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Abstract—The integration of unmanned aircraft systems (UAS)
into the airspace system is a key challenge facing air traffic
management today. An important aspect of this challenge is how
to determine and manage 4-dimensional trajectories for both
manned and unmanned aircraft, and how to appropriately allo-
cate resources among different aircraft. An integrated approach
requires solving the traditional Air Traffic Flow Management
(ATFM) problem to balance the capacity and demand of airport
and airspace resources, but at a significantly larger scale. In
doing so, aircraft connectivity constraints of commercial flights
must be satisfied. In addition to these and the resource capacity
constraints, geofencing constraints for unmanned aircraft that
keep them within or outside a certain region of the airspace,
must also be incorporated.

This paper presents a distributed implementation of an integer
programming approach for solving large-scale ATFM problems
in the presence of unmanned aircraft. Given desired mission
plans and flight-specific operating and delay costs, the pro-
posed approach uses column generation to determine optimal
trajectories in space and time, in the presence of network and
flight connectivity constraints, airport and airspace capacity
constraints, and geofencing constraints. Using projected demand
for the year 2030 from the United States with approximately
48,000 passenger flights and 29,000 UAS operations (on a wide
range of missions) per day, we show that our implementation
can find nearly-optimal trajectories for a 24-hour period in less
than 4 minutes. Furthermore, a rolling horizon implementation
(with 6-8 hour time windows) results in run times of less than a
minute. In addition to being the largest instances of the ATFM
problem solved to date, these results represent the first effort to
incorporate UAS trajectories into airspace and airport resource
sharing problems.
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I. INTRODUCTION

High demand for airspace and airport resources, combined
with reduced capacity during weather disruptions, result in
large air traffic delays and significant economic and environ-
mental impacts. [1] estimated that in 2007, domestic flight
delays cost the United States’ economy $41 billion, increased
airline operating costs by $19 billion, and consumed nearly
740 million gallons of fuel. Congestion due to high traffic
volume and non-extreme weather conditions are responsible
for 25% of all delayed flights [2]. In the same period, enroute
air traffic flow management delays in Europe cost an estimated
AC1.3 billion, while route extensions cost an additional AC2.4
billion [3].

Air Traffic Flow Management (ATFM) is a process that
strategically allocates capacity-constrained resources by as-

signing delays to aircraft (either on the ground or in the
air), rerouting them, or by canceling them if necessary. While
ATFM algorithms traditionally focused on improving the effi-
ciency of the system by reducing delays, there is an increased
interest in ensuring the fairness of the resultant solutions,
the incentives for airlines to participate and report their in-
formation truthfully, and the ability of airlines to keep their
proprietary information (for example, flight-specific revenue
and delay cost functions) private.

Unmanned systems hold tremendous promise in applica-
tions ranging from search and rescue to agriculture, pipeline
inspection, firefighting, and freight delivery. The unmanned
aircraft market in the US is estimated to be of approximately
$35 billion in value by the year 2035, and to result in nearly
250,000 jobs [4]. However, systems and procedures need to
be developed that facilitate the integration of remotely-piloted
or unmanned aerial systems (RPAS/UAS) into the airspace
without negatively impacting an already capacity-constrained
system. The wide array of UAS mission types in addition to the
large volume of operations requires a fundamental rethinking
of how aircraft trajectories are planned and managed, while
maintaining safety, efficiency, and an equitable distribution of
airspace resources.

Trajectory-based operations (TBO) have the potential to
greatly improve the efficiency of the ATM system. The un-
derlying concept is the use of a 4D trajectory (a set of points
in space-time) in order to describe the most likely path of an
aircraft. This trajectory can then be used to coordinate deci-
sions between different facilities, agents, and time-scales. Prior
literature on technology as well as ATM policy has typically
focused on how to ensure tactical safety once strategic aircraft
trajectories have been determined [5, 6]. However, to the
best of our knowledge, few studies have focused on how the
trajectories could be determined and managed, and resources
appropriately allocated, across a large number of manned
and unmanned aircraft. The question of how to strategically
generate trajectories for a large number of aircraft, and manage
airspace resources in the presence of manned and unmanned
aircraft, is the focus of this paper.

The proposed system, named DRIFT (Distributed Resilient
Framework for TBO), is a distributed system that consists
of algorithms and an information-sharing framework that
would enable autonomous trajectory planning by manned and
unmanned aircraft, while optimizing system-wide objectives
such as safety, efficiency, and equity. DRIFT provides a



framework under which aircraft and Air Traffic Control (ATC)
can iteratively exchange trajectory intent and congestion feed-
back to develop trajectories that are efficient and equitable,
while preserving an aircraft’s autonomy in generating its own
trajectories based on its internal objective tradeoffs.

A. Design principles

We propose an framework for the large-scale generation and
management of trajectories for both manned aircraft and UAS,
guided by the following key design principles:

1) Autonomy: In order to enable each aircraft to au-
tonomously determine its own trajectory based on its
internal time/cost tradeoffs, DRIFT deploys a distributed
architecture in which the role of the centralized authority
(for example, the ANSP) is to facilitate, and not dictate,
the efficient use of system resources. The framework
also allows for flexibility in the level of autonomy. For
example, in the short-term (as in the current system),
the distributed implementation will primarily lead to a
computational benefit, by enabling fast run times. In the
medium-term, the autonomy may be at the level of the
air carriers, in which each airline (or UAS operator) will
compute and transmit a set of desired trajectories to the
ANSP. Finally, in the long-term, full autonomy may be
achieved, and individual aircraft will determine their own
trajectories based on their internal cost-revenue tradeoffs.

2) Safety through constraint satisfaction: ATM operations
are subject to a large range of constraints, including
airspace sector and airport capacity constraints, and in
the case of UAS, geofencing constraints that regulate
access to certain areas of the airspace at certain times.
Depending on weather, workload, and other factors, these
constraints are likely to be dynamic, that is, vary with
time. The proposed algorithms therefore need to ensure
that aggregate flow/density constraints are satisfied at
various system resources at all times.

3) Efficiency: While allowing aircraft operators to au-
tonomously determine trajectories based on their internal
tradeoffs, it is desirable to maximize resource utilization,
and to generate global outcomes that optimize system-
wide metrics.

4) Scalability: The National Airspace System (NAS) in the
US currently serves approximately 29,000 commercial
flights (air carriers and air taxi operations) per day
[7], which determines the number of trajectories that
need to be determined. However, the projected growth
in passenger demand and the introduction of UAS are
expected to result in a dramatic increase in the number of
flights, to nearly 80,000 flights per day, by the year 2030
[8, 9]. In addition, the dynamic and unpredictable nature
of UAS demand implies that the underlying optimization
problems may need to be solved quickly in order to
be able to re-plan when new demand arises, or when
conditions change. The proposed DRIFT architecture and
algorithms therefore need to scale to solve the very

large-scale optimization problems in a computationally
tractable manner.

5) Robustness to information inaccuracies and uncertain-
ties: As in any distributed architecture in which different
agents exchange information, communication delays and
uncertainty may cause inaccurate or obsolete information
to be transmitted. It is therefore desirable for the proposed
framework to be robust to reasonable levels of imperfect
information and trajectory uncertainty.

6) Equity and incentives: Since flights are operated by a
number of aircraft operators with competing interests, we
are interested in algorithms that can ensure an equitable
distribution of resources among the different users. While
the scope of this paper is restricted to the optimization
framework, future research will address the design of
mechanisms that can enable equity, create incentives for
participation and truthful reporting of information by
aircraft operators, and monitor and enforce conformance.

B. Contributions of this paper

Capacity-demand imbalances in the current ATM environ-
ment are addressed by ATFM processes. The TBO concept
helps synchronize resource management and coordination
across multiple spatial and temporal scales by determining
trajectories in space and time for all flights. In the absence
of UAS, approximately 20,000-30,000 trajectories per day
would need to be managed by ATFM in the US, under
current demand levels. In addition, air carrier service in the
US currently serves more than 370 airports, and the airspace
is divided into nearly 400 high-altitude sectors. However,
the two largest instances of the ATFM problem that have
been solved to date have involved 6,745 flights, 30 airports
and 145 sectors for an 8-hr window with 15-min trajectory
discretization (Bertsimas et al., 2011: run-time of 10 min
[10]), and, more recently, 17,500 flights, 370 airports and 375
sectors for a 24-hr window with 5-min trajectory discretization
(Balakrishnan and Chandran, 2014: run-time of 5 min [11]).
However, the introduction of UAS into the ATM environment
will dramatically increase the number of flights [8, 9]. An
TBO framework that manages trajectories in an integrated
manned would therefore need to be able to manage a very
large number of trajectories in a computationally tractable
manner, allow aircraft operators (including UAS operators)
to autonomously generate trajectories based on their internal
tradeoffs, and allow diverse classes of aircraft with differing
constraints to share airspace and airport resources.

This paper presents a distributed implementation of an
integer programming approach that was recently proposed for
large-scale ATFM [11]. While the prior implementation was
on a laptop with 8 virtual cores, this paper demonstrates that
the approach scales to deployment on the cloud (AWS). We
show that this approach can be used to incorporate geofencing
constraints that are required for the management of UAS
trajectories in a TBO environment. Using datasets of projected
operations in 2030 and real-world sector definitions, we show
that our framework can determine trajectories to within 0.1%



of optimal for 77,000 flights (manned and UAS), with 2,400
airports and 955 airspace sectors, for a 24-hour window with 1-
min trajectory discretization, with a computational time of less
than 4 min. We also show that this framework can seamlessly
incorporate UAS and associated geofencing constraints, and
facilitate efficient resource sharing, while allowing aircraft
operators to autonomously determine their trajectories. In addi-
tion to being the largest instances of the ATFM problem solved
to date, these results represent the first effort to incorporate
UAS trajectories into airspace and airport resource sharing
problems.

II. INTEGRATING UAS INTO ATFM
Prior studies on UAS integration into the airspace have

primarily focused on tactical collision detection and avoidance,
once strategic trajectories have been determined [5, 6, 12, 13].
The strategic handling of imbalances between capacity and
demand for airspace resources has been the purview of Air
Traffic Flow Management (ATFM) algorithms. Starting with
the first mathematical formulation of the flow management
problem [14], there has been much research in developing
computational techniques to address this problem [15, 16, 17,
10, 18, 19, 20]. However, the ability to solve truly nation-scale
(in the case of the United States) or continent-scale (in the
case of Europe) instances has been a long-standing challenge.
We recently proposed a parallelizable, column generation
algorithm to determine optimal trajectories in the presence
of network and flight connectivity constraints, as well as
airport and airspace capacity constraints [11]. The proposed
approach was shown to be fast enough to solve realistic nation-
scale instances of 24-hour duration (with ∼17,500 flights, 370
airports and 375 sectors, at a time-discretization of 5 minutes)
in less than 5 min. The focus of this paper is to understand
whether this method can scale to handle the significantly
larger challenge of including unmanned operations and the
constraints associated with them (e.g., geofencing), while still
handling the constraints of the traditional ATFM problem.

A. Notation

We represent the airspace system as a node-link network
along which aircraft are routed. The network model consists
of the following components (Fig. 1):
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Figure 1: Network representation of the ATFM problem.

1) Node: A node can be either a physical location corre-
sponding to a region in the airspace, or a decision point
(e.g., hold at gate vs. pushback for taxi).

2) Arc: An arc is a directed segment that connects two
nodes. It is associated with a minimum transit time (> 0),

a maximum transit time, and a cost as a function of the
transit time.

Given this network, a trajectory or “4D-trajectory” is a
sequence of node-time combinations that represent the path
of an aircraft. It implicitly specifies the arcs along the path
and the transit times on those arcs. In traveling from an
origin airport to a destination, a flight traverses through several
sectors, or contiguous regions of airspace. An arc in the
network is required to be fully contained within a sector: a
sector is therefore a collection of arcs. Nodes at the sector
boundaries ensure that arcs do not cross sectors. A node could
however be present inside a sector. A single physical aircraft
(or tail) can operate several consecutive flights during a time-
horizon. Therefore, for a given tail, the destination airport of
a flight must be the origin airport of the successor/connecting
flight. Each flight is in turn associated with a set of arcs that
form the network along which that aircraft can be routed from
its origin to destination. The parameters of the arcs (minimum
and maximum transit times and cost) can be flight-dependent.

B. Operational constraints on trajectories

In determining the optimal 4D-trajectories, there are a range
of operational constraints that need to be satisfied. These
constraints may differ depending on the class of aircraft (for
example, manned or unmanned), and also by type of aircraft
(for example, the desired altitude of the UAS mission).

1) Airport and airspace capacity constraints: These con-
straints represent limits on flows in the air traffic network.
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Figure 2: An airport runway capacity envelope with four segments.

Airport capacity constraints limit the flow through an airport
at any time. The airport throughput constraint at any time is
represented by a capacity envelope composed of segments that
specify the tradeoff between arrival and departure operations.
For example, the envelope shown in Figure 2 stipulates that
if the runway is in a “departures-only” or “arrivals-only”
operating mode, the limit on the number of operations is 40
per hour. However, in the case of mixed (arrival and departure)
operations, the throughput may be higher. For instance, the
runway is capable of handling 30 arrivals and 30 departures per
hour. Since envelopes are typically convex [21], the individual
segments can be modeled as independent constraints, the
intersection of which forms the capacity envelope. Depending
on the airport of operation and the class of UAS, these
constraints may impact unmanned aircraft as well. The DRIFT



framework is capable of including UAS within the airport
capacity constraints.

Airspace capacity constraints limit the number of aircraft
that can be in a sector at any time, and are driven by
the geometry of the sector as well as air traffic controller
workload [22]. Departure queue management strategies that
limit the number of aircraft on the airport surface can be
enforced using a “surface” sector or a taxi arc. Airspace
throughput constraints, such as miles-in-trail and minutes-in-
trail constraints that stipulate the minimum spacing between
two aircraft [22], can be represented by node throughput
constraints similar to the airport capacity constraints. Such
sector capacity and node throughput constraints can be used to
manage UAS trajectories, both for high-altitude traffic that is
impacted by the enroute constraints faced by manned flights,
as well as low-altitude (or UTM [23]) operations that involve
interactions among UAS.

2) Flight connectivity constraints: Airline operations see
high levels of flight connectivity, i.e., the same aircraft being
used on multiple legs in sequence. In fact, only about 6% of
flights on a typical day in the US have no connection; a typical
aircraft performs 4–6 flights in a day [11].

Fig. 3 shows the causes of flight delays in the US and
Europe in 2015. We see that in both systems, the late arrival
of the aircraft (from its preceding leg) is the largest cause of
delay, about 40%. We additionally note that in Europe, 5% of
delays are due to crew and passenger connectivity. It is likely
to be similar in the US, where such delays are included under
the category of “air carrier delays”. Due to such high levels
of connectivity, it is important to account for the downstream
impacts of ATFM actions.

Figure 3: Causes of flight delays, [left] in the US [2], and [right] in Europe [24].

The connectivity constraints also imply that solving the
ATFM problem by considering a small geographical region
or using a naı̈ve rolling horizon approach would result in a
significant loss of efficiency. It is therefore desirable to develop
scalable optimization approaches that can handle problems at
a nationwide scale over time horizons spanning an entire day.

3) Geofencing constraints: One approach that has been
proposed for integrating UAS into the airspace system is
geo-fencing [23]. A geofence is a boundary that encloses an
area that UAS trajectories must avoid. Geofences may be
static or dynamic (time-varying), and could be used by Air

Navigation Service Providers (ANSPs) to better manage the
airspace. For example, only manned aircraft may be allowed
in a certain region of the airspace during a certain period
of time, or alternatively, only certain classes of unmanned
aircraft. It is expected that the geofence definitions will then
be communicated to airspace users and UAS operators [25]. In
this paper, we illustrate how such geofencing constraints can
be incorporated into ATFM, and how the DRIFT algorithms
can be used to determine trajectories that conform to the
geofence boundaries.

4) Length of planning horizon: As mentioned earlier, high
levels of flight connectivity in passenger or cargo operations
can limit the efficacy of decomposing the problem into smaller
planning horizons, by resulting in very sub-optimal solu-
tions. The nature of UAS demand further motivates the need
for solving the ATFM problem for long planning horizons.
Some UAS missions, such as ones for agricultural or aquatic
surveillance, and infrastructure inspection, are long duration
missions, ranging from many hours to a day. In order to
accommodate trajectories of these lengths, it is necessary
to solve the ATFM problem for long planning horizons. In
addition, since UAS demand is likely to be unscheduled,
it is important to be able to re-optimize operations for the
remainder of a day when new demand materializes. In other
words, there is a need for computational approaches that can
solve the nation-scale problem for planning horizons of 24-
hour length, in a few minutes.

III. PROBLEM DESCRIPTION AND SOLUTION APPROACH

Time is discretized in our mathematical formulation of the
problem, implying that all transit times in the network are
integer multiples of the time period. Similarly, all operations
occur at a set of periodic epochs. The problem can then be
stated as follows:

Given a set of flights (and the associated aircraft/tails oper-
ating each of them), airport and airspace capacity constraints,
and geofence constraints, identify a 4D-trajectory for each
aircraft that maximizes the system-wide benefit (revenue plus
cancellation penalty) minus costs (operating costs plus delay
costs), and that obeys operational and capacity constraints for
all time periods.

A. Mathematical formulation

In the discussion that follows, the term network refers to
the network representation of the ATFM problem, shown in
Fig. 1. First, we introduce the following notation.

F Set of flights.
L Set of tails.
S Set of sectors.
T Set of time periods in the time horizon.
N Set of nodes in the network.
A Set of arcs in the network.



sa Sector containing arc a.
R Set of all feasible 4D-trajectories, where a

4D-trajectory specifies the routing of a con-
tiguous set of flights starting with the tail’s
origin. A trajectory could contain only the
4D-trajectory for an aircraft until the first
cancellation; all flights with no trajectory
(the first cancelled flight and all subsequent
connections) are considered cancelled.

RL(`) The set of feasible 4D-trajectories for tail
`. Feasible trajectories satisfy both routing
constraints on the different flights, as well as
maximum/minimum travel times on any arc,
and minimum turnaround time constraints for
consecutive flights of the same tail.

P(a, t) Number of aircraft on arc a ∈A at time t ∈
T .

Q(a, t) Number of aircraft that enter arc a ∈ A at
time t ∈T .

J (n, t) The set of segments in the capacity envelope
of node n at time t.

ρr Benefit (revenue plus cancellation penalties)
minus costs of trajectory r ∈R.

Bs,t Capacity of sector s at time t.
Dn,t, j Right-hand side of the linear constraint for

segment j of the capacity envelope for node
n at time t.

ar,t Arc that an aircraft following trajectory r is
on at time t.

σa,t, j Coefficient of arc a in the linear constraint
representing segment j of the capacity enve-
lope for the head node of arc a at time t

RS(s, t) Set of trajectories that use sector s at time t.
RN(n, t, j) Set of trajectories that leave node n at time t

and use the resource represented by segment
j of the capacity envelope at that time.

Sector capacity constraints limit the total number of aircraft
in a sector. They can be written as

∑
a∈AS(s)

P(a, t)≤ Bs,t ∀s ∈S , t ∈T (1)

where Bs,t is the capacity of sector s at time t.
A trajectory r ∈R is said to intersect with a sector capacity

constraint for sector s at time t if the trajectory results in an
aircraft being present in sector s at time t. A trajectory can
intersect with at most one sector capacity constraint at any
time (in the deterministic case). The set of trajectories that
intersect with a capacity constraint representing sector s at
time t is denoted by RS(s, t).
Node capacity constraints limit the throughput of aircraft
through a node (for example, an airport runway or a metering
fix). As mentioned earlier, runway capacity constraints are
typically expressed in terms of a capacity envelope (Fig. 2).
Although the node capacity envelope at a certain time could
consist of multiple segments, we treat each segment as an
independent constraint, as the intersection of all segments at

a certain time defines the envelope as a whole. Therefore,
when we refer to a node constraint, we refer to one segment
j ∈J (n, t) of the envelope of a node n at time t. The node
throughput constraint is linear, and is written as

∑
a∈AN(s)

σa,t, jQ(a, t)≤Dn,t, j ∀n∈N , t ∈T , j∈J (n, t) (2)

where σ and D are constants that define the shape of the
segment.

A trajectory r ∈R is said to intersect with a node capacity
constraint for node n at time t if the trajectory results in
an aircraft entering an outgoing arc of node n at time t
(i.e., the aircraft passes through node n at time t). The set
of trajectories that intersect with a node capacity constraint
representing envelope segment j of node n at time t is denoted
by RN(n, t, j).

The traditional formulation of the TFMP has capacity and
operational constraints, with binary decision variables that
indicate whether a flight has reached a sector by a certain
time period. By contrast, our formulation has only capac-
ity constraints, and all the other constraints (minimum and
maximum transit times, flight connectivity, turnaround times,
etc.) are absorbed into the definition of the variable. This
formulation results in fewer constraints but an exponentially
greater number of variables. The decision variables are defined
as follows:

xr =

{
1 if trajectory r is chosen, and
0 otherwise ∀r ∈R (3)

The Master Problem can now be stated as follows:

maximize z = ∑
r∈R

ρr xr (4)

s.t. ∑
r∈RL(`)

xr ≤ 1, ∀` ∈L (5)

∑
r∈RS(s,t)

xr ≤ Bs,t , ∀s ∈S , t ∈T (6)

∑
r∈RN(n,t, j)

σar,t ,t, j xr ≤ Dn,t, j, ∀n ∈N , t ∈T , j ∈J (n, t) (7)

xr ∈ {0,1}, ∀r ∈R (8)

Objective (4) maximizes the total benefit minus cost of all
trajectories selected. Constraint (5) states that at most one
trajectory may be selected for each tail. Constraints (6) and
(7) are the sector and node capacity constraints respectively.

B. Solution approach

The problem as formulated can be efficiently decomposed
into a set of parallelizable sub-problems, with an easy-to-solve
master problem that coordinates between the sub-problems,
using column generation. A comprehensive discussion of the
algorithms, mathematical proofs, and experiments on synthetic
airspace sectorization data can be found in [11]. Fig. 4 shows a
schematic of the solution process. The master problem trans-
mits the pricing signal, which comprises of the dual prices
associated with the different resource capacity constraints. In
particular, the dual prices λs,t and µn,t, j correspond to the dual



variables for constraints (6) and (7) respectively, and signal
congestion at the sectors and nodes. The dual prices help guide
the sub-problems (solved by the distributed nodes, potentially
one for each tail) to an optimal solution. The dual price π`

denotes the dual price for constraint (5), namely, the marginal
cost of including that particular trajectory.
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Figure 4: Schematic of the distributed solution process for very large-scale ATFM [11].

C. Interpretation of architecture

The proposed architecture of DRIFT can be interpreted as
follows. Fig. 5 shows a high-level depiction of the architecture.
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Figure 5: High-level depiction of the DRIFT architecture.

1) Each aircraft shows “intent” by expressing the desire
to fly a certain flight by sharing the origin, destination,
preferred departure and arrival times (and in the case of
UAS, the type of mission, i.e., grid, point-to-point, etc.).
This is known as the intent signal.

2) DRIFT broadcasts the “cost” of using each airspace
resource at each point in time for each aircraft class;
the cost is a function of projected capacity, projected
loading, and the fraction of resource consumed by each
aircraft type. The term “cost” does not imply a financial
transaction, an indication of how congested that particular
region of airspace is. This is known as the pricing
signal. By comparing the cost of the required resources

to the revenue of flying a particular trajectory, an aircraft
operator can decide whether or not the trajectory is worth
flying.

Since the pricing signal can be made to vary by
aircraft class, it can be used to implement geofencing
constraints. For example, suppose a certain region of
airspace needs to be enforced as a “keep-out” geofence
for low-altitude UAS, that is, low-altitude UAS are not
allowed access to this region. Then, low-altitude UAS see
an effectively infinite price for the geo-fenced sector, and
their trajectories can therefore not enter that sector. By
contrast, manned and high-altitude UAS will continue to
see prices for that sector, as calculated by considering the
demand for that resource.

3) Each aircraft may autonomously determine its optimal 4-
D trajectory (sequence of resources to use and times at
which to use them) as well as the “benefit” of this tra-
jectory to it. At each iteration, the aircraft communicates
its desired trajectory and the resulting benefit to DRIFT.
This is known as the trajectory signal. In the short- and
medium-term, an air carrier or aircraft operator would
determine and communicate the trajectory signals of all
its aircraft to the master node.

4) Upon receiving the trajectory signal from the aircraft,
DRIFT assesses the trajectory for feasibility (whether
there is capacity available on resources along the pro-
posed trajectory). If the trajectory is feasible, DRIFT
adds the trajectory (i.e., the column), and returns a
confirmation (trajectory feedback signal) to the aircraft.

5) DRIFT re-computes the optimal trajectories and prices
every time the capacity of a resource changes, or when
an aircraft successfully reserves capacity on a resource.

1) Types of signals: We further elaborate on the information
that is exchanged:

1) Capacity signal. A key input to allocation resources is
the expected capacity of each resource in the system over
time. DRIFT will have default values for each resource
(similar to MAP values for sectors, or runway capacities
for airports), which are updated by resource operators
based on expected weather conditions or other dynamic
constraints caused by geo-fencing.

2) Intent signal. The intent signal is the start of an aircraft’s
interaction with DRIFT. While it is expected that some
fraction of UAS demand will not show intent (similar to
pop-ups in todays Air Traffic environment), the system
cannot operate as a purely on-demand tactical system
in the interests of safety. One key feature of DRIFT
is that it is able to rapidly re-compute all signals, and
therefore can adjust to resource overloads from pop-ups
quickly (within a few minutes). In order to deal with pop-
up demand, DRIFT will reserve a portion of capacity
on each resource for unexpected demand. DRIFT will
have defaults for the size of the buffer, which may be
dynamically updated by the resource operators as part of
the capacity signal. It is envisioned that non-scheduled



flights will still be managed by a system that resembles
the current emergency COA procedures.

3) Pricing signal. The prices of resources are also a by-
product of the optimization process, obtained as dual
prices of the resources at various times. A special prop-
erty of the prices is that they are zero for unconstrained
resources (i.e., resources that are not at capacity) while
they may be positive for constrained resources. Addi-
tionally, the prices can be adjusted such that geo-fenced
regions have extremely high cost (ensuring that no aircraft
may use it) or a high cost only for certain classes of
aircraft (if the fenced region is off-limits only to certain
classes).

4) Trajectory signal. Given the resource prices published
and the cost/revenue functions for each flight, each air-
craft computes an optimal trajectory. This computation
is equivalent to solving a longest-path problem on the
NAS network. The aircraft l then transmits the desired
trajectory, xl along with the corresponding benefit, ρl . We
note that the aircraft operators get to maintain a certain
level of privacy, since they do not have to share their
internal delay cost and revenue functions, but instead only
need to share the net benefit of the entire trajectory.

5) Trajectory feedback signal. The trajectory feedback
signal is a mechanism to ensure that an aircraft is only
allocated a feasible trajectory. It can also be used to
ensure that the final trajectory flown by the aircraft
is consistent with its intent, that is, for conformance
monitoring.

IV. COMPUTATIONAL EXPERIMENTS

A. Datasets

1) Manned aircraft demand: The data for manned aircraft
was obtained from a run of the FAA’s System-Wide Analysis
Capability (SWAC) [8], representing a typical day of flights in
the year 2030. The forecasted demand in SWAC accounts for
demand changes by origin/destination pair, fleet mix changes,
as well as equipage improvements.

The dataset contains flight data for approximately 47,900
passenger flights operating between approximately 2,400 air-
ports, and represent all flights with an origin or destination
in the United States. There are approximately 27,500 unique
aircraft IDs in the data set (implying that each unique aircraft
flights nearly two legs on average). The dataset also contains
flight paths for each flight, which were merged with the sector
definition files to obtain the en route and terminal resources
required by each flight.

2) UAS demand: The UAS demand set for 2030 was
generated using the assumptions described in prior work [9].
The dataset consists of approximately 29,000 flights (which
includes both high-altitude and low-altitude operations). The
flights span various UAS types including Predators, ScanEa-
gles, Ravens, etc. The missions operated span a wide range of
applications, including communications, agriculture, fish spot-
ting, cargo delivery, etc. In terms of the desired trajectories,
the four key mission types in the data set are:

1) Point-to-point, in which the aircraft travels directly from
the origin to the destination;

2) Polygon, in which the UAS performs a polygonal flight
path around an area of interest;

3) Random, in which the UAS randomly traverses a region
of airspace;

4) Grid, in which the UAS traverses a region along a
structured grid.

While there are more than 4,000 airports in this data set,
most origin/destinations are smaller airports (that do not carry
commercial traffic); many are military airports as the data set
includes military UAS as well. A key assumption made by
the dataset is that all operations begin and end at an FAA-
recognized airport, i.e., it does not contain aircraft launched
by hand or catapult. The airports used do not belong to Class
B, C, or D airspace (and hence there is little terminal-area
interaction with commercial aircraft). We did not consider
alternate shorter routing options for unmanned aircraft, since
their mission trajectories are likely to be convoluted by design
(for example, a UAS may need to conduct surveillance by
remaining in a certain area for several hours).

The airspace sectorization was assumed to be similar to
the current one. The implementation considered 955 sectors,
at both low and high altitudes. The sector capacities were
assumed to be the same as current values, while the airport
capacity envelopes were assumed to correspond to the values
with planned 2030 improvements. A snapshot of the 2030
traffic implemented with the sector boundaries is shown in
Fig. 6.

Figure 6: Snapshot of traffic of unmanned (red) and manned (blue) traffic for the year
2030.

B. Pricing signals

As seen in Sec. III the prices of resources at different times
are given by the dual prices. The price of a resource is zero
if it is not at capacity, but may be positive if a resource is
constrained, that is, demand for it exceeds the capacity at that
time. Since the constraints and demand (flight schedules and
UAS mission times) are dynamic, the prices of resources also
vary with time. Fig. 7 shows examples of pricing signals for
two resources, an airport and an airspace sector, as functions
of time for a portion of the day.



Figure 7: Examples of pricing signals computed by DRIFT, for (top) an airport, IAD,
and (bottom) an airspace sector. We see that the price of a resource (i.e., the dual variable
corresponding to the capacity constraint) can vary with time, depending on the demand.

C. Geofencing

Geofencing is the process by which certain classes of air-
craft are prevented from entering some portion of the airspace.
For example, it may be desirable to prevent unmanned aircraft
from entering a region around an airport for a certain time
period of high density of manned operations. DRIFT manages
geofencing by updating the prices of resources such that the
aircraft that are not allowed to use the resources see a price
of infinity, while those that are allowed to use the resource
continue to see the “normal” DRIFT prices. As a result,
aircraft with the higher cost cannot access the resources, since
it will need an extremely high (in fact, infinite) revenue in
order for the revenue to outweigh the cost. In this manner,
geofencing can be applied in an aircraft-specific or aircraft-
class specific fashion. Fig. 8 shows the result of a geofencing
implementation, when a certain sector is closed-off to manned
as well as high-altitude unmanned traffic (therefore, the sector
allows only low-altitude unmanned traffic).

D. Scalability: Computation times

The trajectories were determined at a 1-min discretization,
while the sector and airport capacity constraints were defined

Figure 8: Example of geofence implementation using DRIFT, showing traffic unmanned
(red) and manned (blue) traffic, with and without geofencing.

at a 5-min resolution, that is, were assumed to be constant over
each 5-min interval. The algorithms were implemented on a
Linux X-Large machine with 40 cores on AWS, reading and
writing output to the cloud-storage s3 system. The algorithms
were implemented in C and were optimized for speed and
memory performance. The run time was found to be under
4 min in order to obtain solutions that were within 0.1%
of optimal, and 7 min to be within 0.01% of optimal. The
implementation demonstrates the scalability of the DRIFT
architecture to take advantage of parallelism, and the ability
of the algorithms to be run in real-time.

Since UAS demand is likely to be dynamic and unsched-
uled, it is envisioned that DRIFT will be run every 15 minutes
or so, in a rolling-horizon framework. We therefore consider
a rolling-horizon implementation, with a planning horizon of
8 hours (with a 2 hour overlap and freeze window). Each
planning horizon has approximately 25,000 flights. We find
that such an implementation further reduces the run times to
be under 1 min.

For the given typical day, 50 scenarios were generated,
each with varying degrees of capacity constraints and volumes.
Each scenario was run to optimality. The run-time performance
of the algorithm was found to be similar to the instance
described above.

E. Robustness to inaccurate information

The question of how the system reacts to bad/delayed
signals was investigated by simulating the behavior of the
system when the prices were perturbed by a small percentage,
or when the prices used were “stale”, i.e., from a previous
iteration. DRIFT was found to be resilient to such imperfect
signals: The trajectory feedback signal is a point at which the
information that is being used by the aircraft is verified for
accuracy; if the data is inaccurate but still meets the latest
prices, the aircraft may still fly the route, but if significant
discrepancies are found in the data, a revised price signal is
sent to the aircraft as part of the trajectory feedback signal.
This mechanism therefore serves as a verification of the intent
of the aircraft and the accuracy of its data.



F. Equity and incentives

In today’s ATFM environment, the intent signals correspond
to scheduled demand, and the cost of a trajectory simply
corresponds to the amount of delay incurred by the flight. In
this system, equity corresponds to a first-scheduled-first-served
allocation of all resources. If the ATFM problem is solved
to just minimize total system delays equitably, the allocation
to each aircraft operator would be consistent with a Ration-
By-Schedule policy [22]. However, an oft-mentioned concern
[26, 27] relates to mixed-equipage scenarios, and incentivizing
equipage and conformance. Similar to geofencing constraints,
DRIFT’s architecture is capable of placing hard constraints on
certain classes of aircraft by closing access to certain resources
for certain types of aircraft, through an extremely high price
signal. Alternatively, “soft” constraints could be used to imple-
ment best-equipped-best-served strategies [28]: in this setting,
poorly equipped aircraft would pay a higher price for flying
through a resource than a better-equipped aircraft. Another
potential application of the proposed approach would be
to improve system performance by optimizing flight-specific
costs; however, questions of truthfulness in reporting trajectory
valuations would then need to be addressed before its practical
adoption. Similarly, issues of conformance monitoring and
enforcement would also need to be addressed. The design of
market-based mechanisms for resource allocation is a topic
that we intend to investigate further.

V. CONCLUSIONS

This paper presented a distributed implementation on AWS
of a solution approach to very-large scale ATFM, in the
presence of unmanned aircraft. The approach determines
optimal trajectories in space and time in the presence of
network and flight connectivity constraints (for commercial
air carriers), airport and airspace capacity constraints, and
geofencing constraints. Using projected US demand for the
year 2030 with approximately 48,000 passenger flights and
29,000 UAS operations per day, we showed that our im-
plementation can find solutions to within 0.1% of optimal
for a 24-hour period in less than 4 minutes. Furthermore, a
rolling horizon implementation (with 6-8 hour time windows)
results in run times of less than a minute. The UAS demand
spanned a range of missions and altitudes, ranging from low-
altitude cargo delivery to high-altitude surveillance for fishing
applications. Geofencing, a key requirement for the integration
of UAS into the airspace system, was also demonstrated
within the proposed framework. These results show that the
proposed solution approach to ATFM can be extended to
manage imbalances between capacity and demand, even in
the presence of unmanned systems.
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