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ABSTRACT This paper focuses on optimization-based control of multi-aircraft systems that have several
mission objectives. Signal Temporal Logic (STL) is used to express the mission specifications that combine
temporal and logical constraints. A methodology is presented to construct an optimization problem in
the form of Mixed-Integer Linear Programming (MILP) by using the differential flatness property of a
nonlinear dynamical system and STL specifications to generate feasible trajectories. Contrary to general
implementations of Temporal Logic to discrete-time systems, the proposed method deals with continuous-
time systems. It can be used to find optimal control strategies to achieve the assigned tasks for nonlinear
dynamical systems without discretizing the system dynamics. As an illustration, we present an air traffic
control example. The nonlinear dynamical model for the aircraft is represented as a partially differentially flat
system, and the presented method is applied to manage approach control and to solve the arrival sequencing
problem. The method is also applied with a quadrotor fleet to show that the method can be used with different
multi-agent systems.

INDEX TERMS Signal temporal logic, multi-aircraft systems, air traffic control, optimization-based control,
differential flatness.

I. INTRODUCTION
Mission planning and control of multi-aircraft systems
involve several temporal and logical constraints. These con-
straints can naturally be specified using Temporal Logic (TL),
a system of rules and symbolism. STL is an extension of TL in
which temporal operators also contain timing constraints for
specifying properties of real-valued signals [1].When dealing
with continuous systems, STL is convenient to specify these
constraints.

Temporal logic has been studied as a formal language for
specifying system behaviors and complex tasks. Linear Tem-
poral Logic (LTL) has been employed as a tool for specifying
the restrictions in discrete-time dynamical systems [2]. The
LTL specifications are represented as mixed-integer linear
constraints to generate optimal control strategy for a discrete-
time system via Mixed-Integer Programming (MIP). STL
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specifications have been encoded as mixed-integer linear
constraints to specify system’s properties such as safety and
response for model predictive control of discrete-time sys-
tems [3]. In both the above studies, it is required to add deci-
sion variables at every time step for a specific temporal logic
constraint. Therefore, these approaches do not scale well.
There are also studies that present heuristics in order to reduce
MIP complexity in these approaches. The authors of [4] pro-
pose a heuristic to add constraints when necessary instead of
adding auxiliary decision variables at every time step. There
are also studies such as [5] that evaluate the problem as a non-
convex optimization problem to generate trajectories with
Metric Temporal Logic (MTL) specifications. Consequently,
the system can have nonlinear dynamics but it should be
discretized. Stochastic heuristics have also been proposed
for finding system behaviors that falsify a temporal logic
property. For example, the study [6] presents a Monte-Carlo
technique for finding counterexamples to MTL properties.
The algorithm can be applied to nonlinear dynamical systems
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in continuous-time. However, it is a sampling-based method
without guarantees and it is hard to apply this approach to
multi-agent systems. Temporal logic specifications have also
been studied with multi-agent systems. The desired behavior
of a group of agents is specified with variants of TL in
the studies [7]–[9] that evaluate the problem in a grid-based
environment using discrete abstractions of the system dynam-
ics. It is common practice in many studies to use discrete
abstractions when dealingwith temporal logic formulti-agent
systems. These studies provide correctness guarantees for
the discrete behavior. However, it is a simplified version of
the real system. In the study [10], the authors focus on mis-
sion planning of multi-quadrotor systems. Using a trajectory
generator, they construct a non-convex optimization prob-
lem to obtain trajectories that satisfy the STL specifications
in continuous-time. However, the study mainly focuses on
quadrotors, and it decouples the equations of motion along
three orthogonal axes. Because of this decoupling, the pre-
sented method cannot be implemented to fixed-wing aircraft.
Moreover, the study mainly focuses on the position informa-
tion, and STL specifications cannot be given in terms of the
angles. However, sometimes it may be necessary to specify
orientations. For example, in arrival sequencing, it may be
necessary to align the aircraft with respect to the runway’s
direction.

In this paper, we propose a methodology to overcome these
limitations.We encode the missions of the multiple aircraft as
STL specifications. Then, using differential flatness theory,
we construct an optimization process to generate optimal
strategies for multiple aircraft to satisfy the STL specifica-
tions, which corresponds to completing the assigned tasks.
The proposed method generates control inputs as continu-
ous real valued functions, and it generates feasible trajec-
tories that satisfy the missions and performance limitations.
We focus on air traffic control tasks using a realistic nonlinear
aircraft model to illustrate our approach. We also simulate a
case study with a quadrotor fleet to show the generalizability
of the proposed method to other multi-agent systems.

As mentioned before, the majority of the existing studies
such as [2]–[5] discretize the system dynamics to ensure
the STL specifications in discrete-time. One of the contri-
butions of this study is that the proposed method generates
feasible trajectories in continuous-time that satisfy the tasks
described via STL, without discretizing the system dynamics.
Although some of the constraints in the optimization problem
are enforced only at the sampled times, this sampling does not
jeopardize continuous-time satisfiability. Compared to the
existing MILP-based approaches such as [2], [3], the devel-
oped method has better scalability to deal with nonlinear
system dynamics, because it is not necessary to add excessive
auxiliary decision variables. The method can be used with
different multi-agent systems such as a fleet of fixed-wing air-
craft or multi-quadrotor systems. Because of this generaliz-
ability, it overcomes the restriction of the studies such as [10]
that are developed for specific systems. The proposed method
fills a gap in the literature by showing that a MILP based

approach works well for the STL satisfaction of differentially
flat nonlinear systems. The study presents a convenient way
to use the flatness property of a nonlinear dynamical system
to satisfy STL specifications. To the best of our knowledge,
no other study in the literature presents a convenient way to
form a MILP that is used to guarantee the continuous-time
satisfiability of the STL specifications for nonlinear continu-
ous systems. Moreover, the method enables us to use realistic
nonlinear dynamical models when evaluating the complex
missions of multi-agent systems, contrary to many existing
studies such as [7]–[9] that use discrete abstractions of the
system dynamics and grid-based environments for mission
planning of multi-agent systems. The presentation of the
partially-flat aircraft model that can be used in Air Traffic
Management (ATM) applications is also a contribution.

The paper is organized as follows. Section II presents the
system behavior and STL specification formalism. Section III
introduces (partially) differentially flat systems and explains
motion planning for flat systems to generate feasible trajec-
tories that satisfy STL specifications. The aircraft dynam-
ics is expressed as a partially differentially flat system in
Section IV. Section V explains the details of the optimization
process. Finally, examples are given in Section VI.

II. SYSTEM BEHAVIOR AND SIGNAL TEMPORAL LOGIC
We consider the continuous-time dynamical systems of the
form:

ẋ(t) = f (x(t), u(t)) x(0) = x0 (1)

where x(t) ∈ Rn is the vector of system states, u(t) ∈ Rm is
the vector of control inputs and x0 ∈ Rn is the initial state of
the system. A state trajectory x is a vector of continuous-time
signals, and this trajectory is derived from an action trajec-
tory by running the system model (1). An action trajectory
contains the control inputs for a specific time period [0,T ],
and the state trajectory is generated for this finite time period.

A. SIGNAL TEMPORAL LOGIC
The desired system behaviors can be specified using Signal
Temporal Logic (STL) [1]. In this study, we use the future
fragment of STL, which does not contain the since operator.
The set of formulas of STL can be recursively defined by:

ψ ::= > | µ | ¬ψ | ψ1 ∧ ψ2 | ψ1 U[a,b] ψ2

where ψ is an STL formula, and µ is an atomic predicate
whose value depends on the sign of a function of x. > is
the Boolean True. ¬,∧, and U are the negation, conjunction,
and until operators, respectively. The other connectives can
be defined with regard to these operators. The following
identity allows to define the disjunction (∨) in terms of the
negation and the conjunction, ψ1 ∨ ψ2 = ¬(¬ψ1 ∧ ¬ψ2).
The operators eventually (♦[a,b]) and always (�[a,b]) can be
defined as ♦[a,b]ψ = >U[a,b]ψ and �[a,b]ψ = ¬♦[a,b]¬ψ ,
respectively. Additionally, the operators implication (⇒) and
equivalency (⇔) can be presented as ψ1 ⇒ ψ2 = ¬ψ1 ∨ψ2
and ψ1 ⇔ ψ2 = (ψ1 ⇒ ψ2) ∧ (ψ2 ⇒ ψ1), respectively.
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The validity of a formula ψ with respect to signal x at time
t is defined as follows:

(x, t) � > iff >

(x, t) � µ iff µ(x(t)) ≥ 0

(x, t) � ¬ψ iff (x, t) 2 ψ
(x, t) � ψ1 ∧ ψ2 iff (x, t) � ψ1 and (x, t) � ψ2

(x, t) � ψ1U[a,b]ψ2 iff ∃s ∈ [t + a, t + b], (x, s) � ψ2

and ∀s′ ∈ [t, s], (x, s′) � ψ1

The trajectory x satisfies the formula ψ if and only if
(x, t) � ψ . Additionally, the semantics of the operators
eventually and always can be given as follows:

(x, t) � ♦[a,b]ψ iff ∃s ∈ [t + a, t + b], (x, s) � ψ

(x, t) � �[a,b]ψ iff ∀s ∈ [t + a, t + b], (x, s) � ψ

B. ROBUST STL SPECIFICATIONS
The robust semantics of STL ( [11], [12]) can be used to
give the system the ability of tolerating perturbations. The
robustness of STL formula ψ can be specified via a function
ρψ (x, t) that is defined recursively as follows:

ρµ(x, t) = µ(x(t))

ρ¬ψ (x, t) = −ρψ (x, t)

ρψ1∧ψ2 (x, t) = min(ρψ1 (x, t), ρψ2 (x, t))

ρψ1U[a,b]ψ2 (x, t) = max
s∈[t+a,t+b]

(
min

(
ρψ2 (x, s),

min
s′∈[t,s]

(ρψ1 (x, s′))
))

For any signal x and STL formula ψ , x satisfies ψ at time
t if ρψ (x, t) > 0 such that ρψ (x, t) > 0 ⇒ (x, t) � ψ . The
magnitude of the ρψ (x, t) quantifies the robustness for the
formula ψ .

III. MOTION PLANNING WITH STL SPECIFICATIONS FOR
FLAT SYSTEMS
Themotion planning problem corresponds to finding a trajec-
tory t 7→ (x(t), u(t)) from a set of specific initial conditions to
a defined final state while satisfying the system dynamics ẋ =
f (x, u). If some STL specifications are added as constraints
on the trajectory, the problem is transformed into a motion
planning with constraints. In the general case, this problem
can be quite difficult because it requires the integration of
the system equations to find the sequence of control inputs
that satisfies the initial conditions, final conditions and con-
straints. For nonlinear systems, it may pose some additional
problems [13].

The trajectory generation is particularly easy for the dif-
ferentially flat systems. The dynamical system (1) is differ-
entially flat if there exist relations ( [14]–[16])

ζ : Rn
× (Rm)r+1→ Rm,

η : (Rm)r → Rn, and

κ : (Rm)r+1→ Rm. (2)

such that

z = ζ (x, u, u̇, . . . , u(r)), (3)

x = η(z, ż, . . . , z(r−1)), and (4)

u = κ(z, ż, . . . , z(r−1), z(r)). (5)

where ζ, η, κ are smooth functions, and z is the flat output
vector. This means that all system dynamics can be expressed
as a function of the flat outputs and their derivatives. This
model is equivalent to (1) and can be used to efficiently gener-
ate trajectories. The equations (4) and (5) yield that for every
given trajectory of the flat output t 7→ z(t), the evolution of all
other variables of the system t 7→ x(t) and t 7→ u(t) is also
determined without integration of the system of differential
equations. Moreover, given a sufficiently smooth trajectory
for the flat output t 7→ z∗(t), equation (5) can be used to
generate the corresponding feedforward u∗ directly.

Let us suppose that all system variables cannot be
expressed as a function of the flat outputs and their deriva-
tives. The dynamical system (1) is partially differentially flat
if a partition of the system variables (xd , ud ) can be expressed
as in equation (4) and (5) via the set of smooth functions
ηd , κd , while the rest of the system variables (xn, un) are
presented in the following form:

ẋn = α(xn, un, z, ż, . . . , z(r−1)), and (6)

un = β(xn, z, ż, . . . , z(r−1), z(r)). (7)

In this case, it is also possible to generate trajectories for the
system variables (xd , ud ) such that t 7→ xd (t) and t 7→ ud (t)
from a given trajectory t 7→ z(t) without numerical integra-
tion. However, it is necessary to integrate the equation (6) to
generate the trajectories for the system variables (xn, un) such
that t 7→ xn(t) and t 7→ un(t).
Let us define each element of the flat output z as a linear

combination of certain basis functions of the time, i.e.,

zi =
Ni∑
j=1

cjiφji(t) (8)

where, cji is a weighting coefficient or control point, φji(t) is
a basis function and z = [z1, z2, . . . , zs]T .
There are several candidates that can be used as basis

functions. In this study, B-spline basis functions are used to
present the flat outputs. Let p be a nonnegative integer and
let T = {τ0, τ1, . . . , τm}, the knot vector, be a nondecreasing
sequence of real numbers. The qth B-spline basis function of
p-degree, denoted by Nq,p(t), is defined as [17]:

Nq,0(t) =

{
1 if τq ≤ t < τq+1

0 otherwise
(9)

Nq,p(t) =
t − τq

τq+p − τq
Nq,p−1(t)+

τq+p+1 − t
τq+p+1 − τq+1

Nq+1,p−1(t)

(10)

The B-spline functions yield some geometric proper-
ties [17] that affect the performance of the trajectory gener-
ation positively when dealing with the dynamical systems.
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For example, a B-spline curve such as zi in (8) is Cp−1 in any
t ∈ T, andC∞ otherwise. It is a continuous and differentiable
function. The higher order derivatives of B-spline basis func-
tions can be presented as linear combinations of B-splines
of lower order, and the weighting coefficients (or control
points) have linear impact on the higher order derivatives of
the curve such that z(k)i =

∑Ni
j=1 cjiφ

(k)
ji (t), where φ(k)ji (t) is

k-order derivative of basis function. Moreover, the B-spline
functions satisfy thatNq,p(t) ≥ 0 and

∑n
q=0 Nq,p(t) = 1, ∀t ∈

[τ0, τm], and they have local support such that Nq,p(t) 6= ∅ iff
t ∈ [τq, τq+p]. Hence, the adjustment of a specific weighting
coefficient leads to change shape of a specific region of the
curve without affecting the rest of it.

Let C be the set of the control points that configure the
flat output for the dynamical system (1). Equation (8) and a
given C construct the trajectory of the flat output t 7→ zC (t).
The trajectory t 7→ zC (t) can be modified by changing the
coefficients in C , where each coefficient is a control point
that shapes a specific region of the trajectory. However, some
coefficient sets can generate infeasible trajectories because of
the violation of the dynamical constraints or STL formulas.
Using the analytical expressions in (4) and (5), the trajectories
of the system variables t 7→ xC (t) and t 7→ uC (t) can be
expressed in terms of C . Then, the violation of any constraint
can be checked via these system trajectories. By tuning the
coefficients, these violations can be removed. Because of the
local support property, each coefficient has impact on a spe-
cific region of the trajectory. Therefore, the violations can be
removed by changing only some specific coefficients without
modifying all of them. The tuning process can be achieved
via an algorithm or an optimization problem. In this study,
we construct an optimization problem to find the proper
control points that generate feasible trajectories with STL
specifications. When dealing with partially differentially flat
systems, we avoid presenting the dynamical constraints and
STL specifications in terms of the system variables (xn, un)
during the trajectory planning to prevent the costs that orig-
inate from integrating the differential equations. All con-
straints and STL specifications are expressed with respect to
the system variables (xd , ud ) that form the differentially flat
part of the system. However, the system variables (xn, un) are
generated from the flat output’s trajectory t 7→ zC (t) after the
set C is determined.

IV. AIRCRAFT DYNAMICS AS A PARTIALLY
DIFFERENTIALLY FLAT SYSTEM
In this study, we use the following set of equations as the
dynamical system (1) to model the aircraft dynamics that was
used in ( [18]–[20]) for air traffic control applications.

ẋ1 = x4 cos(x5) cos(u3) (11)

ẋ2 = x4 sin(x5) cos(u3) (12)

ẋ3 = x4 sin(u3) (13)

ẋ4 = −
CDSρx24

2x6
− g sin(u3)+

u1
x6

(14)

ẋ5 =
CLSρx4
2x6

sin(u2)
cos(u3)

(15)

ẋ6 = −F (16)

The model is a nonlinear dynamical system, where the
control inputs are the engine thrust (u1), bank angle (u2), and
flight path angle (u3), and the state variables are the horizontal
position (x1 and x2), altitude (x3), true airspeed (x4), heading
angle (x5), and the mass of the aircraft (x6). In the equation set
above, aerodynamic lift and drag coefficients are denoted by
CL and CD, gravitational acceleration is g, total wing surface
area is S, air density is indicated as ρ, and the fuel consump-
tion is indicated asF . These coefficients and other parameters
such as bounds on the speed, flight path angle and mass are
obtained from the Base of Aircraft Data (BADA) [21].

The lift coefficient and drag coefficient are expressed as
follows:

CL =
2mg cos (γ )
ρV 2S cos (φ)

(17)

CD = CD0 + CD2C2
L (18)

where CD0 and CD2 are constants specified in the database.
γ, φ and V are the flight path angle, bank angle and speed,
respectively.

The dynamical system (11)-(16) is partially differentially
flat, when the flat output z is expressed as follows:

z = [x1, x2, x3]T (19)

The differentially flat part of the system consists of the
system variables x1, x2, x3, x4, x5, u2 and u3. Let us give the
flat descriptions of these variables. The first three variables
directly correspond to the flat outputs. Using Equation (11),
(12) and (13), the fourth variable x4 can be expressed as
the Euclidean norm of the derivatives of the flat outputs as
follows:

x4 =
√
ż21 + ż

2
2 + ż

2
3 (20)

The variable x5 can be described in terms of the derivatives
of the first two flat outputs by dividing Equation (12) to
Equation (11), as:

x5 = arctan
(
ż2
ż1

)
(21)

By modifying Equation (13), the variable u3 can be
given by:

u3 = arcsin
(

ż3√
ż21 + ż

2
2 + ż

2
3

)
(22)

The variable ẋ5 can be obtained from Equation (21) and the
lift coefficient CL is presented in Equation (17). By writing
the expressions for ẋ5 and CL into Equation (15), the variable
u2 can be formulated as follows:

u2 = arctan
( (z̈2ż1 − ż2z̈1)√ż21 + ż22 + ż23

g(ż21 + ż
2
2)

)
(23)

155944 VOLUME 7, 2019



B. Başpınar et al.: Mission Planning and Control of Multi-Aircraft Systems With STL Specifications

The rest of the system variables u1, x6 cannot be expressed
only in terms of the flat outputs and their derivatives. These
variables can be presented in the form of (6) and (7). The
acceleration ẋ4 can be derived from Equation (20) and the
variables x4, u3 are presented before. By putting these expres-
sions into Equation (14), the engine thrust u1 can be given as
follows:

u1=x6
( ż1z̈1 + ż2z̈2 + ż3(g+ z̈3)√

ż21 + ż
2
2 + ż

2
3

)
+0.5CDS(ż21 + ż

2
2 + ż

2
3).

(24)

The value of u1 depends on the variable x6. To calculate x6,
the fuel consumption F must be expressed. In BADA, there
are different functions that are used to determine the fuel
consumption, and these functions are presented with regard
to the aircraft type and flight phase. For a jet aircraft in the
descent phase, the fuel consumption is as follows:

F = Cf3 (1−
Hp
Cf 4

) (25)

where Cf3 and Cf 4 are constants, and Hp is geopotential
pressure altitude. Using this expression, the derivative of the
mass can be presented as a function of the altitude:

ẋ6 = α11(z3) (26)

A function of the altitude z3, speed x4 and thrust u1 can be
used to generalize the calculation of the fuel consumption.
Then, the following equation covers the operation in any
flight phase:

ẋ6 = α12(z3, ż1, ż2, ż3, u1) (27)

Both Equation (26) and Equation (27) are in the form of (6).
Therefore, the dynamical system (11)-(16) is a partially dif-
ferentially flat system, where xd = [x1, x2, x3, x4, x5], ud =
[u2, u3], xn = x6, un = u1 with the flat descriptions (19)-(27).

V. OPTIMIZATION-BASED CONTROL OF MULTIPLE
AIRCRAFT WITH STL SPECIFICATIONS
This section presents the optimization problem that is used to
generate the feasible trajectories with STL specifications to
control multiple aircraft.

Let A be the set of aircraft, whose dynamics are presented
with the flat descriptions (19)-(27), and each flat output is
expressed as in Equation (8). Let CA be the set that contains
all control points for all aircraft in A. Then, by specifying
the control points in CA as decision variables, the following
optimization problem can be formulated to generate the opti-
mum trajectories and control inputs that ensure the given STL
formulas:

max
CA

ρψ (z) (28)

subject to d(z) ≥ 0 (29)

b(z) = 0 (30)

µψ (z) ≥ 0 (31)

where ρψ (z) symbolizes the robust specification of the STL
formula, µψ (z) symbolizes the vector of the boolean specifi-
cations that construct the formula ψ , the vector d(z) denotes
the dynamical constraints, and the vector b(z) denotes the ini-
tial conditions or other equality constraints that are presented
in the flat space. The solution of this optimization problem
corresponds to the values of the control points for all aircraft.
After obtaining the control points, the state trajectories and
control inputs are generated in continuous-time by using the
flat descriptions (19)-(27).

This optimization problem can be expressed as a non-
convex optimization problem or a mixed-integer linear pro-
gramming (MILP). In this study, we focus on the second
case and present the objective and all constraints as linear
expressions.

A. PERFORMANCE LIMITS AND INITIAL CONDITIONS
Any performance limit can be presented in the constraint
set (29). Let us consider the restriction of the aircraft speed.
By using the expression (20), the aircraft speed can be
bounded with the following constraints:

V 2
min ≤ ż

2
1 + ż

2
2 + ż

2
3 ≤ V

2
max (32)

where Vmin and Vmax are the bounds for the speed. However,
this expression is nonlinear. In a non-convex optimization
problem, this expression can be directly used, whereas it
should be presented as linear constraints in MILP formula-
tion. Let us evaluate the vertical and horizontal speeds sepa-
rately. The rate of climb/descent ż3 can be directly bounded
such that V v

min ≤ ż3 ≤ V v
max . To bound the horizontal speed,

we approximate the Euclidean norm ‖[ż1 ż2]T ‖ by the edges
of an N-sided polygon that can be captured by the following
inequalities [22]:

ż1 sin
(2πn
N

)
+ ż2 cos

(2πn
N

)
≤ V h

max , n = 1, . . . ,N

ż1 sin
(2πn
N

)
+ ż2 cos

(2πn
N

)
≥ V h

min −Man

N∑
n=1

an ≤ N − 1

an ∈ {0, 1} (33)

where V h
min and V

h
max are the bounds for the horizontal speed,

and M is a large enough number. The other performance
variables can also be restricted. To bound the acceleration,
the N-sided polygon approach can also be used. In the opti-
mization problem, this kind of constraint is enforced at the
predefined points that are chosen uniformly over the time
interval [t0, tf ].

The constraint set (30) consists of the initial conditions. Let
[x0, y0, h0]T be the initial position of the aircraft at t0. Then,
the initial position is defined in the constraints as follows:

z1(t0) = x0, and z2(t0) = y0, and z3(t0) = h0 (34)

The other system variables can also be assigned to a certain
value at a specific time. Let us focus on the heading angle
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that is presented in the equation (21). Let θ be the assigned
value for the heading angle x5 at time ts such that x5(ts) = θ .
By using the expression (21), this condition can be presented
as follows:

ż2(ts)− ż1(ts) tan(θ ) = 0, and

ż1(ts) ≤ 0 if π/2 ≤ θ < 3π/2

ż1(ts) ≥ 0 otherwise (35)

When it is necessary to specify the values of the several
system variables, the combination of them can be used to
form linear constraints. Let us consider that the initial speed,
initial heading angle and initial path angle are known, and
we want to set x4, x5, u2 to these specific values at time t0.
Instead of setting them separately via equations (20), (21),
(23), these initial values are used to calculate ẋ0, ẏ0, ḣ0 via
equations (11), (12), (13), and these derivatives are assigned
as linear constraints:

ż1(t0) = ẋ0, and ż2(t0) = ẏ0, and ż3(t0) = ḣ0 (36)

B. STL OPERATORS
The tasks of the aircraft such as reaching particular regions,
avoiding obstacles, ensuring appropriate separations can be
described by the help of the convex hulls, where the faces
of a convex hull are defined in terms of the affine expres-
sions. These tasks can be evaluated as lying inside or outside
the convex hulls. For example, obstacle avoidance refers to
staying outside of the corresponding convex hull or lying in
at least one of the outer halfspaces determined by the faces
of the convex hull that can be formulated via disjunction
operator. In like manner, the conjunction operator can be used
to enforce the arriving a particular region. These missions can
be specified with STL formalism. The STL operators should
be described as MILP constraints to present these missions
for the optimization problem.

Let µ be a predicate such that it holds at time t if and only
if µ(x, t)) ≥ 0. When the predicate µ is an affine expression,
this condition of the STL formulas can be directly described
as a MILP constraint:

µ(x, t) ≥ 0 (37)

The other connectives in the STL formulas can also be
described as MILP constraints. The negation of the predicate
µ at time t can be presented as−µ(x, t) ≥ 0. The conjunction
∧
k
i=1µ

i(x, ti) is enforced with the following constraints:

µi(x, ti) ≥ 0, i = 1, . . . , k (38)

The disjunction ∨ki=1µ
i(x, ti) can also be ensured as

follows:

µi(x, ti) ≥ −Mbi, i = 1, . . . , k (39)
k∑
i=1

bi ≤ k − 1 (40)

where M is a large enough number and bi’s are binary
variables.

The operators eventually ♦[α,β]µ and always �[α,β]µ

can be described in terms of the conjunction and disjunc-
tion operators. The operator eventually can be presented as
∨
β
τ=αµ(x, τ ), and MILP formulation of the disjunction oper-

ator is given in (39)-(40). In a similar manner, the operator
always can be described as ∧βτ=αµ(x, τ ).

The robust definition of STL contains the min and max
operators. Let us focus on the MILP formulation of con-
junction operator in the robust setting such that ρψ =

∧
k
i=1ρ

ψi (x, ti). The following set of constraints can be used
to obtain the robust conjunction:

ρψ ≤ ρψi (x, ti), i = 1, . . . , k (41)

M (bψiti − 1) ≤ ρψ − ρψi (x, ti) ≤ M (1− bψiti ) (42)∑k

i=1
bψiti = 1 (43)

bψiti ∈ {0, 1}, i = 1, . . . , k (44)

where the variables bψiti are auxiliary binary variables that are
used to enforce that ρψ = mini(ρψi (x, ti)). The robust dis-
junction can also be presented in a similar manner. By replac-
ing the first inequality with ρψ ≥ ρψi (x, ti), the set of
constraints enforces that ρψ = maxi(ρψi (x, ti)). The negation
of ρψ (x, t) was also presented as−ρψ (x, t). Then, the rest of
the operators can be obtained from these three operators.

C. CONTINUOUS-TIME SATISFIABILITY
It is stated in [11] that satisfying an STL formula for a
sampled trajectory does not imply continuous-time satisfi-
ability unless the formula is strictified. In order to guaran-
tee the continuous-time satisfiability, a given formula φ is
strengthened via a function such that str : φ → φs. Firstly,
an appropriate sampling period1t must be chosen that satisfy
a set of predefined conditions and guarantee the existence of
at least one sampling point within each timing interval of the
temporal operators. Secondly, the trajectory must have con-
servative bounds between two consecutive samples which can
be satisfied as ‖x(t)− x(t+1t)‖ ≤ E1t , where E ≥ 0. Note
that B-spline curves ensure this property. Then, the following
relation holds [11, Theorem 5.3.1]: ρφs (xsamp., t) > E ⇒
ρφ(x, t) � >, where xsamp. is the sampled trajectory and x
is the continious-time trajectory. More detailed information
can be found in Ch. 5 of the study [11]. For an appropriate
sampling period, the value of E can be calculated when the
performance limits are given, and this value can be used in
optimization problem as a buffer. In this way, the continuous-
time satisfiability of an STL formula can be guaranteed,
although the conditions are enforced for the sampled times.
This strategy is also valid for the performance constraints in
the optimization problem such as speed or acceleration.

VI. ILLUSTRATIVE EXAMPLES
In this section, we present the experimental results to eval-
uate the performance of the proposed method and show the
validity of the method for air traffic control and UAV appli-
cations. In the applications, the air vehicles are controlled by
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FIGURE 1. Optimal trajectories for a reach and avoid problem with
20 aircraft.

TABLE 1. Performance evaluation.

a centralized mechanism. In the ATC examples, we use the
performance parameters of Boeing 737-800 for all aircraft,
and we specify the minimum horizontal separation as 3nm,
which is used in the real approach control operations. In the
last case study, we focus on the control of a UAV fleet and
specify the minimum separation as 5m. We construct the
MILP problems in Python programming language using the
PuLP library [23] and generate the solutions using the solver
Gurobi.1 All optimization problems are solved on a laptop
with an Intel i7 processor and 16GB RAM.

A. REACH AND AVOID PROBLEM
Firstly, we analyse the simulation results for the reach-avoid
problem. In this problem, all of the aircraft try to reach a
target region, while avoiding conflicts with the other aircraft
and obstacles. We consider this problem as an ATC applica-
tion and use the performance parameters of Boeing 737-800.
An example scenario for the control of 20 aircraft is presented
in Fig. 1. The computation times for the solutions of the
reach-avoid problems with different number of aircraft are
presented in Table 1. The solutions are generated through two
different modes. The Boolean mode corresponds to solving
the optimization problem to generate trajectories that satisfy
STL specifications without maximizing robustness, whereas
the Robust mode refers to the maximization of the robustness
of the STL specifications. It is observed that the optimization
problem is always solved faster in the Boolean mode than the
Robust mode. As presented in Table 1, the performance of the

1http://www.gurobi.com/

FIGURE 2. Optimal trajectories for approach control and arrival
sequencing.

designed method is computationally tractable for the control
of multiple aircraft. Although the problem cannot be solved
in the Robust mode for 20 aircraft within feasible time limit,
the solution is generated efficiently in the Boolean mode. The
method can be used for the real-time applications.

B. APPROACH CONTROL AND ARRIVAL SEQUENCING
The second case is the application of the method to a realistic
approach control scenario. This scenario contains the control
of multiple aircraft in arrival traffic and sequencing them at
1000m. In this case study, all aircraft have the same per-
formance limits except second aircraft (orange). The speed
limits and initial speed of the second aircraft are 10m/s
lower than the others to show the capability of the proposed
method dealing with heterogeneous aircraft performance.
In the scenario, each aircraft should visit three predefined
regions at the specified times that refer to a standard ter-
minal arrival (STAR) procedure in the real operation. After
reaching the last region, they should arrange their headings
according to the runway’s direction. In this phase, the aircraft
are sequenced while the minimum separation requirements
are satisfied and their headings are arranged according to
the runway’s direction. The simulation results for the control
of five aircraft are presented in Fig. 2. The observation is
that the aircraft visit the predefined regions while avoiding
obstacles and each other, and obtain the necessary heading
angles according to the runway’s direction after reaching the
last region. Furthermore, they are sequenced with minimum
horizontal separation requirement. The results show that all
aircraft always ensure the minimum separation requirement
(3nm/5556meters) as illustrated in Fig. 3. The generated
trajectories are also feasible in terms of performance lim-
itations. For example, the speeds are always within limits
during operation as shown in Fig. 4. The speed of the sec-
ond aircraft is also always within its limits, and its speed
is often lower than the other aircraft. This case study also
shows that the proposed method can handle heterogeneous
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FIGURE 3. Solution to approach control and arrival sequencing:
horizontal distances between aircraft pairs.

FIGURE 4. Solution to approach control and arrival sequencing: speeds of
each aircraft stay within speed bounds.

aircraft performance during approach control. As mentioned
before, the control inputs are also generated at the end of the
optimization. The bank angles are illustrated as an example
in Fig. 5. It is shown that the bank angles are also within
limits, which are [−25◦, 25◦] during take-off and landing and
[−45◦, 45◦] during other flight phases for civil flight [24],
and they are tractable by a Boeing 737-800 because of the soft
angle changes.Moreover, the time performance of themethod
is also practicable. For this case study, the construction time
of the MILP is approximately 1.8s, whereas the solution time
is around 3.9s.

C. UAV FLEET NARROW-PASSAGE PROBLEM
In the last example, we solve a narrow-passage problem
for a quadrotor fleet, where the quadrotors aim to reach a
delivery point by passing a narrow-passage. We aim to show
that the method can also be used in UAV applications. The
flat descriptions of a quadrotor are presented in [25]. The
problem is solved for a fleet that has 7 quadrotors as presented
in Fig. 6, which also contains the positions of the quadrotors
while passing the passage at time t = 30s. As presented
in Fig. 7, the quadrotor pairs always ensure the minimum

FIGURE 5. Solution to approach control and arrival sequencing: bank
angles of each aircraft stay within bank angle limits.

FIGURE 6. Optimal trajectories for the quadrotor fleet for the
narrow-passage problem.

FIGURE 7. Solution to UAV fleet narrow-passage problem: horizontal
distances between quadrotor pairs.

separation requirement, which is 5m, during operation.
These figures show that the fleet satisfies the mission speci-
fications. The system variables are also within limits during
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FIGURE 8. Solution to UAV fleet narrow-passage problem: speeds of each
quadrotor stay within speed bounds.

operation. For example, the speeds of the UAVs are smaller
than the maximum speed 8.5m/s as presented in Fig. 8.

VII. CONCLUSION
In this paper, we developed an optimization-based method
for the mission planning and control of multi-aircraft sys-
tems with STL specifications. We represented the missions
of aircraft via an STL formalism and described the system
dynamics as a (partially) differentially flat system. We then
constructed a MILP-based formulation to generate optimal
trajectories that satisfy STL specifications. In our examples,
we used a realistic aircraft model with performance param-
eters of Boeing 737-800 and realistic conditions to simulate
arrival traffic, and evaluated the performance of the proposed
method.Moreover, we showed that the method can be applied
to other multi-agent systems, such as mission planning and
control of multiple unmanned aircraft.
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