: The degree of a node captures the number
of connections to or from other nodes. The in-degree of a
node i is defined as dini =

∑N
j aji, and the out-degree as

douti =
∑N

j aij . The total degree is the sum of its in-degree
and out-degree: dtoti = dini + douti .

b) Strength: The strength, in contrast to the degree,
captures the intensity of the connection, and not just the
number of such connections [9]. The in-strength, out-strength,
and total strength of node i are defined as sini =

∑N
j wji,

souti =
∑N

j wij , and stoti = sini + souti .
c) Betweenness Centrality: Bridging nodes that connect

disparate parts of the network often have a high betweenness
centrality. It is defined using the shortest path concept for every
node i as Bi =

∑
s̸=t

σst(i)
σst

, where σst is the number of
shortest paths going from node s to node t, and σst(i) is the
number of shortest paths going from s to t passing through i.

d) Eigenvector Centrality: The influence of a node in
the network can be measured by the eigenvector centrality as
nodes with a high eigenvector centrality have strong connec-
tions with other nodes that have a high eigenvector centrality.
It’s value at each node is the eigenvector corresponding to the
largest eigenvalue of W sym.

e) Expansion (Rate of Spreading): The expansion metric
for each node is the number of nodes that can be reached
within h hops. This can be computed for the whole network
[33] by averaging over all the nodes,and normalizing by N ,
to quantify the faction of the network that can be covered by
the whole graph (the reachable set).

f) Clustering Coefficient: The clustering coefficient for
a node i is the ratio of the number of triangles with node i
as the vertex to the maximum possible triangles that could
have existed for another node of the same degree. This metric
captures the tendency of the graph to form small tight com-
munities, and can be extended for weighted directed graphs
too as shown in [34].

B. Classification of nodes

a) Core and Periphery Nodes: The core/periphery subdi-
vision is a partition of the network into two non-overlapping
groups of nodes based on whether a node is central in the
network or not [35].

b) Modularity: The modularity is used to subdivide the
network into groups of nodes in a way that maximizes the
number of within-group edges, and minimizes the number of
between-group edges [36].
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c) Gateway Coefficient: The gateway coefficient identi-
fies nodes which have both high inter-community, and intra-
community connections [37]. It is thus used to identify gate-
ways, or critical nodes in a community that serve as links to
other communities.

C. Graph properties

a) Size of giant component: The giant component refers
to the largest connected nodes in the network. The size of the
giant component denotes the number of nodes in this set. This
size could also be normalized for comparison purposes.

b) Bow-Tie Structure: The bow-tie structure (adapted
from [38]) is obtained by dividing the giant component into
three regions. The center region corresponds to the set of
connected nodes such that for any pair of node i and j in the
set there is an edge from i to j. The left region contains the
nodes that can reach the center region, while the nodes in the
left region can’t be visited from the nodes in the center region.
The right region consists of the nodes that can be reached from
the center region, whereas the nodes in the right region can’t
reach the nodes in the center region. The identification of this
structure highlights the directional influence of nodes in the
network.

c) Rich-Club Parameter: This measures the tendency of
prominent elements to form clubs with exclusive control over
the majority of a system’s resources [39]. It refers to the
fraction of weights shared by the rich nodes compared with the
total amount they could share if they were connected through
the strongest links of the network. As a richness parameter,
any network metric can be used. In case the degree is used
as the richness variable, the rich-club parameter evaluates the
tendency for high-degree nodes to be more densely connected
among themselves than nodes of a lower degree [40].

d) Robustness to targeted node removal: : In this metric,
the size of the giant component is computed for repeated
removals and isolation of nodes from the network. This
measure of resilience quantifies the ability of the node to
retain connectivity and function even when some parts are
compromised. Several approaches to removing the nodes can
be used, ranging from centrality measures like eigencentrality,
degree, strength etc., or even a simple greedy approach (e.g.
damage metric [41]).
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